
Designing a Formal Hierarchy of Structures

Jeremy Avigad

Department of Philosophy
Department of Mathematical Sciences

Hoskinson Center for Formal Mathematics

Carnegie Mellon University

October 18, 2023

Formal methods in mathematics

Formal methods are a body of logic-based methods used in
computer science to

• write specifications for hardware, software, protocols, and so
on, and

• verify that artifacts meet their specifications.

The same technology is useful for mathematics.

I use “formal methods in mathematics” and “symbolic AI for
mathematics” roughly interchangeably.

Formal methods in mathematics

Since the early twentieth century, we have known that
mathematics can be represented in formal axiomatic systems.

Computational “proof assistants” allow us to write mathematical
definitions, theorems, and proofs in such a way that they can be

• processed,

• verified,

• shared, and

• searched

by mechanical means.

Formal methods in mathematics

Formal methods in mathematics

Some articles (with links):

• Quanta: “Building the mathematical library of the future”

• Quanta: “At the Math Olympiad, computers prepare to go for
the gold”

• Nature: “Mathematicians welcome computer-assisted proof in
‘grand unification’ theory”

• Quanta: “Proof assistant makes jump to big-league Math”

• New York Times: “A.I. Is Coming for Mathematics, Too”

https://www.quantamagazine.org/building-the-mathematical-library-of-the-future-20201001/
https://www.quantamagazine.org/at-the-international-mathematical-olympiad-artificial-intelligence-prepares-to-go-for-the-gold-20200921/
https://www.quantamagazine.org/at-the-international-mathematical-olympiad-artificial-intelligence-prepares-to-go-for-the-gold-20200921/
https://www.nature.com/articles/d41586-021-01627-2
https://www.nature.com/articles/d41586-021-01627-2
https://www.quantamagazine.org/lean-computer-program-confirms-peter-scholze-proof-20210728/
https://www.nytimes.com/2023/07/02/science/ai-mathematics-machine-learning.html

Formal methods in mathematics

Some talks (with links):

• Thomas Hales, Big Conjectures

• Sébastien Gouëzel, On a Mathematician’s Attempts to
Formalize his Own Research in Proof Assistants

• Patrick Massot, Why Explain Mathematics to Computers?

• Kevin Buzzard, The Rise of Formalism in Mathematics

• Johan Commelin, Abstract Formalities

• Adam Topaz, The Liquid Tensor Experiment

• Heather Macbeth, Algorithm and Abstraction in Formal
Mathematics

https://www.newton.ac.uk/seminar/21474/
https://www.youtube.com/watch?v=sVRC1kuAR7Q
https://www.youtube.com/watch?v=sVRC1kuAR7Q
https://www.youtube.com/watch?v=1iqlhJ1-T3A
https://www.youtube.com/watch?v=SEID4XYFN7o
http://www.fields.utoronto.ca/talks/Abstract-Formalities
http://www.ipam.ucla.edu/abstract/?tid=19428
https://www.ipam.ucla.edu/abstract/?tid=17900
https://www.ipam.ucla.edu/abstract/?tid=17900

Formal methods in mathematics

Formal methods in mathematics

Executive summary: formal methods can be useful for

• verifying theorems

• correcting mistakes

• gaining insight

• building libraries

• searching for definitions
and theorems

• refactoring proofs

• refactoring libraries

• engineering concepts

• communicating

• collaborating

• managing complexity

• managing the literature

• teaching

• improving access

• using mathematical
computation

• using automated reasoning

• using AI

The technology holds a lot of promise.

Formal methods in mathematics

All this is not what this talk is about.

People spend inordinate amounts of time working on formalization.

Verifying mathematics, teaching, communicating, and
collaborating is part of the motivation.

But they also find it enjoyable, and appreciate the insights the
process yields as to how mathematics works.

Formal language

I will focus on one particular proof assistant, Lean.

It is based on a formal foundation called dependent type theory,
which is a uniform language for defining:

• data types (the integers, functions from R to R, rings, normed
spaces)

• elements of those data types (5− 12, x 7→ x2 + 1, Z[
√
2], the

space of functions from R to R)
• statements (“there are infinitely many prime numbers,” the
Riemann hypothesis, Fubini’s theorem)

• proofs.

Formal language

def quadraticChar (α : Type) [MonoidWithZero α] (a : α) : Z :=

if a = 0 then 0 else if IsSquare a then 1 else -1

def legendreSym (p : N) (a : Z) : Z := quadraticChar (ZMod p) a

variable {p q : N} (prime_p : Prime p) (prime_q : Prime q)

theorem quadratic_reciprocity (hp : p ̸= 2) (hq : q ̸= 2)

(hpq : p ̸= q) :

legendreSym q p * legendreSym p q = (-1) ^ (p / 2 * (q / 2))

Formal language

def Padic (p : N) [Fact p.Prime] :=

CauSeq.Completion.Cauchy (padicNorm p)

def PadicInt (p : N) [Fact p.Prime] :=

{ x : Q_[p] // ∥x∥ ≤ 1 }

variable {p : N} [Fact p.Prime] {F : Polynomial Z_[p]}
{a : Z_[p]}

theorem hensels_lemma :

∃ z : Z_[p],
F.eval z = 0 ∧
∥z - a∥ < ∥F.derivative.eval a∥ ∧
∥F.derivative.eval z∥ = ∥F.derivative.eval a∥ ∧
∀ z', F.eval z' = 0 →

∥z' - a∥ < ∥F.derivative.eval a∥ → z' = z

Formal language

def FreeAbelianGroup : Type :=

Additive <| Abelianization <| FreeGroup α

def IsPGroup (p : N) (G : Type) [Group G] : Prop :=

∀ g : G, ∃ k : N, g ^ p ^ k = 1

theorem IsPGroup.exists_le_sylow {P : Subgroup G}

(hP : IsPGroup p P) :

∃ Q : Sylow p G, P ≤ Q

Formal language

variable {R S : Type} (K L : Type) [EuclideanDomain R]

variable [CommRing S] [IsDomain S]

variable [Field K] [Field L]

variable [Algebra R K] [IsFractionRing R K]

variable [Algebra K L] [FiniteDimensional K L] [IsSeparable K L]

variable [algRL : Algebra R L] [IsScalarTower R K L]

variable [Algebra R S] [Algebra S L]

variable [ist : IsScalarTower R S L]

variable [iic : IsIntegralClosure S R L]

variable (abv : AbsoluteValue R Z)

/-- The main theorem: the class group of an integral closure `S`
of `R` in a finite extension `L` of `K = Frac(R)` is finite

if there is an admissible absolute value. -/

noncomputable def fintypeOfAdmissibleOfFinite :

Fintype (ClassGroup S) :=

. . .

Formal language

variable {α β ι : Type} {m : MeasurableSpace α}

variable [MetricSpace β] {µ : Measure α}

variable [SemilatticeSup ι] [Nonempty ι] [Countable ι]
variable {γ : Type*} [TopologicalSpace γ]

variable {f : ι → α → β} {g : α → β} {s : Set α}

/-- Egorov's theorem: A sequence of almost everywhere

convergent functions converges uniformly except on an

arbitrarily small set. -/

theorem tendstoUniformlyOn_of_ae_tendsto

(hf : ∀ n, StronglyMeasurable (f n))

(hg : StronglyMeasurable g)

(hsm : MeasurableSet s) (hs : µ s ̸= ∞)

(hfg : ∀m x ∂µ, x ∈ s →
Tendsto (fun n => f n x) atTop (N (g x)))

{ε : R} (hε : 0 < ε) :

∃ (t : _) (_ : t ⊆ s),

MeasurableSet t ∧
µ t ≤ ENNReal.ofReal ε ∧
TendstoUniformlyOn f g atTop (s \ t) :=

. . .

Structures

What would mathematics be without axiomatically characterized
structures?

Quiz:

• Who first gave an axiomatic characterization of a group?

• Who first defined a quotient group?

• Who first defined the notion of an ideal in a ring (and proved
unique factorization of ideals)?

• Who first gave the modern definition of a Riemann surface?

• Who first gave an axiomatic characterization of a topological
space?

• Who first gave an axiomatic characterization of a Hilbert
space?

Structures in dependent type theory

structure Point where

x : R
y : R
z : R

def myPoint1 : Point where

x := 2

y := -1

z := 4

def myPoint2 : Point := ⟨2, -1, 4⟩

#check myPoint1.x

#check myPoint1.y

#check myPoint1.z

def add (a b : Point) : Point :=

⟨a.x + b.x, a.y + b.y, a.z + b.z⟩

Structures in dependent type theory

structure StandardTwoSimplex where

x : R
y : R
z : R
x_nonneg : 0 ≤ x

y_nonneg : 0 ≤ y

z_nonneg : 0 ≤ z

sum_eq : x + y + z = 1

def midpoint (a b : StandardTwoSimplex) : StandardTwoSimplex

where

x := (a.x + b.x) / 2

y := (a.y + b.y) / 2

z := (a.z + b.z) / 2

x_nonneg :=

div_nonneg (add_nonneg a.x_nonneg b.x_nonneg) (by norm_num)

y_nonneg := . . .
z_nonneg := . . .
sum_eq := by field_simp; linarith [a.sum_eq, b.sum_eq]

Structures in dependent type theory

structure Group where

carrier : Type

mul : carrier → carrier → carrier

one : carrier

inv : carrier → carrier

mul_assoc : ∀ x y z : carrier,

mul (mul x y) z = mul x (mul y z)

mul_one : ∀ x : carrier, mul x one = x

one_mul : ∀ x : carrier, mul one x = x

mul_left_inv : ∀ x : carrier, mul (inv x) x = one

variable (G : Group) (g1 g2 : G.carrier)

Structures in dependent type theory

structure Group (α : Type) where

mul : α → α → α

one : α

inv : α → α

mul_assoc : ∀ x y z : α, mul (mul x y) z = mul x (mul y z)

mul_one : ∀ x : α, mul x one = x

one_mul : ∀ x : α, mul one x = x

mul_left_inv : ∀ x : α, mul (inv x) x = one

variable (G : Type) [Group G] (g1 g2 : G)

Design specifications

Doing mathematics requires:

• defining algebraic structures and reasoning about them
(groups, rings, fields, . . .)

• defining instances of structures and recognizing them as such
(R is an ordered field, a metric space, . . .)

• overloading notation (x + y , “f is continuous”)

• inheriting structure: every normed additive group is a metric
space, which is a topological space.

• defining functions and operations on structures: we can take
products, powers, limits, quotients, and so on.

Design specifications

Structure is inherited in various ways:

• Some structures extend others by adding more axioms (a
commutative ring is a ring, a Hausdorff space is a topological
space).

• Some structures extend others by adding more data (a module
is an abelian group with a scalar multiplication, a normed field
is a field with a norm).

• Some structures are defined in terms of others (every metric
space is a topological space, there are various topologies on
function spaces).

Defining structures and instances

We have seen how to define the group structure Group α on a
type α.

We can define instances of Group α the same way we define
instances of Point and StandardTwoSimplex.

def permGroup {α : Type} : Group (Perm α) where

mul f g := Equiv.trans g f

one := Equiv.refl α

inv := Equiv.symm

mul_assoc f g h := (Equiv.trans_assoc _ _ _).symm

one_mul := Equiv.trans_refl

mul_one := Equiv.refl_trans

mul_left_inv := Equiv.self_trans_symm

Defining structures and instances

We are not there yet. We need:

• Notation: given g1 g2 : Perm α, we want to write g1 * g2
and g1

−1 for the multiplication and inverse.

• Definitions: we want to use defined notions like g1^n and
conj g1 g2.

• Theorems: we want to apply theorems about arbitrary groups
to the permutation group.

Defining structures and instances

The magic depends on three things:

1. Logic. A definition that makes sense in any group takes the
type of the group and the group structure as arguments.

A theorem about the elements of an arbitrary group quantifies
over the type of the group and the group structure.

2. Implicit arguments. The arguments for the type and the
structure are generally left implicit.

3. Type class inference.
• Instance relations are registered with the system.
• The system uses this information to resolve implicit arguments.

Notation

We overload notation by associating it to trivial structures.

class Add (α : Type u) where

add : α → α → α

#check @Add.add

-- @Add.add : {α : Type u_1} → [self : Add α] → α → α → α

infixl:65 " + " => Add.add

instance : Add Point where

add := Point.add

Notation

variable (p q : Point)

#check p + q

-- p + q : Point

set_option pp.notation false

#check p + q

-- Add.add p q

set_option pp.explicit true

#check p + q

-- @Add.add Point instPointAdd p q

-- This is a slight simplification! We also have `HAdd`.

Classes and instances

The class command is a variant of the structure command that
makes the structure a target for type class inference.

The instance command registers particular instances for type
class inference.

We can register concrete instances (R is a field, the permuations
of α form a group), as well as generic instances (every field is a
ring, every metric space is a topological space, every normed
abelian group is a metric space.)

Defining structures and instances

class Group (α : Type) :=

. . .

instance {α : Type} : Group (Perm α) :=

. . .

instance : Ring R :=

. . .

instance {M : Type} [MetricSpace M] :

TopologicalSpace M :=

. . .

-- Again, this is a simplification.

Defining structures and instances

#check @Add.add

-- @Add.add : {α : Type u_1} → [self : Add α] → α → α → α

#check @add_comm

-- @add_comm : ∀ {G : Type u_1} [inst : AddCommSemigroup G]

-- (a b : G), a + b = b + a

#check @abs_add

-- @abs_add : ∀ {α : Type u_1}

-- [inst : LinearOrderedAddCommGroup α] (a b : α),

-- |a + b| ≤ |a| + |b|

#check @Continuous

-- @Continuous : {α : Type u_2} → {β : Type u_1} →
-- [inst : TopologicalSpace α] →
-- [inst : TopologicalSpace β] →
-- (α → β) → Prop

Defining structures and instances

variable (f g : R × R → R)

#check f + g

-- f + g : R × R → R

example : f + g = g + f := by rw [add_comm]

#check Continuous f

-- Continuous f : Prop

Defining structures and instances

set_option pp.explicit true

#check Continuous f

/-

@Continuous (R × R) R
(@instTopologicalSpaceProd R R

(@UniformSpace.toTopologicalSpace R
(@PseudoMetricSpace.toUniformSpace R
Real.pseudoMetricSpace))

(@UniformSpace.toTopologicalSpace R
(@PseudoMetricSpace.toUniformSpace R
Real.pseudoMetricSpace)))

(@UniformSpace.toTopologicalSpace R
(@PseudoMetricSpace.toUniformSpace R
Real.pseudoMetricSpace)) f : Prop

-/

Defining a hierarchy of structures

Currently, Mathlib has roughly:

• 1,300 classes

• 22,110 instances.

I will pause here to show you:

• some graphs

• how to look up the (direct) instances of a class in the Mathlib
documentation

• how to look up the classes that an object is an instance of.

Defining a hierarchy of structures

What are all these classes?

• Notation (Add, Mul, Inv, Norm, . . .)

• Algebraic structures (Group, OrderedRing, Lattice,
Module, . . .)

• Computation and bookkeeping: Inhabited, Decidable

• Mixins and add-ons: LeftDistribClass, Nontrivial

• Unexpected generalizations: GroupWithZero, DivInvMonoid

Defining a hierarchy of structures

class DivisionSemiring (α : Type*) extends Semiring α,

GroupWithZero α

class DivisionRing (K : Type u) extends Ring K, DivInvMonoid K,

Nontrivial K, RatCast K

class Semifield (α : Type*) extends CommSemiring α,

DivisionSemiring α, CommGroupWithZero α

class Field (K : Type u) extends CommRing K, DivisionRing K

To bundle or not to bundle?

A group consists of a carrier type and a structure on that type.

We have seen that we can represent that as one object or two.

Choices like this come up often:

• A monoid morphism is a function that preserves multiplication
and 1.

• A subgroup is a subset of the carrier closed under the group
operations.

To bundle or not to bundle?

variable (G H : Type) [Monoid G] [Monoid H]

structure isMonoidHom : Prop where

map_one : f 1 = 1

map_mul : ∀ g g', f (g * g') = f g * f g'

structure MonoidHom : Type where

toFun : G → H

map_one : toFun 1 = 1

map_mul : ∀ g g', toFun (g * g') = toFun g * toFun g'

structure Subgroup (G : Type) [Group G] where

carrier : Set G

mul_mem {a b} : a ∈ carrier → b ∈ carrier →
a * b ∈ carrier

one_mem : (1 : G) ∈ carrier

inv_mem {x} : x ∈ carrier → x−1 ∈ carrier

To bundle or not to bundle?

The bundled and unbundled approaches each have advantages and
drawbacks.

Mathlib has ways of handling subobjects and morphisms that tries
to get the best of both worlds.

You can read about it in Chapter 7 of Mathematics in Lean.

See also Anne Baanen, “Use and abuse of instance parameters in
the Lean mathematical library.”

Diamond problems

Consider the following facts:

• The product of metric spaces is a metric space.

• The product of topological spaces is a topological space.

• Every metric space is a topological space.

Suppose M1 and M2 are metric spaces.

M1 ×M2 can be viewed as a topological space in two ways:

• A product of the induced topological spaces.

• The topological space induced by the product of the metric
spaces.

Fortunately, they come out the same.

Diamond problems

Why diamonds are problematic:

• The multiple pathways slow down searches.

• The results may not be the same (an ambiguity in the
mathematics).

• The results may be provably the same, but not syntactically
(definitionally) the same.

Here’s how you know things have gone wrong:

tactic ’apply’ failed, failed to unify

Continuous f

with

Continuous f

Diamond problems

Diamond problems come up surprisingly often.

Mathematics in Lean explains how to resolve them, and the
community has gotten good at it.

A philosophical question:

• Mathematicians are good at inferring canonical structure.

• A priori, there is no guarantee that our conventions yield
coherent assignments.

• Why don’t we get in trouble more often?

Stepping back

Mathematics combines inspiration and creativity with rigor and
precision.

• We admire and appreciate the beauty and power of the ideas,
and the deep and surprising insights.

• But what makes them specifically mathematical ideas and
insights are that they can be made rigorous and precise.

No other discipline manages to achieve stable consensus as to
whether a claim is correct as well as mathematics does.

Stepping back

Some of us feel that the real mathematics lies in the big ideas; the
need to spell out the details carefully is a tedious chore.

Some of us enjoy tinkering with definitions and lemmas until they
are perfect, and love seeing all the pieces fit together in just the
right way.

Most of us are somewhere in between.

Stepping back

Formalization of mathematics appeals most directly to the second
group.

It’s a continuous extension of the standards of mathematical rigor
that trace back to Euclid.

What does formalization offer to the first group?

Can it provide mathematical insight?

Stepping back

Formal libraries provide a stable foundation for exploration and
discovery.

• They provide a common language.

• They provide precise meaning.

• They ensure the low-level details are correct.

Spelling out concepts and their relationships gives us a better
understanding of how they work.

Having details mechanically checked should empower us to explore
new ideas and develop complex concepts with confidence.

It also opens the door to mechanical assistance for discovery,
ranging from heuristic search and brute force enumeration to AI.

