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Nonstandard analysis

External (Robinson):

• Start with a classical structure (e.g. N, R, Vω(R), a
model of set theory)

• Use compactness, or an ultrapower construction, to find
an elementary extension with saturation properties

• Reason about what is true in the extension

• Transfer to the original structure

Internal (Nelson):

• Start with a classical theory

• Add a predicate st(x), for “x is standard”, and
appropriate axioms

• Show the new theory is a conservative extension of the
old one
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Nonstandard arithmetic

Why nonstandard arithmetic?

• (Chauqui, Suppes, Sommer) Can carry out parts of real
analysis

• (Nelson) Can carry out probability theory

• (Wilkie, Ajtai, Woods) Can carry out combinatorial
arguments

Why nonstandard intuitionistic arithmetic?

In the nonstandard setting, many arguments have a
constructive flavor.

Thesis: Nonstandard theories of intuitionistic arithmetic
provides a natural framework for formalizing a number of
interesting mathematical arguments.

Palmgren (BSL 99) develops intuitionistic nonstandard
analysis.
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Sheaf semantics

Background:

• Grothendieck: spaces of sheaves (topoi) are useful in
algebraic topology, algebraic geometry, etc.

• Lawvere, Tierney: topoi provide an algebraic semantics
for (higher type) intuitionsitic logic

• Joyal: this semantics can be seen as a generalization of
Kripke semantics and Beth semantics

We will actually use a slight generalization of sheaf
semantics, due to Palmgren 97.
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Kripke semantics

Start with a first-order language L. A Kripke model
consists of

• A poset

• A “universe” at each node of the poset

• An interpretation of the function symbols at each node

• An interpretation of the relation symbols at each node

where the universes are increasing, the interpretation of the
function symbols agree between nodes, and the
interpretation of the relations is monotone.
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Kripke semantics (continued)

Truth at each node is determined by a forcing relation:

• p  (θ ∧ η)[~a] if and only if p  θ[~a] and p  η[~a]

• p  (θ ∨ η)[~a] if and only if p  θ[~a] or p  η[~a]

• p  (θ → η)[~a] if and only if for every q ≤ p, if q  θ[~a],
then q  η[~a].

• p  (∀x θ(x))[~a] if and only if for every q ≤ p and
u ∈ D(q), p  θ(z)[~a, b]

• p  (∃x θ(x))[~a] if and only if there is a b in D(p) such
that p  θ(z)[~a, b]
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Beth semantics

For Beth semantics:

• Make the poset a tree

• Say “q1, . . . , qk covers p” if every maximal path passing
through p passes through one of the qi as well

• Make the interpretation of the relations satisfy a
covering condition.

The forcing definition is analogous, except for ∨ and ∃:

• p  (θ ∨ η)[~a] if and only if there is a cover {q1, . . . , qk}
of p such that for each i either qi  θ[~t] or qi  η[~a]

• p  (∃x θ(x))[~a] if and only if there are a cover
{q1, . . . , qk} of p and a sequence of elements
b1 ∈ D(q1), . . . , bl ∈ D(ql), such that for each i,
qi  θ(z)[~a, bi]
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Sheaf semantics

For sheaf semantics:

• Use an arbitrary category C

• Use a basis for a Grothendieck topology (that is, a
generalized notion of covering)

For standard sheaf semantics, one uses a sheaf to interpret
the universe. Palmgren notes that for first-order logic, one
only needs a presheaf (but the interpretation of the
relations must still obey the covering condition).
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Completeness

The completeness of Kripke, Beth, and sheaf semantics (and
so, a fortiori, Palmgren’s semantics) is well known.

For Palmgren’s semantics, however, the construction is
almost trivial.

Given a theory T ,

• Let the objects of C be formulas

• An arrow ϕ
f→ ψ is a renaming f of the variables of ψ

such that ϕ `T ψf

• For the notion of covering, take the smallest basis for a
Grothendieck topology satisfying:

1. If ϕ `T θ ∨ η, then {ϕ ∧ θ → ϕ,ϕ ∧ η → ψ} covers ψ.

2. If ϕ `T ∃x θ(x), and y is not a free variable of ϕ or
∃x θ(x), then {ϕ ∧ θ(y)→ ϕ} covers ϕ.

• Take the universe at ϕ to be the set of terms with free
variables among those of ϕ.

• Interpret function symbols in the obvious way.

• Interpret R at ϕ by ϕ `T R(t1, . . . , tk).

Theorem. For every θ,  θ iff `T θ.
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Back to nonstandard arithmetic

Let L be the language of arithmetic, and let Lst be L with a
new predicate symbol, st(x).

Nonstandard Peano arithmetic consists of the following
axioms:

• All the axioms of Peano arithmetic.

• ∃x ¬st(x)

• st(x1) ∧ . . . ∧ st(xn)→ st(f(x1, . . . , xn)), for each
function symbol f

• External induction: For each formula ϕ(x) in Lst

(possibly with other free variables),

ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x+ 1))→ ∀stx ϕ(x)

• Transfer: For each formula ϕ in L with free variables
x1, . . . , xn,

st(x1) ∧ . . . ∧ st(xn)→ (ϕ↔ ϕst)

Theorem: (Friedman, unpublished, c. 1967) Nonstandard
PA is a conservative extension of PA.
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Nonstandard Heyting arithmetic

Take nonstandard Heyting arithmetic, HAI , to be given by
the following axioms:

• All the axioms of HA

• st(x1) ∧ . . . ∧ st(xn)→ st(f(x1, . . . , xn)) for each
function symbol f

• ¬¬st(x)→ st(x)

• External induction: for each formula ϕ(x) of Lst,

ϕ(0) ∧ ∀stx (ϕ(x)→ ϕ(x+ 1))→ ∀stx ϕ(x).

• Overspill: for each formula ϕ(x) of L,

∀stx ϕ(x)→ ∃x (¬st(x) ∧ ϕ(x)).

• Underspill: for each formula ϕ(x) of L,

∀x (¬st(x)→ ϕ(x))→ ∃stx ϕ(x).

Theorem (Moerdijk and Palmgren 97) HAI is a
conservative extension of HA. Also, the transfer principles
imply the law of the excluded middle.
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History

• Palmgren (95), and also Coquand and Smith (96),
obtain conservation results for weaker nonstandard
versions of HA

• Moerdijk (95): Presents a nonstandard model of
arithmetic, using a sheaf construction over a category of
filters

• Moerdijk and Palmgren (97): Obtains the conservation
result, using a category of provable filter bases

• Avigad and Helzner:

– A slight modification of the completeness proof
above yields the same result

– Internalizing the argument yields an additional
transfer rule

– This transfer rule is optimal

• Butz independently presents another proof of the M-P
conservation result.
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A nonstandard model

Modifying the completeness proof:

• Use types Γ instead of formulas ϕ

• For the notion of covering, take the smallest basis for a
Grothendieck topology satisfying the following:

1. If Γ ` θ ∨ η, then {Γ ∪ {θ} → Γ,Γ ∪ {η} → Γ} covers
Γ.

2. If Γ ` ∃x θ(x), and y is not free in Γ or ∃x θ(x), then

Γ ∪ {θ(y)} ∪ {y ≥ n̄ | Γ `T θ(n̄)}

covers Γ.

• Interpret st at the node Γ by the relation

∃n (Γ `T t ≤ n̄).

Theorem. For θ in L,  θ iff `HA θ.

Theorem. Each axiom of HAI is forced.
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Transfer principles

Positive results:

• If HAI proves ϕ, ϕ in L, then HAI proves ϕst

• If HAI proves ϕst, ϕ in L negative, then HA proves ϕ

• If HAI proves ∀stx ϕ, ϕ in L, then HA proves ϕ.

• If HAI proves ϕst, ϕ in L and Π2, then HA proves ϕ.

Negative results: there are primitive recursive A(x), B(x),
C(x), D(x), and E(x, y) such that

• HAI +∃x A(x)→ ∃stx A(x) is not conservative over HA

• HAI + ∀stx B(x)→ ∀x B(x) is not conservative over
HA

• HAI proves ∀stx C(x) ∨ ∀stx D(x), but HA does not
prove ∀x C(x) ∨ ∀x D(x)

• HAI proves ∃stx ∀y E(x, y) but HA does not prove
∃x ∀y E(x, y)

Corollary: HAI has neither the existence property nor the
disjunction property.
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Future work

Things to do:

• Find nicer translations for classical theories.

• Obtain the right conservation results for weak theories.

• See what kinds of mathematics can be developed in
these theories.
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