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Formal logic and mathematical proof

An important mathematical goal is to get the answers right:

• Our calculations are supposed to be correct.

• Our proofs are supposed to be correct.

Mathematical logic offers an idealized account of correctness,
namely, formal derivability.

Informal proof is viewed as an approximation to the ideal.

• A mathematician can be called on to expand definitions and
inferences.

• The process has to terminate with fundamental notions,
assumptions, and inferences.



Formal logic and mathematical proof

Two objections:

• Few mathematicians can state formal axioms.

• There are various formal foundations on offer.

Slight elaboration:

• Ordinary mathematics relies on an informal foundation:
numbers, tuples, sets, functions, relations, structures, . . .

• Formal logic accounts for those (and any of a number of
systems suffice).



Formal logic and mathematical proof

What about intuitionstic logic, or large cardinal axioms?

Most mathematics today is classical, and does not require strong
assumptions.

But even in those cases, the assumptions can be make explicit and
formal.



Formal logic and mathematical proof

So formal derivability provides a standard of correctness.

Azzouni writes:

The first point to observe is that formalized proofs have
become the norms of mathematical practice. And that is
to say: should it become clear that the implications (of
assumptions to conclusion) of an informal proof cannot be
replicated by a formal analogue, the status of that informal
proof as a successful proof will be rejected.

Formal verification, a branch of computer science, provides
corroboration: computational proof assistants make formalization
routine (though still tedious).



Formal logic and mathematical proof

The fact that some arguments draw on visual and spatial intuitions
leads some to challenge claims of formalizability.

But the history and contemporary practice corroborate the story:

• Space filling curves and other monsters led to rigorization.

• We have topological, metric, geometric, and analytic language
to spell out our intuitions.

• Diagrams play a limited role in mathematics journals.

• Intuitively obvious theorems like the Jordan Curve Theorem,
have been proved.



Formal logic and mathematical proof

Formal derivability has been held to be the standard of correctness
implicitly or explicitly throughout twentieth century philosophy of
mathematics.

Hamami finds clear expressions of the view in Mac Lane and
Bourbaki.

Detlefsen calls it the common view, and Antonutti Marfori and
Hamami call it the standard view.



Formal logic and mathematical proof

Rav has criticized the standard view on a number of grounds.

Azzouni has responded to some of them.

Others have leveled criticisms or raised concerns, including
Antonutti Marfori, Detlefsen, Tanswell, Larvor, and Pelc.

Yacin Hamami has recently provided a precise formulation and
spirited defense.

My goals here:

• to raise a strong objection to the standard view

• to respond to it

I believe the standard view is essentially correct, but understanding
the sense in which it is correct can tell us a lot about mathematics.
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The problem

According to the standard view, when a mathematical referee
certifies a mathematical result, the correctness of the judgment
stands or falls with the existence of a formal derivation.

How can our mathematical judgments possibly warrant the
existence of such a thing?



The problem

Formal derivations are fragile objects.

A formal derivation can require thousands of inferences. If even
one is incorrect, it is not a formal derivation.

With 1% error, the odds of correctly assessing 100 inferences is
about 37%. The odds drop exponentially.

Informal proofs provide less information. A priori, this only makes
it harder.

The fact that mathematical results rely on prior results in the
literature makes matters even worse.



The problem

Mathematical texts abound in terms such as “it follows from
. . . that,” “given that . . . it is clear that” and the like; the
antecedents are held to be true, from which the truth of the
consequent is taken by necessity to follow. The issue is that
beyond the verbal phrase “it follows from . . . that so and so is
the case” (equals “is true”), a mathematical proof in general
only says that it follows, not why by logical necessity it has
to follow. Hence the frequent need to interpolate further and
further intermediate links as “bridges,” leading from claimed
antecedents to the asserted conclusion. Why the consequent
follows from the antecedents has to be figured out by the reader
of a proof, based on the reader’s understanding of the meaning
of the terms in the antecedent and consequent and requiring
the reader’s familiarity with the underlying theory to which the
proof is intended to be a contribution. None of these can be
formally captured. (Rav 2007)



The problem

Detlefsen and Tanswell also dissociate epistemic justification of
mathematics from its formalizability.

Detlefsen writes:

Mathematical proofs are not commonly formalized, either
at the time they’re presented or afterwards. Neither are
they generally presented in a way that makes their formal-
izations either apparent or routine. This notwithstanding,
they are commonly presented in a way that does make
their rigor clear—if not at the start, then at least by the
time they’re widely circulated among peers and/or stu-
dents. There are thus indications that rigor and formaliza-
tion are independent concerns.



The problem

Azzouni credits formal norms with the stability of mathematics as
a shared practice, but he denies that they are epistemic norms; a
mathematician need not produce such a derivation to know or
justify such a proof.

According to Azzouni, mathematicians rely on “inference
packages” and, more recently, “algorithmic languages,” that
circumvent formal detail.

Hamami is most optimistic about the prospects of a formal
account.

• Mathematical experts have a stock of theorems, learned rules.

• When verifying a proof, they invoke procedures that reduce
inferences to those.



The problem

Rav, Azzouni, and Hamami offer valuable insights:

• Background knowledge and expertise is important.

• These can be used to supply additional detail.

But the core concern remains: formal derivations are long and
complex, and there is no room for error.

We need a more compelling account of how we bridge the gap
between the informal and the formal.



Is it philosophy?

Two questions:

• Why isn’t this psychology?

• Why isn’t this just pragmatic?



Is it philosophy?

It is useful to keep a methodological distinction:

• philosophy: normative account of grounds for knowledge,
based on what we see in the mathematical literature.

• psychology: descriptive account of human behavior, based on
empirical studies

Understanding mathematical inference requires both.

Here my focus is on the mathematics.



Is it philosophy?

Philosophy of mathematics is supposed to provide a normative
ideal.

Conventional accounts assume mathematical agents have finite
capacities.

The problem raised here becomes pressing when we recognize that
we have only bounded resources.

Cognitive efficiency is a legitimate norm, and we can still idealize
away.

Our core concern remains the same as that of Plato and Aristotle:
understanding how we can, should, and do come to know
mathematics.
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General strategies

A attempted formal derivation with a single error is not a formal
derivation.

Not so with informal proof: an informal proof can have minor
errors and still be “essentially correct.”

The real question: how can informal mathematical texts warrant
mathematical truth while being robust with respect to error.

This is an engineering problem.



General strategies

Informal proofs have much more structure. Good ones

• are modular (Avigad, to appear),

• are motivated (Morris, 2015),

• and show evidence of a rational plan (Hamami and Morris, in
preparation).

Metaphors:

• modularity, reliability, and robustness in engineering

• grasping the plot of a novel

• planning a trip

This is not progress per se, but it gives us something to work with.



General strategies

Broad strategies:

• Isolate and minimize critical information.

• Maximize exposure to error detection.

• Leverage redundancy.

I will describe these in metaphorical terms, and then get more
specific.



Isolate and minimize critical information

View informal proof as a form of data compression, like:

• signal coding

• version control (send the “diff”)

• image compression

• making a coarse plan



Maximize exposure to error detection

When a proof is wrong, we want it to be obviously wrong, or as
clearly wrong as possible.

They should be falsifiable, not by empirical data, but by
mathematical reasoning.

Slogan: maximize probability by maximizing probe-ability

Analogies:

• complete proof search

• mental models vs. formal rules in cognitive science



Leverage redundancy

Ensure there are multiple ways to succeed. Analogies:

• multiple paths to a goal

• backup plans

• extra support and backup components in engineering

• error correction in coding schemes

In this case, exponential decay works in our favor.



Outline

• The standard view

• The problem

• General strategies

• Specific strategies

• Conclusions



General strategies

Broad strategies:

• Isolate and minimize critical information.

• Maximize exposure to error detection.

• Leverage redundancy.



Specific strategies

Some specific strategies:

1. Reason by analogy.

2. Modularize.

3. Generalize.

4. Use algebraic abstraction.

5. Collect examples.

6. Classify.

7. Develop complementary approaches.

8. Visualize.

I will try to convince you that

• these occur in mathematics, and

• they support reliability and robustness.



Reason by analogy

If a proof I have in mind is similar to one you have already seen, I
only need to explain the differences.

Example: unique factorization of Gaussian integers, writing
a = qb + r with 0 ≤ ‖r‖ < ‖b‖

Error checking can focus on the points of difference.

Another example: various ways of completing a space (metric
completions, ideal completions) look the same.



Modularize

Modular systems can be decomposed into components with limited
interactions between them, modulated by interfaces.

• One can use theorems and lemmas without knowing how they
are proved.

• Proofs are decomposed into smaller lemmas.

• Structures are defined in terms of simpler ones.

Positive effects:

• Modularity minimizes information (between proofs, within
proofs).

• Components can be checked and repaired independently.

• Interfaces support multiple realizations.



Generalize

Mathematical lemmas are often of the form ∀x (A(x)→ B(x)).

Making A as weak as possible and B as strong as possible
maximizes exposure to error.

Indeed, mathematical practice supports breaking out lemmas and
stating them as strongly as possible.

General theories are analogous to special cases. For example,
optimization in univariate calculus is generalized to multiple
dimensions, infinite dimensions, nonsmooth functions, multivalued
functions.

Similarly, discrete probability generalizes to continuous probability
measures.



Use algebraic abstraction

Algebra involves characterizing classes of structures axiomatically.

• It is a prototypical means of generalization.

• Algebraic results guided by concrete cases.

• Supports transferring and reusing results.

• Supports counterexamples.

Examples:

• Groups from permutations (substitutions), geometry, number
theory

• Integers and Gaussian integers are Euclidean domains, hence
principle ideal domains, hence unique factorization domains
and Dedekind domains.

• Topological spaces, metric spaces, inner products spaces, and
normed spaces all generalize the Euclidean plane.



Collect examples

When assessing the correctness of a general proof, it is often
helpful to think about a particular instance.

If the statements holds of the instance, we try to understand why.
If not, we have found an error.

Having an abundance of examples is a virtue.

Textbooks often provide standard examples, as well as standard
counterexamples. (Cf. Counterexamples in Topology and
Counterexamples in Analysis.)



Classify

It is helpful not only to have plenty of examples, but also to have
them categorized and sorted in useful ways.

Groups can be finite, abelian, nilpotent, solvable, discrete, and so
on. Trained mathematicians know where hypotheses are typically
useful, and an absence can raise a red flag.

Classification theorems describe families in terms of invariants and
give concrete representations.

These give alternative means of proof, and also parameters that
can be varied to find counterexamples.



Develop complementary approaches

Leveraging redundancy means fostering multiple ways of carrying
out inferences.

There are more than 200 published proofs of the law of quadratic
reciprocity.

Papers often say things like “X follows from Theorem Y in paper
Z , but, for completeness, we provide a more direct proof here.”

The algebraic method provides various perspectives: e.g. one can
view a structure in topological, metric, or geometric terms.



Visualize

Examples of visual intuition in mathematics are compelling, and
have received the most philosophical attention.

Larkin and Simon famously argued that diagrammatic
representations leverage our spatial cognitive capacities.

Features in a diagram suggest properties from the constraints, and
the ability to vary the diagram produces counterexamples.

A number of authors have explored ways this plays out in
mathematical reasoning, and Hamami, Mumma, and Amalric have
done experimental work.

Terms like “space,” “continuous transformation,” “distance,”
“interior,” “endpoint,” and “smooth curve” invoke spatial
intuitions even in textual proofs.
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General strategies

Broad strategies:

• Isolate and minimize critical information.

• Maximize exposure to error detection.

• Leverage redundancy.



Specific strategies

Some specific strategies:

1. Reason by analogy.

2. Modularize.

3. Generalize.

4. Use algebraic abstraction.

5. Collect examples.

6. Classify.

7. Develop complementary approaches.

8. Visualize.



Conclusions

Original question: how can an informal proof reliably indicate the
existence of a formal derivation?

Modified question: what general cognitive mechanisms and design
principles support reliable assessement of proof?

We have begun to explore some of them.

Experimental psychology might help, but there is a lot of data in
the mathematical literature, and we can begin to form models.



Conclusions

The account incorporates insights from Rav, Azzouni, and
Hamami:

• Background knowledge is important.

• Expertise is important.

• We use procedural knowledge to fill in information.

Additional features:

• There is no simple answer. There are lots of mechanisms at
play.

• The heuristics are reliable but fallible.

• They rely on metacognitive reflection.

But we can still try to better understand how they work.



Conclusions

This approach preserves the standard view that informal proofs
work by indicating formal derivations.

It also extends the normative account: in addition to being correct,
we want our proofs to support robust and reliable assessment.

The ability of mathematics to bridge the gap between the informal
and the formal is one of the most important and interesting
aspects of the practice.

Mathematics requires us not only to be correct, but to be correct
about complex things.



Conclusions

Rav has emphasized that we get a lot more from a proof than a
certificate of correctness, and that we value proofs for reasons that
go beyond the ability to construct a formal derivation.

I agree wholeheartedly.

But the standard view is fully compatible with the desire to
develop a broader epistemology of mathematics.



Conclusions

In fact, the approach I have taken here points to a reconciliation.

The cognitive mechanisms and design principles we have explored
have as much to do with discovery and understanding as they have
to do with correctness and justification.

So even if one is primarily concerned with grounds for knowledge
and standards of correctness, one has to come to terms with the
mechanisms that support mathematical understanding to make
sense of how mathematics makes it possible to meet those
standards.

Both verification and discovery are then subsumed under the more
general umbrella of mathematical understanding.



Summary

To sum up, I have defended two complementary claims:

1. The gap between informal proof and formal derivation is not a
good reason to reject the latter as a normative standard of
correctness.

2. Accepting this standard is not at odds with the task of
making sense of higher-level epistemic features of
mathematical reasoning. Rather, the latter is an essential
prerequisite to understanding how the normative standard can
and should be met.

I have taken initial steps towards developing a positive account of
the features that make reliable and robust assessment possible.



Summary

Based on 1, supporters of the standard view may conclude: “see,
mathematics is formalizable!”

Based on 2, opponents may conclude: “see, formalization doesn’t
say anything about the really important stuff!”

But the two claims together give us a clearer understanding of
what the standard account does, and does not, accomplish.

So we can lay the argument to rest, and focus on understanding
how mathematics works as well as it does.



Extras

If you now give me an equation that you have chosen at your pleasure,
and if you want to know if it is or is not solvable by radicals, I could do
no more than to indicate to you the means of answering your question,
without wanting to give myself or anyone else the task of doing it. In a
word, the calculations are impracticable.

From that, it would seem that there is no fruit to derive from the
solution that we propose. Indeed, it would be so if the question usually
arose from this point of view. But, most of the time, in the applications
of the Algebraic Analysis, one is led to equations of which one knows
beforehand all the properties: properties by means of which it will always
be easy to answer the question by the rules we are going to explain.
. . . All that makes this theory beautiful and at the same time difficult, is
that one has always to indicate the course of analysis and to foresee its
results without ever being able to perform [the calculations].

(Galois 1830)



Extras

. . . to seek proofs based immediately on fundamental characteristics,
rather than on calculation, and indeed to construct the theory in such a
way that it is able to predict the results of calculation. . .

(Dedekind 1877)


