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The new epistemology of mathematics

Since Plato, the philosophy of mathematics has been concerned
with:

• the nature of mathematical objects, and

• the appropriate justification for mathematical knowledge
claims.

But we employ other normative judgments as well:

• some theorems are interesting

• some questions are natural

• some concepts are fruitful, or powerful

• some proofs provide better explanations than others

• some historical developments are important

• some observations are insightful

. . . and so on.

Simplicity

One such value is simplicity: mathematical developments are often
valued for providing shorter proofs, easier calculations, or
streamlined solutions to problems.

Note that, in this sense, mathematical simplicity need not coincide
with notions of simplicity in the philosophy of science.

It seems to have more to do with streamlining our thought
processes and modes of expression than simplifying models and
reducing the number of parameters.

Outline

• Why a theory of mathematical simplicity is important.

• Some case studies from number theory

• What a theory of mathematical simplicity should look like.



Worries about the new epistemology

Tappenden:

Judgements of “naturalness” and the like are reasoned. It is
not just that some brute aesthetic response or sudden,
irrational “aha!” reaction that brings about that judgement
that — for example — “the scheme is the more natural setting
for many geometric arguments” . . . Quite the contrary:
elaborate reasons can be and are given for and against these
choices. One job facing the methodologist of mathematics is
to better understand the variety of reasons that can be given,
and how such reasons inform mathematical practice.

The factual observation should be beyond controversy:
reasoned judgements about the “proper” way to represent and
prove a theorem inform mathematical practice. I have found
that more contention is generated by the disciplinary
classification of the study of these judgements and the
principles informing them: is this philosophy, or something
else, like cognitive psychology?

Worries about the new epistemology

Arana:

But why should we expect that the right definitions will
be uniform, rather than having lots of case distinctions?
It would be nice if that were so, but wishing doesn’t make
it so, unless what makes a definition right is that it’s the
one we want. Correct definition as wish-fulfillment: if this
were Dedekind’s view, he would have been a relativist.

Also:

This is surely an important labor-saving technique. But
why should we think that this technique leads to the
right definitions for a domain? There would have to be
something “inevitable” about these properties if the
technique were to avoid being another type of relativism.

Worries about the new epistemology

A bundle of anxieties:

• Merely psychological?

• Merely pragmatic?

• Subjective?

• Historical relativism.

Senses of “getting a definition right”:

• presuppositions (existence assumptions) justified

• captures intuitions

• good model of empirical phenomena

• useful, appropriate to the theory

A way out

Distinguish two sorts of foundational concerns:

• Ontological / metaphysical concerns: do the objects referred
to really exist, and have the properties we think they have?
Or: are we justified in referring to such objects, and
attributing to them the properties that we do?

• Methodological concerns: are our mathematical definitions
fruitful, useful, and well-suited to our mathematical goals?

The philosophy of mathematics has traditionally focused on the
first (and has run out of steam).

In fact, there is a lot of progress that can be made on the second
question; and that provides the best means for addressing the first.



A way out

Two senses of “objective”:

• Criteria are described in such a way that we can engage in
rational debate and come to agreement over whether they are
met.

• Criteria are forced upon any rational being (or, at least, any
rational being with cognitive capacities roughly like ours).

The second seems to be Tappanden’s and Arana’s primary concern.

A theory of mathematical ease / difficulty or complexity /
simplicity would help address the second.

Case studies

Let’s look at three brief examples:

• Sums of squares.

• Euler’s theorem.

• Composition of quadratic forms.

Sums of squares

Theorem. Suppose x and y can each be written as a sum of two
integer squares. Then so can xy .

Proof. Write x = a2 + b2 and y = c2 + d2. Then

xy = (ac − bd)2 + (ad + bc)2.

This seems to have been known to Diophantus.

Sums of squares

Another proof: if α = a + bi is a Gaussian integer, write α = a− bi
for the complex conjugate of α, and write N(α) = αα = a2 + b2.

Conjugation is an automorphism, so

N(αβ) = αβαβ = ααββ = N(α)N(β).

Proof 2. If x = N(α) and y = N(β), then xy = N(αβ).

Is this simpler? Let’s hold off on that discussion. . .



Euler’s theorem

Let n ≥ 2, and let φ(n) = |{i | 0 ≤ i < n, i is coprime to n}|.

Theorem. If a is coprime to n, then aφ(n) ≡ 1 mod n.

For example, φ(14) = |{1, 3, 5, 9, 11, 13}| = 6 and the theorem
predicts 36 ≡ 1 mod 14.

Proof. Z/nZ = {0, . . . , n − 1} is a ring.

The set {i | 0 ≤ i < n, i is coprime to n} are exactly the units of
that ring, which form a group.

Lagrange’s theorem implies that if G is any finite group and
g ∈ G , then g |G | = 1.

Euler’s theorem

This is “essentially” Euler’s proof. (Full theorem: E271 on Euler
archive; special case where n is prime is E262, and has been
translated.)

Differences:

• Euler doesn’t have the concept of a ring, or the units of a ring.

• He doesn’t have the concept of a group.

• He doesn’t use notation for congruence.

• In proving (an instance of) Lagrange’s theorem, he doesn’t
have use notion of a “coset” and operations on cosets.

• Rather than say “by induction,” he repeats the inductive step
twice and says “and so on.”

Composition of quadratic forms

Back to representations by binary quadratic forms. . .

Recall that the product of two integers of the form x2 + y2 is again
of that form, and an odd prime is represented by that form if and
only if p is congruent to 1 modulo 4.

With arbitrary binary quadratic forms ax2 + bxy + cy2, the
situation is much more complicated.

For example, Fermat conjectured that the product of two primes
each congruent to 3 or 7 modulo 20 is of the form x2 + 5y2.

Legendre showed that the product of two numbers of the form
2x2 + 2xy + 3y2 is of the form x2 + 5y2.

Composition of quadratic forms

In Disquisitiones Arithmeticae, Gauss defined an equivalence
relation on forms, and a notion of “composition” of forms. He
showed, among other things, that composition is associative.

Goldman: “Gauss’ proof . . . is difficult to follow.”

Stillwell: “The proof is monstrous.”

Edwards: “In a tour de force of algebraic manipulation. . . ”

In the middle of the 19th century, Dirichlet simplified the analysis
by working in terms of the roots of the associated quadratic
polynomial.

By the end of the 19th century, Dedekind had solidified the
relationship between quadratic forms and the class group of an
associated number field.



Observations

• Simplicity judgments are often contextual: a simple proof or
calculation can rely on an elaborate background theory.

• Often the general utility of the background theory means that
we are not required to charge the complexity against the
individual application. (In accounting terms: these are capital
expenditures, rather than operating expenses.)

• But theoretical infrastructure can even be useful for a single
application, in that it helpfully manages the data in front of
us and reduces the amount of detail we need to pay attention
to at any given point.

• Sometimes theoretical expansions are ontologically or
methodologically dubious; in that case, ontological or
methodological qualms are balanced against the gains.

Regarding the last: in our examples, consider the uses of complex
numbers, and the treatments of cosets as objects.

Observations

Suppose we come up with objective criteria of simplicity that are
plausibly correspond our cognitive capacities.

In methodologically uncontroversial situations, aren’t we justified in
formulating definitions that simplify the our tasks?

Observations

In methodologically controversial cases, the story is more
elaborate:

• Expansions are met with caution and concern.

• Sometimes the expansions can be explained away, in terms of
the more conservative theory (e.g. complex numbers as
ordered pairs, or translating algebraic proofs back to
geometric proofs).

• Otherwise, sometimes the expansions can at least be
explained away in particular instances (e.g. nonconstructive
proofs can be constructivized), and, moreover, come with
clear rules of use.

• Over time, the expansions become more than useful
shorthands, and the nonconservative aspects don’t seem to
cause problems.

Observations

(Cf.: the introduction of negative numbers, algebraic methods in
geometry, infinitesimals in the calculus, points at infinity, abstract
algebraic arguments, ideals, cosets, equivalence classes,
nonconstructive definitions, infinitary objects, and so on.)

Question (for Andy, Jamie): as far as justification, what more do
you want?



A unifying theme

Math is hard.

We look for concepts and methods that make it easier to do what
we want to do: solve problems, prove theorems, build theories, . . .

Good mathematics makes it easier for us to pursue our
mathematical goals.

This doesn’t dispell concerns about contextualism and relativism:
evaluations are relative to goals.

But it does provide a perspective that can help unify and explain
methodological criteria.

Measuring complexity

Some measures on offer:

• Computer science: algorithmic complexity

• Logic: quantifier complexity, length of proof, etc.

• Cognitive science, psychology: timing tasks, etc.

Length of proof

Conservative extensions: Let T2 be an extension of T1. T2 is
conservative over T1 (with respect to Γ) if whenver T2 proves ϕ
then T1 also proves ϕ (for ϕ in Γ).

Speedup phenomena: It is often the case that T2 has
polynomial-size proofs of a sequence of statements ϕ1, ϕ2, ϕ3, . . .
for which the shortest proofs in T1 are much longer (say, iterated
exponential length).

Examples (Solovay): ACA0 over PA, Gödel-Bernays set theory over
Zermelo-Fraenkel.

Length of proof

Example 1: Let ϕi say “T1 can’t prove me with less than f (i)
symbols,” and let T2 be T1 + {ϕi}.

Example 2: Let ϕi say “a big chunk of T1 is consistent.” (E.g.
ACA0 over PA).

Example 3: Let ϕi be a combinatorial statement encoding the
above. (E.g. instances of the Paris-Harrington statement,
Kruskal’s theorem. Striking bounds due to Friedman.)



Length of proof

This isn’t quite the right sort of thing:

• They are asymptotic comparisons.

• They apply to formal axiomatic derivations, which don’t model
higher-level aspects of proof and background knowledge.

• They rely on extreme (cooked) cases.

• They are overly dramatic.

Similarly, computational complexity and psychological models are
not quite right, either.

But that does not mean that they are entirely wrong: clearly
length of proofs, complexity of tasks, and our cognitive abilities
have something to do with it.

These provide a good starting point.

Summary

We want to understand a sense in which common normative
judgments have an “objective” component.

A more dynamic understanding of “mathematical knowledge,” and
the way that various methodological strategies simplify the tasks
before us, can help us make sense of common normative
assessments.

Suitable measures of complexity / simplicity then provide objective
normative criteria.

Then challenge is to characterize mathematical goals and our
cognitive constraints at the right level of idealization, and develop
robust and compelling accounts of mathematical simplicity.


