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Sequence of lectures

1. Mathematical Understanding

2. The History of Dirichlet’s Theorem

3. Formalization and Interactive Theorem Proving

4. The Role of the Diagram in Euclid’s Elements

5. Modularity in Mathematics



Outline

I will start with some thoughts on the relationship between
cognitive science and the philosophy of mathematics.

Then:

1. Euclidean diagrammatic reasoning

2. The formal system, E

3. Soundness and completeness

4. Implementations

5. Conclusions



Logic and psychology

Edmund Husserl’s Philosophy of Arithmetic of 1891 aimed,

. . . through patient investigation of details, to seek
foundations, and to test noteworthy theories through
painstaking criticism, separating the correct from the
erroneous, in order, thus informed, to set in their place
new ones which are, if possible, more adequately secured.

He cast the work as a sequence of “psychological and logical
investigations,” providing a psychological analysis

. . . of the concepts multiplicity, unity, and number,
insofar as they are given to us authentically and not
through indirect symbolizations.



Logic and psychology

Husserl had been influenced by Wilhelm Wundt, the “founder of
experimental psychology,” who aimed to

• make psychology scientific, and

• study inner life through “introspection.”

Wundt’s Logik:

• principles of reasoning employed in the sciences have their
origins in psychological processes;

• these principles are justified by the fundamental role they play
in thought.

This points to a unification of philosophy and psychology.



Logic and psychology

Husserl’s Philosophy of Arithmetic was just that: a study of the
way concepts arise in thought, and the role they play.

Concepts are described in dynamic terms, vis-à-vis mental
operations:

• “noticing,” “focusing attention”

• “ignoring,” “disregarding”

• “seeing . . . as”

Concepts so analyzed: “something,” “unit,” “one”, “collective
combination,” “multiplicity,” “number.”



Logic and psychology

For example, a “collective combination” involves seeing multiple
objects individually and as a totality:

a cup, and pen, and a piece of chalk

One obtains a “multiplicity” by disregarding the particular nature
of the elements:

a something, and a something, and a something

One obtains a “number” by thinking of a multiplicity as an answer
to the question, “how many?”.



Logic and psychology

“To disregard or abstract from something means merely
to give it no special notice. The satisfaction of the
requirement wholly to abstract from the peculiarities of
the contents thus absolutely does not have the effect of
making those contents, and therewith their combination,
disappear from our consciousness. The grasp of the
contents, and the collection of them, is of course the
precondition of the abstraction. But in that abstraction
the isolating interest is not directed upon the contents,
but rather exclusively upon their linkage in thought – and
that linkage is all that is intended.”



Logic and psychology

Frege’s review:

“We attend less to a property and it disappears. By
making one characteristic after another disappear, we get
more and more abstract concepts. . . Inattention is a most
efficacious logical faculty; presumably this accounts for
the absentmindedness of professors.”

From there:

• Husserl and continental philosophy: transcendental idealism

• Frege, Russell, Wittgenstein, Quine: study of linguistic
practices



Logic and psychology

Is it time to reconsider?

• Calls for a “new epistemology” of mathematics, or a
“philosophy of real mathematical practice.”

• Advances in cognitive science, identifying “core” systems of
cognition.

Two reactions:

• Optimistic: embrace the role of psychology in the philosophy
of mathematics.

• Cautious: distinguish “philosophically interesting” from
“merely cognitive.”



Logic and psychology

Concerns:

• Object of study: are we describing human cognitive abilities,
or a shared practice?

• Normative vs. descriptive: are we describing what people
actually do, or what constitutes “correct” or “appropriate”
behavior?

• Methods: to what extent are experimental methods – like
cognitive task and protocol analyses – relevant to philosophy?



Logic and psychology

My own views:

• Philosophy of mathematics should interact with, and provide
conceptual foundations for, fields that rely on some
understanding of what it means to do mathematics:

• mathematics itself
• computer science
• history of mathematics
• psychology and cognitive science
• education, pedagogy

• But, to be make progress on core issues, we have to be clear
about the questions we are asking.

• In particular, it is often possible to disentangle epistemological
issues from cognitive issues.

• A case needs to be made for overriding the default
methodological separation.



Visualization in mathematics

Sample questions:

• Logical: what role does visualization and diagrammatic
reasoning play in mathematics?

• Cognitive: how do we do it?

• Computational: how can we support it or emulate it?

• Historical: how did these uses arise and evolve?

• Pedagogical: how should we use visualization in teaching?

• . . .

I will focus on the role of the diagram in Euclid’s Elements.



The Elements

For more than two thousand years, Euclid’s Elements was held to
be the paradigm for rigorous argumentation.

But the nineteenth century raised concerns:

• Conclusions are drawn from diagrams, using “intuition” rather
than precise rules.

• Particular diagrams are used to infer general results (without
suitable justification).

Axiomatizations due to Pasch and Hilbert, and Tarksi’s formal
axiomatization later on, were thought to make Euclid rigorous.



The Elements

But in some ways, they are unsatisfactory.

• Proofs in the new systems look very different from Euclid’s.

• The initial criticisms belie the fact that Euclidean practice was
remarkably stable for more than two thousand years.

Our project (Mumma, Dean, and me):

• Describe a formal system that is much more faithful to Euclid.

• Argue that the system is sound and complete (for the
theorems it can express) relative to Euclidean fields.

• Show that the system can easily be implemented using
contemporary automated reasoning technology.







First salient feature: the use of diagrams

Observation: the diagram is inessential to the communication of
the proof. (Rather, it is used to “see” that the inferences are
correct.)

Exercise:

• Let p and q be points on a
line.

• Let r be between p and q.

• Let s be between p and r .

• Let t be between r and q.

Is s necessarily between p and t?

Methodological stance: from a logical perspective, the way to
characterize diagrammatic reasoning is in terms of the class of
inferences that are licensed.
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First salient feature: the use of diagrams

Observation (Manders): In a Euclidean proof, diagrams are only
used to infer “co-exact” (regional / topological) information, such
as incidence, intersection, containment, etc.

Exact (metric) information, like congruence, is always made
explicit in the text.

Poincaré: “Geometry is the art of precise reasoning from badly
constructed diagrams.”

Solution: take the “diagram” to be a representation of the relevant
data.



Second salient feature: generality

Some aspects of diagrammatic inference are puzzling:

• Let p and q be distinct points.

• Let L be a line though p and q.

• Let r and s be points on
opposite sides of L.

• Let M be the line through r
and s.

• Let t be the intersection of L
and M.

p
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Is t necessarily between r and s? Is t necessarily between p and q?

The diagram was needed to “see” that L and M intersect. But not
every feature found in a particular diagram is generally valid.

Euclid manages to avoid drawing invalid conclusions. We need an
explanation as to what secures the generality.



Third salient feature: logical form

Theorems in Euclid are of the form:

Given points, lines, circles, satisfying . . . , there are
points, lines, circles satisfying . . .

where each . . . is a conjunction of literals.

(If the inner existential quantifier is absent, it is a “demonstration”
rather than a “construction.”)

Proofs contain a construction part, and a deduction part.

Reasoning is linear, assertions are literals.

Exceptions: proof by contradiction, using a case distinction
(sometimes “without loss of generality”).



Fourth salient feature: nondegeneracy

In the statement of a theorem, points are generally assumed to be
distinct, triangles are nondegenerate, etc.

Two issues:

• Sometimes the theorem still holds in some degenerate cases.

• When the theorems are applied, Euclid doesn’t always check
nondegeneracy.

I will have little to say about this; in our system, nondegeneracy
requirement are stated explicitly.



Formalizing Euclid

Prior efforts:

• Nathaniel Miller’s Ph.D. thesis (2001): system is very
complicated; generality is attained by considering cases
exhaustively.

• John Mumma’s Ph.D. thesis (2006): employs diagrams (and
equivalence relation on diagrams); generality is attained using
rules.

Our formal system, E , is derived from Mumma’s. But now a
“diagram” is nothing more than an abstract representation of
topological information. The system spells out what can be
inferred from the diagram.



The language of E

Basic sorts:

• diagram sorts: points p, q, r , . . ., lines L,M,N, . . ., circles
α, β, γ, . . .

• metric sorts: lengths, angles, and areas.

Basic symbols:

• diagram relations: on(p, L), same-side(p, q, L),
between(p, q, r), on(p, γ), inside(p, γ), center(p, γ),
intersects(L,M), =

• metric functions and relations: +, <, =, right-angle

• connecting functions: pq, ∠pqr , 4pqr

Other relations can be defined from these; e.g.

diff-side(p, q, L) ≡ ¬on(p, L) ∧ ¬on(q, L) ∧ ¬same-side(p, q, L)



Sequents

The proof system establishes sequents of the following form:

Γ⇒ ∃~q, ~M, ~β. ∆

where Γ and ∆ are sets of literals.

Applying a construction rule or prior theorem augments ~q, ~M, ~β,
∆.

Applying deductive inferences augments ∆.

Case splits and suppositional reasoning temporarily augment Γ.

I need to describe:

• Construction rules.

• Deductive inferences.

Diagram inferences are implicit in both.



Construction rules

“Let p be a point on L”
No prerequisites.

“Let p be a point distinct from q and r”
No prerequisites.

“Let L be the line through p and q”
Requires p 6= q.

“Let p be the intersection of L and M.”
Requires that L and M intersect.

And so on. . .



Deductive inferences

Four types:

1. Diagram inferences: any fact that can be “read off” from the
diagram.

2. Metric inferences: essentially linear arithmetic on lengths,
angles, and areas.

3. Diagram to metric: for example, if q is between p and r , then
pq + qr = pr , and similarly for areas and angles.

4. Metric to diagram: for example, if p is the center of γ, q is on
γ, and pr < pq, then r is inside γ.



Diagram inferences

Both construction inferences and diagram inferences require an
account of what can be “read off” from the diagram.

We get this by closing the diagrammatic data in Γ ∪∆ under
various rules, including:

• properties of “between”

• properties of “same side”

• “Pasch rules,” relating “between” and “same side”

• triple incidence rules

• circle rules

• intersection rules

These yield conclusions that are generally valid, that is, common
to all possible realizations.



Proposition I.10. Assume a and b are distinct points on L.
Construct a point d such that d is between a and b, and ad = db.

By Proposition I.1 applied to a and b, let c be a point such that
ab = bc and bc = ca and c is not on L.

Let M be the line through c and a.
Let N be the line through c and b.
By Proposition I.9 applied to a, c ,
b, M, N, let e be a point such that
∠ace = ∠bce, b and e are on the
same side of M, and a and e are on
the same side of N.
Let K be the line through c and e.
Let d be the intersection of K and L.
Hence ∠ace = ∠acd .
Hence ∠bce = ∠bcd .
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By Proposition I.4 applied to a, c , d , b, c , d have ad = bd .
Q.E.F.



Completeness

Tarski’s first-order axiomatization of Euclidean geometry yields a
complete theory of the Euclidean plane (inter-interpretable with
real closed fields).

Drop the completeness axiom, and replace it with an axiom
asserting that if a line L passes through a point inside a circle α,
then L and α intersect.

The resulting theory is inter-interpretable with the theory of
“Euclidean fields,” and so is complete wrt “ruler and compass
constructions.” (Ziegler: it is also undecidable.)

Theorem. If a sequent of E is valid wrt to ruler and compass
constructions, it can be derived in E .



Completeness

One strategy: interpret Tarski’s theory in E .

Problem: Tarski includes full first-order logic!

Solution: With slight tinkering, Tarski’s theory can be made
“geometric,” i.e. the axioms can be put in a restricted logical form.

A cut-elimination theorem due to Sara Negri then implies that any
geometric assertion provable in Tarski’s theory has a geometric
proof.

Such a proof can be simulated in E .



Completeness

Outline of the proof:

1. Suppose a sequent A of E is valid for the intended semantics.

2. Then a translation π(A) to Tarki’s language is also valid for
the intended semantics.

3. So it is provable in Tarski’s theory.

4. So it has a cut-free proof.

5. This proof can be translated back to E , so E proves ρ(π(A)).

6. From this, E can derive the original sequent, A.



Implementation

Ben Northrop implemented the diagram inferences in Java with a
saturation algorithm. But for moderately complex diagrams, the
implementation is too slow to be of practical use.

We also tried first-order theorem provers, Spass and E, which do
very well on the diagrammatic inferences (E does better).

Modern “satisfiability modulo theories” theorem provers allow one
to prove universal assertions over mixed domains, including real
linear arithmetic.

Alas, our diagram axioms are universal, which puts them outside
the SMT framework.

But some SMT solvers use heuristic instantiation of quantifiers.



Implementation

In a fairly complicated diagram, Z3 plows through all our
inferences automatically. CVC3 also does pretty well.

In fact, they also handle all the metric inferences, as well as the
ordinary propositional logic needed to handle case splits, proofs by
contradiction, and so on.

In other words, SMT solvers can be used as a complete back end
to check the inferences in E .





Implementation

Using an SMT solver, it is easy to check Euclidean proofs:

When the user asserts a theorem: create the initial objects, assert
hypotheses, and remember the conclusion.

When the user applies a construction rule: check prerequisites,
create objects, assert properties.

When the user types “hence A”: check A follows from the
database, and if so, assert it explicitly.

For suppositional reasoning: push the state, assert the supposition,
verify the conclusion, pop the state, and assert a conditional.

When the user types “QED,” check that the negation of the
theorem’s conclusion is inconsistent.



Automated geometric reasoning

Approaches:

• Reduction to real closed fields, CAD: slow

• Wu’s method: extremely powerful, but cannot handle order
relations (like “between”).

• Area method: extremely powerful, produces readable proofs,
complete for the class of “constructive linear theorems,” but
once again cannot handle order.

• Synthetic methods.

Our approach falls into the last category, and, as far as automated
reasoning goes, is fairly naive.



Automated geometric reasoning

See Chou, Gao, Zhang, “A deductive database approach to
automated geometry theorem proving and discovering.”

This provides an approach that is similar to ours, with much more
sophisticated representations of diagrammatic information.

Our analysis does offer a broader lesson, though: an effective
approach to formal verification is to combine more manageable
domains (in our case, “diagram information” and “metric
information”) in principled ways.



Conclusions

Our modest claims:

• We have a clean analysis of the type of reasoning that is used
in books I–IV of the Elements.

• Our system is sound and complete for the expected semantics.

• The analysis makes it easy to verify formal texts that are very
close to proofs in the Elements.

• This provides a clear sense in which the Elements is more
rigorous than commonly acknowledged.

• We have analyzed the logical form of diagrammatic inference,
separating these questions from cognitive, pedagogical, and
historical terms.

• The analysis can support further inquiry into why these
inferences are basic to the practice.



References

See:

• Manders, Ken, The Euclidean Diagram

• Mumma’s Ph.D. thesis, Intuition Formalized: Ancient and
Modern Methods of Proof in Elementary Geometry

• Avigad, Dean, Mumma, A formal system for Euclid’s Elements

• Avigad, review of Marcus Giaquinto, Visual Thinking in
Mathematics: An Epistemological Study

Also, anything by John Mumma, such as:

• Proofs, Pictures and Euclid

• Constructive Geometric Reasoning and Diagrams


