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Type inference

Consider the following mathematical statements:

“For every x ∈ R, ex =
∑∞

i=0
x i

i! .”

“If G and H are groups and f is a homomorphism from G to H,
then for every a, b ∈ G , f (ab) = f (a)f (b).”

“If F is a field of characteristic p and a, b ∈ F , then
(a + b)p =

∑p
i=0

(p
i

)
aibp−i = ap + bp.”

How do we parse these?



Type inference

Observations:

1. The index of the summation is over the natural numbers.

2. N is embedded in R.

3. In “a ∈ G ,” G really means the underlying set.

4. ab means multiplication in the relevant group.

5. p is a natural number (in fact, a prime).

6. The summation operator make sense for any monoid (written
additively).

7. The summation enjoys extra properties if the monoid is
commutative.

8. The additive part of any field is so.

9. N is also embedded in any field.

10. Alternatively, any abelian is a Z-module, etc.



Type inference

Spelling out these details formally can be painful.

Typically, the relevant information can be inferred by keeping track
of the type of objects we are dealing with:

• In “a ∈ G ,” the “∈” symbol expects a set on the right.

• In “ab,” multiplication takes place in “the” group that a is
assumed to be an element of.

• In “x i/i !,” one expects the arguments to be elements of the
same structure.

Type inference: not only inferring types, but also inferring
information from type considerations.



Type inference

Structure hierarchies:

• Subclasses: every abelian group is a group

• Reducts: the additive part of a ring is an abelian group

• Instances: the integers are an abelian group

• Embedding: the integers are embedded in the reals

• Uniform constructions: the automorphisms of a field form a
group

Advantages:

• Reusing notation: 0, +, a · b
• Reusing definitions:

∑
i∈I ai

• Reusing facts: identities involving sums



Type inference

Observations:

• Type inference occurs when one parses an expression, but also
when one applies a lemma).

• The goal is to omit information systematically.

• There are really two kinds of information that are omitted:
• data: the relevant group multiplication, the relevant

embedding
• facts: the fact that an operation is associative, the fact that a

set is closed under an operation

• Under the Curry-Howard isomorphism, facts and data look the
same.

• A good deal of technology is imported from the theory of
programming languages (but there are differences).

• There is no sharp line between “type” information and
genuinely mathematical information.



Type inference

System Framework Type inference

Isabelle Simple type theory Axiomatic type classes

Mizar Set theory Soft typing

Coq Dependent type theory
Canonical structures or

Type classes, etc.

Features of Coq:

• It is based on a expressive dependent type theory.

• The underlying logic is constructive.

• Every term has a computational interpretation.

• Type checking is, in principle, decidable.

• For that reason, it is also rigid.



Type inference in Coq

Mechanisms for type inference in Coq:

• Implicit arguments: one can omit arguments that can be
inferred from a dependent type

• Coercions: cast objects to different types

• Canonical structures: can view a particular structure as an
instance of a class

In addition, Coq’s type inference engine makes use of the
computational interpretation, e.g. expanding definitions and
simplifying terms as necessary.



Dependent types

Record group : Type := Group

{

carrier : Type;

mulg : carrier -> carrier -> carrier;

oneg : carrier;

invg : carrier -> carrier;

mulgA : associative mulg;

...

}

The components of G : group are carrier G, mulg G, . . .

Given g, h : carrier G, we have mulg G g h : carrier G.

So mulg has type forall (G : group), carrier G ->

carrier G -> carrier G.



Implicit arguments and coercions

One can also write mulg _ g h, leaving the first argument
implicit.

Type inference has to solve carrier ? = carrier G, which is
easy.

Notation "g * h" := (mulg _ g h).

Now one can write g * h for group multiplication.

One can also define

Coercion carrier : group >-> Type.

Then g : G is interpreted as g : carrier G.



Canonical structures

Suppose we define

IntGroup := Group int addi zeroi negi addiA ...

Given i,j : int, this will let us (perversely) write mulg

IntGroup i j for i + j, and (less perverseley) apply facts about
groups.

What happens if write i * j?

Type inference has to solve carrier ? = int, and gets stuck.

Declaring

Canonical Structure IntGroup.

registers the hint carrier IntGroup = int for use in type
inference.



Summary / recap

Type checking is triggered when:

• parsing an expression

• applying a lemma

Often implicit arguments or facts need to be inferred.

Mechanisms:

• Unification: pattern matching to infer implicit arguments.

• Coercions: cast objects to different types

• Canonical structures: register unification hints that associate
structures with instances

• Unfolding definitions, simplifying terms



Finite group library

In the finite group library, type inference is used in a number of
ways:

• To recognize when structures have decidable equality and
choice functions, satisfy extensionality, and so on.

• To define “big operations” such as
∑

,
∏

,
⋂

,
⋃

,
∧

,
∨

• To mediate between sets and structures (e.g. G ∩ H and
CG (A) act as both sets and groups).

• To manage class inclusions (rings, commutative rings, fields)

• To manage algebraic constructions (matrices over a ring,
polynomials over a ring, quotient groups)

• To infer views (e.g. abelian group as a Z-module)

• The mediate between functions and morphisms

• To view both predicates and lists as sets (e.g. Px vs. x ∈ P).



Examples

Lemma commg_subl : forall G H,

([~: G, H] \subset G) = (H \subset ’N(G)).

Lemma nilpotent_proper_norm : forall G H,

nilpotent G -> H \proper G -> H \proper ’N_G(H).

Lemma morphim_center : forall rT A D

(f : {morphism D >-> rT}),

f @* ’Z(A) \subset ’Z(f @* A).

Lemma quotient_cents2 : forall A B K,

A \subset ’N(K) -> B \subset ’N(K) ->

(A / K \subset ’C(B / K)) = ([~: A, B] \subset K).



Examples

Theorem Sylow’s_theorem :

[/\ forall P,

[max P | p.-subgroup(G) P] = p.-Sylow(G) P,

[transitive G, on ’Syl_p(G) | ’JG],

forall P, p.-Sylow(G) P ->

#|’Syl_p(G)| = #|G : ’N_G(P)|

& prime p -> #|’Syl_p(G)| %% p = 1%N].

Lemma card_GL : forall n, n > 0 ->

#|’GL_n[F]| = (#|F| ^ ’C(n, 2) *

\prod_(1 <= i < n.+1) (#|F| ^ i - 1))%N.

Theorem Cayley_Hamilton : forall A,

(Zpoly (char_poly A)).[A] = 0.
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