
Interactive theorem proving for
the working logician

Jeremy Avigad

Department of Philosophy and
Department of Mathematical Sciences

Carnegie Mellon University

Prague Logic Seminar

December 2020

Prologue

The goals of this talk:
• To survey a new technology from computer science,

interactive theorem proving.
• To explore possible topics of interest to mathematical
logicians.

Prologue

Logic is fundamental to many parts of computer science:
• AI and automated reasoning
• Databases and knowledge representation
• Programming language semantics
• Formal methods in hardware and software design

It is also marginalized in mathematics.

Prologue

Looking for refuge in computer science poses constraints:
• Goals tend to be practical.
• Success = number of users (and/or citations).
• Methodology is often empirical.
• What’s useful is often pretty boring.
• What’s theoretically interesting and attractive is often not
very useful.

An important question: is there a role for mathematical logic in
computer science?

Formal methods in computer science

Formal methods are used for
• specifying,
• developing, and
• verifying

complex hardware and software systems.

They rely on:
• formal languages to make assertions and express constraints,
• formal semantics to specify intended meaning, and
• formal rules of inference to verify claims and carry out search.

Formal methods in computer science

Formal methods are used to
• say things,
• find things,
• and check things.

This is important in mathematics as well.

There is no sharp line between industrial and mathematical
verification:
• Designs and specifications are expressed in mathematical
terms.
• Claims rely on background mathematical knowledge.

Formal methods in computer science

• CompCert has verified the correctness of a C compiler.
• The seL4 microkernel has been verified.
• Amazon Web Services has a (really good) formal methods
group.
• Facebook uses formal methods to find concurrency problems.
• Apple uses formal verification in Munich.
• Intel and AMD have used ITP to verify processors.
• Microsoft uses formal tools to verify programs and drivers.
• Airbus used formal methods to verify avionics software.
• Aesthetic Integration uses formal methods to show that
trading software complies with regulations.

Formal methods in mathematics

I will focus on mathematics.

Four important domains of application:
• verified proof
• verified computation
• formal search
• digital infrastructure

I will discuss the first today.

Coordinates:

Logic in computer science
 Formal methods
 Interactive theorem proving
 Formally verified mathematics

Table of contents

Outline:
• Interactive theorem proving
• Why mathematicians should care
• Why logicians should care
• The Lean theorem prover
• Openings for theory:

• Formal foundations
• Automation (decision procedures, search procedures)
• Proof formats and certificates

Interactive theorem proving

“The development of mathematics toward greater precision has
led, as is well known, to the formalization of large tracts of it, so
one can prove any theorem using nothing but a few mechanical
rules. The most comprehensive formal systems that have been set
up hitherto are the system of Principia Mathematica on the one
hand and the Zermelo-Fraenkel axiom system of set theory . . . on
the other. These two systems are so comprehensive that in them
all methods of proof used today in mathematics are formalized,
that is, reduced to a few axioms and rules of inference. One might
therefore conjecture that these axioms and rules of inference are
sufficient to decide any mathematical question that can at all be
formally expressed in these systems.”

Interactive theorem proving

“It will be shown below that this is not the case. . . .”

(Kurt Gödel, On formally undecidable propositions of Principia
Mathematica and related systems, 1931.)

The positive claim: most ordinary mathematics is formalizable, in
principle.

Interactive theorem proving

With the help of computational proof assistants, mathematics is
formalizable in practice.

Working with such a proof assistant, users construct a formal
axiomatic proof.

In many systems, this proof object can be extracted and verified
independently.

Interactive theorem proving

Some systems with substantial mathematical libraries:
• Mizar (set theory)
• HOL (simple type theory)
• Isabelle (simple type theory)
• HOL Light (simple type theory)
• Coq (constructive dependent type theory)
• ACL2 (primitive recursive arithmetic)
• PVS (classical dependent type theory)
• Agda (constructive dependent type theory)
• Metamath (set theory)
• Lean (dependent type theory)

Interactive theorem proving

Some theorems formalized to date:
• the prime number theorem (2004, and via complex analysis,
2009)
• the four-color theorem (2004)
• the Jordan curve theorem (2005)
• Gödel’s first and second incompleteness theorems (1986 and
2013, respectively)
• Dirichlet’s theorem on primes in an arithmetic progression
(2009)
• the central limit theorem (2014)
• the independence of the continuum hypothesis (consistency,
2008, unprovability, 2019)

Interactive theorem proving

There are good libraries for
• elementary number theory
• real and complex analysis
• point-set topology
• measure-theoretic probability
• linear algebra
• group theory
• category theory
• dynamical systems

. . . and lots more.

Interactive theorem proving

Georges Gonthier and coworkers verified the Feit-Thompson Odd
Order Theorem in Coq.
• The original 1963 journal publication ran 255 pages.
• The formal proof is constructive.
• The development includes libraries for finite group theory,
linear algebra, and representation theory.

The project was completed on September 20, 2012, with roughly
• 150,000 lines of code,
• 4,000 definitions, and
• 13,000 lemmas and theorems.

Interactive theorem proving

Thomas Hales announced the completion of the formal verification
of the Kepler conjecture (Flyspeck) in August 2014.
• Most of the proof was verified in HOL light.
• The classification of tame graphs was verified in Isabelle.
• Verifying several hundred nonlinear inequalities required
roughly 5000 processor hours on the Microsoft Azure cloud.

Interactive theorem proving

“It is not in heaven, that thou shouldest say: ‘Who shall go up for
us to heaven, and bring it unto us, and make us to hear it, that we
may do it?’ ” (Deuteronomy 30:12)

You can download these systems and get started right away.
• Isabelle: https://isabelle.in.tum.de/
• Coq with Mathematical Components:

https://math-comp.github.io/
• Metamath: http://us.metamath.org/

There are online documentation, tutorials, user mailing lists, online
chat groups, and more.

https://isabelle.in.tum.de/
https://math-comp.github.io/
http://us.metamath.org/

Interactive theorem proving

Later, I will talk about the Lean theorem prover.

You can find resources for learning about Lean at the Lean
community web pages:

https://leanprover-community.github.io/.

In particular:
• Theorem Proving in Lean
• Mathematics in Lean
• Lean for the Curious Mathematician (a workshop, with
recorded tutorials)

https://leanprover-community.github.io/
https://leanprover.github.io/theorem_proving_in_lean/
https://leanprover-community.github.io/mathematics_in_lean/
https://leanprover-community.github.io/lftcm2020/

Why mathematicians should care

Formal proof assistants are tools that can help us do mathematics
better.

Compare to Latex:
• Mathematics is not just about communicating results.
• But typesetting is important.
• There is a learning curve.
• But it’s worth the effort if it helps us communicate better.

Interactive theorem proving is not there yet.

Why mathematicians should care

In the long run, formal methods can provide:
• verified proof
• verified computation
• formal search methods, to support discovery
• digital infrastructure for storing, sharing, and communicating
results

See my article in the Notices of the AMS, The mechanization of
mathematics, and an associated talk.

See also a recent article in Quanta on the resolution of the Keller
conjecture.

ITP is a gateway to formal methods in general.

https://www.ams.org/journals/notices/201806/rnoti-p681.pdf
https://www.youtube.com/watch?v=mb-qDG5-05Y&t=24s
https://www.quantamagazine.org/computer-search-settles-90-year-old-math-problem-20200819

Why logicians should care

Formal methods rely on classical results in logic:
• formal languages and axiomatic systems
• semantics, definability, and completeness proofs
• structural proof theory
• computability theory
• normalization and the lambda calculus
• Skolemization and properties
• decision procedures
• model theory of algebraic structures
• Craig’s interpolation lemma

Computer scientists have added many important insights, but the
theory guides the enterprise.

Why logicians should care

But what have we done lately?

In the twentieth century, mathematical logic made important
contributions, clarifying
• basic concepts of mathematics
• methods of proof and rules of inference
• notions of language, meaning, expressivity, and definability
• the notion of computation

These had bearing on all aspects of mathematics, as well as
computer science, linguistics, philosophy, and beyond.

Formal methods are the modern embodiment of this tradition.

Why logicians should care

Here are some major challenges:
• developing languages that are expressive in practice
• developing foundations that are adequate in practice
• developing practical search methods and decision procedures
• combining heterogeneous methods
• using external automation
• using computer algebra systems
• verifying numeric computation
• sharing data between proof systems
• managing large databases of knowledge
• understanding what machine learning can (and cannot) do

We need to pay attention to the mathematical details.

The Lean theorem prover

Lean is a new interactive theorem prover, developed principally by
Leonardo de Moura at Microsoft Research, Redmond.

It is open source, released under a permissive license, Apache 2.0.
See http://leanprover.github.io.

The project began in 2013.

In 2017, the Lean community split off the library.
• Lean’s developers can focus on Lean 4 without distraction.
• The community has been maintaining Lean 3 and building the
library.

See http://leanprover-community.github.io.

http://leanprover.github.io
http://leanprover-community.github.io

The Lean theorem prover

Notable features:
• based on a powerful dependent type theory
• small trusted kernel with independent type checkers
• good online documentation and tutorials
• nice syntax
• VS code editing mode with bells and whistles
• growing library
• favored by mathematicians
• lively community on Zulip
• a powerful framework for metaprogramming
• enthusiastic, talented people involved

The Lean theorem prover

A number of mathematicians have begun using Lean, including:
• Reid Barton (algebraic topology)
• Kevin Buzzard (algebraic number theory)
• Bryan Gin-ge Chen (physics, mathematical physics)
• Johan Commelin (algebraic geometry and algebraic number
theory)
• Sander Dahmen (number theory)
• Sébastien Gouëzel (dynamical systems and ergodic theory)
• Yury Kudryashov (dynamical systems)
• Patrick Massot (differential topology and geometry)
• Scott Morrison (higher category theory and topological
quantum field theories)
• Neil Strickland (stable homotopy theory)

The Lean theorem prover

• Hundreds of messages are posted every day on the Lean chat
forum on Zulip.
• Buzzard has been training very talented undergraduate
students, like Chris Hughes, Kenny Lau, Amelia Livingston,
and Jean Lo.
• Lean’s library, mathlib, is growing quickly.
• Dahmen, Hölzl, and Lewis have formalized a proof of the
Ellenberg-Gijswijt theorem (Annals of Mathematics 2017)
• Buzzard, Commelin, and Massot have formalized Peter
Scholze’s notion of a perfectoid space (and published a nice
paper about it)
• It has been getting good press (Quanta, Notices).

https://www.quantamagazine.org/building-the-mathematical-library-of-the-future-20201001/
https://www.ams.org/journals/notices/202011/rnoti-p1791.pdf

Table of contents

Outline:
• Interactive theorem proving
• Why mathematicians should care
• Why logicians should care
• The Lean theorem prover
• Openings for theory:

• Formal foundations
• Automation (decision procedures, search procedures)
• Proof formats and certificates

Formal foundations

The three main families of foundations:
• Set theory (Mizar, Metamath)
• Simple type theory (HOL4, Isabelle, HOL Light)
• Dependent type theory (Coq, Agda, PVS, Lean)

For an overview, see my draft chapter, Foundations, for an
upcoming Handbook for Proof Assistants and their Applications in
Mathematics and Computer Science.

In set theory, everything is a set. In type theory, every object has
its own type.

https://arxiv.org/abs/2009.09541

Formal foundations

Theoretically, the differences are irrelevant:
• We can interpret types as sets.
• We can construct (or posit) types whose elements satisfy
axioms of set theory.

The differences have to do with user interaction:
• Types allow for overloading.
• Types provide syntactic error checking.
• Types can be used to infer information (like associated
algebraic structure).

Formal foundations

Consider:

example (x : R) :
(2*x + 1)^3 = 8*x^3 + 12*x^2 + 6*x + 1 :=

by ring

Work is needed to infer the meaning of the symbols, interpret
numerals, identify R as an instance of a ring.

It’s also an instance of
• an additive commutative semigroup
• a multiplicative monoid
• a vector space over the reals
• a metric space
• a measure space

and lots of other things.

Formal foundations

Think of all the things that are needed to make sense of the
binomial theorem:

theorem add_pow [comm_semiring α]
(x y : α) (n : N) :

(x + y) ^ n =∑
m in range (n + 1),

x ^ m * y ^ (n - m) * choose n m

And this is pretty elementary.

Formal foundations

/- Author: Chris Hughes -/

def legendre_sym (a p : N) (hp : prime p) : Z :=
if (a : zmodp p hp) = 0 then 0 else

if ∃ b : zmodp p hp, b ^ 2 = a then 1 else -1

theorem quadratic_reciprocity (hp1 : p % 2 = 1)
(hq1 : q % 2 = 1) (hpq : p 6= q) :

legendre_sym p q hq * legendre_sym q p hp =
(-1) ^ ((p / 2) * (q / 2))

. . .

lemma exists_subgroup_card_pow_prime
{G : Type _} [group G] [fintype G] (p : N) :

∀ {n : N} [hp : p.prime] (hdvd : p ^ n | card G),
∃ H : subgroup G, fintype.card H = p ^ n

Formal foundations

/- Author: Scott Morrison -/

variables {C : Type u} [category.{v} C]

def yoneda : C =⇒ (Cop =⇒ Type v) :=
{ obj := λ X,

{ obj := λ Y, unop Y −→ X,
map := λ Y Y' f g, f.unop � g,
map_comp' := . . .,
map_id' := . . .},

map := λ X X' f, { app := λ Y g, g � f } }

instance yoneda_full : full (@yoneda C _) :=
. . .

instance yoneda_faithful : faithful (@yoneda C _) :=
. . .

Formal foundations

/- Author: Sebastien Gouezel -/

/-- Typeclass defining smooth manifolds with corners with
respect to a model with corners, over a field `K` and
with infinite smoothness to simplify typeclass search
and statements later on. -/

class smooth_manifold_with_corners
{K : Type _} [nondiscrete_normed_field K]
{E : Type _} [normed_group E] [normed_space K E]
{H : Type _} [topological_space H]
(I : model_with_corners K E H)
(M : Type _) [topological_space M] [charted_space H M]

extends
has_groupoid M (times_cont_diff_groupoid ∞ I) : Prop

Automation

Automated mathematical reasoning is a new frontier.

Domain-general methods:
• Propositional theorem proving
• Equational reasoning
• First-order theorem proving
• Higher-order theorem proving

Domain-specific methods:
• Linear arithmetic (integer, real, or mixed)
• Nonlinear real arithmetic (real closed fields, transcendental
functions)
• Algebraic methods (such as Gröbner bases)

Combination methods are very important.

Automation

There is a gap between theory and practice.
• A principled search procedure or decision procedure that
always times out is worthless.
• A heuristic hack that works in practice is great.

Nonetheless, theory guides the practice.
• The idealizations tell us what is possible, and where the
challenges lie.
• If we start with a complete procedure, we can then seek
optimizations.
• When a method fails, we want to know why.

Automation
Let’s distinguish between two clusters of automated methods.

Small scale:
• used to perform small or domain-specific tasks.
• deterministic, or at least predictable
• examples: linear arithmetic, tactics for ring calculations, a

contradiction tactic, a continuity tactic

Large scale:
• domain general
• often involves open-ended search using large parts of the
library.
• examples: Sledgehammers, tableaux, resolution, SMT

A term rewriter / simplifier sits between the two.

Automation

Of the systems I have used (chiefly Isabelle, Coq, Lean), Isabelle
has the best automation, by far.

I was surprised the Lean has become so popular, despite a lack of
automation, especially at first.

A saving grace: Isabelle has a good metaprogramming language,
making it easy to add new tactics.

Automation

A lot of the pain of formalization comes from searching the library
for basic facts.

A Sledgehammer tool uses a heuristic relevance filter and external
provers (typically resolution provers or SMT solvers), to dispell
proof obligations.

Isabelle has a very good one.

Experts generally learn the library well and do things by hand.

This is a current target for machine learning.

Automation
In 2019 I did a little study, Automated reasoning for the working
mathematician (talk, github).

Messages to the ATP community:
• Be wary of benchmarks.
• Algebraic and structural reasoning is important.
• It would be great if we could combine strengths of
Sledgehammer and other tools.
• Second-order reasoning is unavoidable (in restricted, focused
forms).
• Arithmetic is important.
• Combination methods are important.
• Users need feedback.
• It would help to give users and library designers more control.
• Certificates are nice.

http://www.andrew.cmu.edu/user/avigad/Talks/london.pdf
https://github.com/avigad/arwm

Proof formats and certificates

In automated reasoning, calculi facilitate search.

First-order methods:
• resolution
• tableaux

Combination methods (SMT)

Propositional methods:
• unit propagation
• redundant clauses
• symmetry-breaking rules

Proof formats and certificates

In verification, we want to:
• store proofs for later checking or independent checking
• exchange proofs (or certificates) for proof (re)construction

One can optimize for different parameters:
• size of proof
• time / space needed to check the proof
• simplicity / complexity of the checker
• difficulty of manufacturing the proof

Proof formats and certificates

At one extreme, there is Metamath:
• Like proving in assembly language.
• The library has over 23,000 proofs.
• Checkers can check the library, from ASCII source, in a few
seconds.

In contrast, for dependent type theory:
• One has to elaborate source code to obtain much more
verbose expressions.
• The kernel checker has to normalize terms.

Proof formats and certificates

Mario Carneiro is working on verifying a checker for a variant of
Metamath, MM0, down to x86 code.

Start with:
• A specification of Peano arithmetic with schematic formula
variables.
• A specification of the semantics subset of the x86 processor.
• A specification of the specification language itself.

Goal: obtain a sequence of bytes (ELF format), and a formal
theorem:

If you put this in memory, followed by an input string, and
run it, then if it terminates with success, the input is a
correct MM0 theorem.

He will then run it on the theorem itself.

Proof formats and certificates

In competitions, propositional SAT solvers are required to output
DRAT proofs.

First-order provers and SMT solvers aren’t:
• there are no standard proof formats
• for performance, automated tools don’t produce detailed
proofs
• they can often be asked to output sketches
• other automated reasoners can check the sketches
• interactive theorem provers can try to use them

Isabelle’s Sledgehammer usually ignores the proof sketch, and
simply redoes the search with an internal tool, using only the
relevant lemmas.

Proof formats and certificates

Seul Baek is working on a standard format for first-order proofs,
TESC (Theory Extensible Sequent Calculus).
• The format is very explicit.
• Proof checkers are fast.
• He has verified a checker in Agda.

The idea is to compile resolution prover output down to that
format.

He has developed a tool that can reconstruct proofs from sketches
in Vampire with over 98% success.

Proof formats and certificates

Theoretical questions:
• What proof systems are good for search?
• What proof systems admit fast checking?
• What is the complexity of checking a proof?
• What is the speed improvement when producing a more
explicit format?
• What is the space increase in producing a more explicit
format?
• What are the complexity requirements to produce the more
explicit format?
• What is the minimal amount of information that a prover
needs to emit to facilitate efficient proof reconstruction?

Proof formats and certificates

In the end, we care about systems that work well on the kinds of
problems that come up in practice.

So tests, benchmarks, and usability will determine success.

But theory can help us make better sense of what we are doing.

Table of contents

Outline:
• Interactive theorem proving
• Why mathematicians should care
• Why logicians should care
• The Lean theorem prover
• Openings for theory:

• Formal foundations
• Automation (decision procedures, search procedures)
• Proof formats and certificates

Conclusions

There are interesting things going on computer science, and in
formal methods and interactive theorem proving in particular.

Theoreticians and mathematical logicians should take a look.

