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From methodology to metaphysics

The philosophy of mathematics has traditionally addressed issues
regarding the nature of mathematical objects and the proper
justification for mathematical knowledge.

As of late, some have begun to address a broader array of issues:
What is mathematical understanding? Why are some proofs better
than others? In what sense can a proof explain a result? What
makes a concept fruitful, or a definition the “right” definition?
Why are some historical advances especially important?

Sometimes “methodology” is distinguished from “metaphysics.”

But it is a mistake to view these as disjoint.



From methodology to metaphysics

Some “metaphysical” questions: Are there infinite totalities? Are
there complex numbers? Are there sets and functions, and what
properties do they have? Are there infinitesimals?

Compare to: Is there a nontrivial root of Riemann zeta function
with real part not equal to 1/2? Are there any noncyclic simple
groups of odd order?

This is reminiscent of the distinction between “internal” and
“external” questions, but Quine also recognized important
differences between the two.

In short, it seems uncontroversial to say that insofar as there are
rational ways to address both sets of questions, the appropriate
methods differ.



From methodology to metaphysics

Reductionism (set theory, possible points of space time):

• Justification of basic axioms is problematic.

• Focus on what is allowed, rather than what one ought to do.

Antirealism / realism:

• “Doublethink”: there are prime numbers, but there aren’t
really numbers.

• There seems to be no fact of the matter in the debate.

• Focus on abstracta in general, but not in particular.



From methodology to metaphysics

Let’s interpret the metaphysical questions as (reflective) scientific
questions as to

• what objects we should admit into our ontology; and

• how we should reason about them.

“Metaphysics” should weigh the pros and cons.



From methodology to metaphysics

What has happened historically:

• Expansions are met with caution and concern.

• Sometimes expansions can be explained in terms of a more
conservative theory (complex numbers as ordered pairs,
algebraic proofs understood geometrically).

• Otherwise, sometimes the expansions can at least be
explained away in particular instances (nonconstructive proofs
can be constructivized, infinitesimals eliminated), and,
moreover, come with clear rules of use.

• Over time, the expansions become more than useful
shorthands, and the nonconservative aspects don’t seem to
cause problems.

(Cf.: the introduction of negative numbers, algebraic methods in
geometry, infinitesimals in the calculus, points at infinity, abstract
algebraic arguments, ideals, cosets, equivalence classes,
nonconstructive definitions, infinitary objects, and so on.)



From methodology to metaphysics

This is rational!

Concerns:

• consistency / coherence / control

• loss of meaning / utility

Benefits:

• efficiency, economy of thought, ability to manage complex
details by suppressing / ignoring irrelevant detail, making key
features salient

• generality, ability to transfer to other domains.

“Metaphysics” should give us better wherewithal to evaluate the
pros and the cons.



From methodology to metaphysics

Goal of this talk:

• To explore the evolution of the mathematical treatment of
certain types of functions (characters) that arose in nineteenth
century mathematics.

• To understand the concerns that accompanied these changes.

• To understand the benefits that accompanied these changes.



Overview

An outline of this talk:

• The concept of function in the nineteenth century

• Dirichlet’s theorem on primes in an arithmetic progression

• Notable features of the modern understanding

• Frege on function and object

• An analysis of Frege’s motivations

• The evolution of proofs of Dirichlet’s theorem
• Dirichlet 1837
• Dedekind 1871
• Hadamard 1896
• de la Vallée-Poussin 1895–1897

• Analysis

• Conclusions



Functions in the nineteenth century

Nineteenth century instances of the function concept:

1. Functions defined on the continuum (R to R, C to C)

2. Sequences and series (N to R or Q)

3. Number theoretic functions (N to N)

4. Transformations of the plane

5. Permutations of a finite set A (bijections from A to A)

6. Characters (Z to C, or (Z/mZ)∗ to C)

7. Arbitrary mappings, or correspondences, between domains



Functions in the nineteenth century

Some landmarks:

• In 1850, Eisenstein explicitly introduced the term
“zahlentheoretische Funktion.”

• Dedekind 1854: “Über die Einführung neuer Funktionen in der
Mathematik; Habilitationsvortrag”

• In 1879, in the third edition of the Vorlesungen, Dedekind
refers to characters on the class groups as functions.

• In 1879, in the Begriffsschrift, Frege introduces a very general
notion of function.

• In 1888, Dedekind considers arbitrary mappings (Abbildung)
between domains.



Functions in the nineteenth century

For the concept of function, one moved away from the
necessity of an analytic connection, and began to view its
essence (of that concept) in the tabular “composition” of
a row of values associated with the values of one or
several variables. Thus, it became possible, to categorize
those functions under the concept that—due to
“conditions” of an arithmetic nature—receive a
determinate sense only when the variables occurring in
them have integral values or only for certain
value-combinations arising from the natural number
series. For intermediate values, such functions remain
either indeterminate and arbitrary or without any
meaning. (Eisenstein, 1950; translated with help from
Wilfried Sieg)



Functions in the nineteenth century

. . . the function χ(a) also posseses the property that it
takes the same value on all ideals a belonging to the
same class A; this value is therefore appropriately
denoted by χ(A) and is clearly always an hth root of
unity. Such functions χ, which in an extended sense can
be termed characters, always exist; and indeed it follows
easily from the theorems mentioned at the conclusion of
§149 that the class number h is also the number of all
distinct characters χ1, χ2, . . . , χh and that every class A
is completely characterized, i.e. is distinguished from all
other classes, by the h values χ1(A), χ2(A), . . . , χh(A).
(Dedekind 1879, translation by Hawkins)



Dirichlet’s theorem

Dirichlet’s famous theorem of 1837:

Theorem
Let a and d be relatively prime. Then the arithmetic progression
a, a + d , a + 2d , . . . contains infinitely many primes.

If G is a finite abelian group, a character χ on G is a
homomorphism from G to the nonzero complex numbers:
χ(g1g2) = χ(g1)χ(g2) for every g1 and g2 in G .

The set of characters on G forms a group, denoted Ĝ .



Dirichlet’s theorem

If G = {1, g , g2, . . . , gn−1} is cyclic, χ(g) must be an nth root of
1, and each such root determines a unique character.

So Ĝ is also cyclic, and isomorphic to G .

In the more general case, write G ' G1 × . . .× Gk , with each Gi

cyclic.

Can show Ĝ ' Ĝ1 × . . .× Ĝk .



Dirichlet’s theorem

The following two “orthogonality” relations hold:∑
g∈G

χ(g) =

{
|G | if χ = χ0

0 otherwise

and ∑
χ∈Ĝ

χ(g) =

{
|G | if g = 1
0 otherwise

For the first, pick h such that χ(h) 6= 1 and note

χ(h)
∑
g∈G

χ(g) =
∑
g∈G

χ(hg) =
∑
g∈G

χ(g).

This makes it possible to do “finite Fourier analysis”: if
f̂ (χ) =

∑
g f (g)χ(g), then f = 1

|G |
∑

χ f̂ (χ)χ.



Dirichlet’s theorem

Fix m, and ”lift” the characters on (Z/mZ)∗ to functions on N.

Define

L(s, χ) =
∞∑

n=1

χ(n)

ns
.

Euler product expansion:

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

=
∏
p-m

(
1− χ(p)

ps

)−1

This converges when re(s) > 1.



Dirichlet’s theorem

Taking logarithms of both sides yields

log L(s, χ) =
∑
p-m

χ(p)

ps
+ O(1).

Multiply both sides by χ(a) and sum over χ.∑
χ

χ(a) log L(s, χ) =
∑
χ

∑
p-m

χ(a)
χ(p)

ps
+ O(1).

Using the orthogonality relations,∑
χ

χ(a) log L(s, χ) = φ(m)
∑

p≡a mod m

1

ps
+ O(1).



Dirichlet’s theorem
We have, when re(s) > 1:∑

χ

χ(a) log L(s, χ) = φ(m)
∑

p≡a mod m

1

ps
+ O(1).

Let s → 1 from above.

Divide the characters into three types:

1. The trivial character, χ0.

2. The nontrivial real-valued characters.

3. The (properly) complex characters.

Show:

• L(s, χ0) has a simple pole at s = 1.

• For χ 6= χ0, L(s, χ) has a nonzero limit at s → 1.

This yields the result.

The most difficult case involves the nontrivial real-valued
characters.



Functions as objects

Nineteenth century: methodological changes

1. Unification of the function concept

2. Generalization of the function concept

3. Liberalization of the function concept

4. Extensionalization of functions

5. Reification of the function concept



Functions as objects

“Reification of the function concept” is vague.

Some aspects:

1. Extensionalization and independence of representation

2. Sending functions as arguments to other functions, F (f ).

3. Forming collections of functions.

4. Quantifying over functions (in definitions, in theorems).



Functions as objects

In the modern presentation of Dirichlet’s theorem:

• The notion of a character is defined.

• One determines some of their properties.

• Characters appear as arguments to other functions.

• One sums over sets of characters, without having
representations for any particular one.

• One carries out proofs (in fact, one has to!) without making
reference to any particular representation.

• One characterizes sets of characters extensionally.

These are the main points of contrast with the historical sources.



Function and object in Frege

In modern simple type theory:

• Predicates on the natural numbers have type N→ B (type 1)

• Binary relation have type N× N→ B (type 1)

• Sequences of natural numbers have type N→ N (type 1)

• The real numbers, R, are type 1

• Functions from R to R are type 2

• Sets of functions from R to R are type 3

• Sets of sets of reals are type 3

• For example, a set of measures on the Borel sets of R is a
type 4 object.

• And so on. . .



Function and object in Frege

. . . it will not do to call a general concept word the name
of a thing. That leads straight to the illusion that the
number is a property of a thing. (Grundlagen)

We may say in brief, taking “subject” and “predicate” in
the linguistic sense: a concept is the Bedeutung of a
predicate; and object is something that can never be the
whole Bedeutung of a predicate, but can be the
Bedeutung of a subject. (Concept and object)



Function and object in Frege

It must indeed be recognized that we are confronted by
an awkwardness of language. . . if we say that the concept
horse is not a concept. . . (Concept and object)

The business of a general concept word is precisely to
signify a concept. Only when conjoined with the definite
article or a demonstrative pronoun can it be counted as
the proper name of a thing, but in that case it ceases to
count as a concept word. The name of a thing is a
proper name. (Grundlagen)

If we keep it in mind that in my way of speaking
expressions like ‘the concept F ’ designate not concepts
but objects, most of Kerry’s objections already collapse.
(Concept and object)



Function and object in Frege

To the question, what the number 1 is, or what the sign
1 refers to, one mostly receives the answer, “Well, now, a
thing.” (Grundlagen)

. . . our concern here is to arrive at a concept of number
usable for the purposes of science; we should not,
therefore, be deterred by the fact that in the language of
everyday life number appears also in attributive
constructions. That can always be got round.
(Grundlagen)



Function and object in Frege

After discussing the historical introduction of derivatives:

Now at this point people had particular second-level
functions, but lacked the conception of what we have
called second-level functions. By forming that, we make
the next step forwards. One might think that this would
go on. But probably this last step is not so rich in
consequences as the earlier ones; for instead of
second-level functions one can deal, in further advances,
with first-level functions – as shall be shown elsewhere.
(Function and Concept)



Function and object in Frege

Other aspects of Frege’s development:

• There is only one basic type.

• There is no identity between elements of the higher types.

• His system does not include the axiom ∀x ϕ(x)→ ϕ(t) for
any x beyond type 1.

• For elements of type 1, he only uses it once!

The type of objects is then a lot like the universe of sets. Higher
type functions are only linguistic glue.



Function and object in Frege

Marco Panza writes:

. . . according to Frege, appealing to functions is
indispensable in order to fix the way his formal language
is to run, but functions are not as such actual
components of the language. More generally, functions
manifest themselves in our referring to objects—either
concrete or abstract—and making statements about
them, but they are not as such actual inhabitants of
some world of concreta and abstracta. Briefly: Frege’s
formal language, as well as ordinary one[s], display
functions, but there are no functions as such.



Analysis

Striking features:

1. functions (in the logical and linguistic sense) are not objects

2. functions (in mathematical usage) are objects, and
extensional.

Two possibilities:

1. Frege determined they should be separate on broad
metaphysical grounds, and then designed the logic accordingly.

2. Frege designed the logic, determined it worked out best with a
separation of individuals and functions, and read off the
metaphysics.

But this way of framing the issue misses the point.



Analysis

Better questions:

1. What considerations push Frege to maintain the sharp
distinction between function and object?

2. What considerations push Frege to identify mathematical
entities as objects?



Analysis

If “one man” could be understood similarly as “wise
man,” then one could think that “one” could also be
used as a predicate, so that as one says “Solon was
wise,” one could also say “Solon was one” or “Solon was
a one.” Although the last expression can occur, it is
nevertheless not understandable in itself alone. It can, for
example, mean “Solon was a wise man,” if “wise man”
can be supplied from the context. But alone is appears
that “one” could not be a predicate. This shows itself
even more clearly in the plural. Whereas one can
combine “Solon was wise” and “Thales was wise” into
“Solon and Thales were wise,” one cannot say that
“Solon and Thales were one.” From this the impossibility
is not understandable, if “one” in the same as “wise”
were as much a property of Solon as it is also of Thales.
(Grundlagen, §29)



Analysis

. . . a number does not vary; for we have nothing of which
we could predicate the variation. A cube never turns into
a prime number; an irrational number never becomes
rational. (What is a Function, 1904)

In other connections, indeed, we say that an object
assumes a property, here the number must play both
parts; as an object it is called a variable or a variable
magnitude, and as a property it is called a value. That is
why people prefer the word ‘magnitude’ to the word
‘number’; they have to deceive themselves about the fact
that the variable magnitude and the value it is said to
assume are essentially the same thing, that in this case
we have not got an object assuming different properties
in succession, and that therefore there can be no question
of a variation. (ibid.)



Analysis

The endeavor to be brief has introduced many inexact
expressions into mathematical language, and these have
reacted by obscuring thought and producing faulty
definitions. Mathematics ought properly to be a model of
logical clarity. In actual fact there are perhaps no
scientific works where you will find more wrong
expressions, and consequently wrong thoughts, than in
mathematical ones. Logical correctness should never be
sacrificed to brevity of expression. It is therefore highly
important to devise a mathematical language that
combines the most rigorous accuracy with the greatest
possible brevity. To this end a symbolic language would
be best adapted, by means of which we could directly
express thoughts in written or printed symbols without
the intervention of spoken language. (ibid.)



Analysis

Why insist that (mathematical) functions are objects?

Consider the following statements:

• “there are two truth values”

• “there are two natural numbers strictly between 5 and 8”

• “there are two constant functions taking values among the
truth values”

• “there are two characters on (Z/4Z)∗”

• “there are two subsets of a singleton set.”

Compare to Dirichlet’s theorem:

• We want to sum over finite sets of numbers.

• We want to sum over finite sets of characters.



Analysis

In contemporary mathematics, we can speak of:

• the group of units modulo m

• the group of characters of a finite abelian group

• the group of automorphisms of another group

• homormorphisms between any two groups

It is important that all groups are on the same level!

Otherwise, we would have to speak of the type i + 1 group of
automorphisms of a type i group, and homomorphisms from a type
i group to a type j group.

This also speaks to treating functions extensionally: “there are
ϕ(m) characters on (Z/mZ)∗” would be false otherwise.



Analysis

In sum, Frege is concerned with:

• control: having clear, consistent rules of use

• efficacy: having feasible and efficient ways of carrying out the
mathematics

• meaning: having some sense of how basic terms are
interpreted

Two main goals:

1. We need a way of dealing with mathematical objects
uniformly, since mathematical constructions and operations
have to be applied to many sorts of objects, many of which
cannot be foreseen in advance.

2. We need a flexible but rigorous way of talking about
higher-type entities, like functions and predicates, without
falling into inconsistency.



Overview

An outline of this talk:

• The concept of function in the nineteenth century

• Dirichlet’s theorem on primes in an arithmetic progression

• Notable features of the modern understanding

• Frege on function and object

• An analysis of Frege’s motivations

• The evolution of proofs of Dirichlet’s theorem
• Dirichlet 1837
• Dedekind 1871
• Hadamard 1896
• de la Vallée-Poussin 1895–1897

• Analysis

• Conclusions



Dirichlet 1837

Dirichlet does not introduce a notation for characters; rather he
uses explicit expressions.

In the case where p is prime,

• Let c be a primitive element modulo p.

• For every n coprime to p, let γn be such that cγn ≡ n mod p.

• Characters χ correspond to p − 1st roots of unity ω, where
χ(cγn mod p) = ωn.

• Dirichlet writes ωγn where we would write χ(n).

Pick a generator Ω of the p − 1st roots of unity, {Ω0, . . . ,Ωp−2}.

Lm is the L-series corresponding to the root Ωm. Dirichlet sums
over m, rather than χ.



Dirichlet 1837
After demonstrating that the Euler product formula,∏ 1

1− ωγ 1
qs

=
∑

ωγ
1

ns
= L,

Dirichlet writes:

The equation just found represents p − 1 different
equations that result if we put for ω its p − 1 values. It is
known that these p − 1 different values can be written
using powers of the same Ω when it is chosen correctly,
to wit:

Ω0, Ω1, Ω2, ...,Ωp−2

According to this notation, we will write the different
values L of the series or product as:

L0, L1, L2, ..., Lp−2 ...

(Dirichlet 1837, 3)



Dirichlet 1837

In the case where the modulus k is not prime,

• Decompose (Z/kZ)∗ into a product of cycles.

• Choose generators for each cyclic group.

• A number n modulo k has indices αn, βn, γn, γ′n, . . .

• Each character corresponds to a choice of roots of unity,
θ, ϕ, ω, ω′, . . .

• Dirichlet writes θαϕβωγω′γ
′
. . . where we would write χ(n).

Notice that the dependence on n is left implicit.

Moreover, as before, if we choose appropriate primitive roots of
unity, each character is given by a list of indices a, b, c , c ′, . . ..

Thus Dirichlet writes La,b,c,c ′,... in “a comfortable way” where we
would write L(s, χ).



Dirichlet 1837

Summing over characters: Dirichlet writes

log L0 + Ω−γm log L1 + Ω−2γm log L2 + . . .+ Ω−(p−2)γm log Lp−2

where we would write
∑

χ χ(m) log L(s, χ).

For composite k , he writes∑
Θ−αma Φ−βmbΩ−γmcΩ−γm′c ′

. . . log La,b,c,c ′...

where the sum is over all combinations of a, b, c , c ′ . . ..



Dirichlet 1837

Dirichlet divides the L functions into three classes:

• the one in which all the roots are 1

• the ones in which all the roots are real (±1)

• those in which at least one of the roots is not real

This is an intensional characterization.

Summary:

• Dirichlet does not name or identify “characters.”

• The L functions depend on a sequence of natural numbers
(La,b,c,c ′... rather than L(s, χ))

• Instead of summing over L functions, he sums over these
sequences.

• The L functions are classified intensionally.



Dedekind 1871

Dedekind begins by sketching the proof, and introduces “a class of
infinite series of the form L =

∑
ψ(n). . . ” where ψ is a real or

complex function such that ψ(n)ψ(n′) = ψ(nn′) and ψ(1) 6= 0.

He shows that the Euler product formula holds for such series.

After the introduction, Dedekind focuses on the L series relevant
here, namely those for which

ψ(n) =
θανβωγω′γ

′
. . .

ns
.

In a footnote, he denoted the numerator of φ(n) by χ(n).



Dedekind 1871

We divide these series L into three classes:
In the first class there is only one series L1, namely the
one for which all the roots of unity θ, ν, ω, ω′,... have
the value 1.
In the second class we include all the remaining series L2

for which the roots of unity are real, and hence equal to
±1.
In the third class we include all remaining series L3, that
is, those for which even at least one of the roots of unity
is imaginary. The number of these series is even, since
they can be grouped in conjugate pairs-if one such series
L3 corresponds to the roots θ, ν, ω, ω′,..., then there is a
second series corresponding to the roots θ−1, ν−1, ω−1,
ω′−1,..., and these two systems of roots are not identical.

This division is still intensional.



Dedekind 1871

Recall Dirichlet’s notation La,b,c,c ′... for the L series.

Dedekind does not includes this information. Instead, he wrote L1,
L2, L3 for L-functions that fall under the first, second and third
categories respectively and wrote:

log L1 +
∑

log(L2) +
∑

log(L3L′3).

But when it comes to calculations, Dedekind construes the sums as
sums over the explicit data (systems of roots of unity) representing
them.



Dedekind 1871

Summary:

1. Dedekind’s outline abstracts and generalizes.

2. He attributed conditions and properties to the characters and
real or complex functions more generally.

3. He used functional notation (χ(n), φ(n)) to represent the
characters and functions involving the characters.

4. Dedekind’s notation for the L-functions included less data
concerning their construction.

5. Dedekind was willing to sum over classes of L-functions.

Yet:

1. His classification of the L-functions was intensional.

2. Although he wrote e.g.
∑
χ log L, the sum was not taken over

the characters, but, rather, over complex numbers used to
construct them.



Hadamard 1896

Citing Dirichlet, Hadamard introduced the characters as follows:

ψv (n) =

{
0 if n is not coprime to k

θαηβωγω
′γ

′
... if n is prime to k



Hadamard 1896

He then defined the L-series as

Lv (s) =
∞∑

n=1

ψv (n)

ns

He showed

∑
v

log Lv (s)

ψv (m)
= φ(k)(

∑ 1

qs
+

1

2

′∑ 1

q2s
+

1

3

′′∑ 1

q3s
+ ...)

log
∏
v

Lv (s) = φ(k)(
∑ 1

qs
+

1

2

′∑ 1

q2s
+

1

3

′′∑ 1

q3s
+ ...)

Compare the first to∑
χ

χ(m) log L(s, χ) = φ(k)
∑

p≡m(mod q)

1

qs
+ O(1).



Hadamard 1896

Still classified L series intensionally:

1. Class 1: Consists of only one series, L1, which corresponds to
when θ = η = ω = ω

′
= 1

2. Class 2: Consists of those series such that θ, η, etc are all
equal to +1 or −1, excluding L1

3. Class 3: Consists of those series where at least one of the
numbers are imaginary.



Hadamard 1896

Summary:

1. Hadamard introduced the characters as functions ψν(n).

2. The L-series Lν is parameterized by ν

3. He sums over characters by summing over ν (a natural
number).

4. Gave an intensional classification of the L-series.



de la Vallée Poussin 1895–1897

de la Vallée Poussin defined the characters

χ(n) = ων1
1 ω

ν2
2 . . .

and indexed them, χ1, χ2, . . .

The characters (mod M) enjoy the following five
properties:

1. For two numbers n and n′ prime to M, one has

χ(n)χ(n′) = χ(nn′);

2. If n ≡ n′ (modM) one has the relation

χ(n) = χ(n′).



de la Vallée Poussin 1895–1897

3. The sum
∑′ extending over all the numbers prime

to and less than M, one has, in the case of the
principal character,

′∑
n

χ0 = φ(M)

and for any other character,

′∑
n

χ(n) = 0



de la Vallée Poussin 1895–1897

4. The sum S extending over the totality of characters,
one has, for any number n prime to M,

Sχχ(n) = 0,

except if n ≡ 1 (mod M), in which case

Sχχ(n) = φ(m)

5. If M and M ′ are two numbers prime to each other
and prime to n, one has

χ(n,mod MM ′) = χ(n,mod M)χ(n,mod M ′)

(de la Vallée Poussin 1897; footnote omitted)



de la Vallée Poussin 1895–1897

de la Vallée Poussin still characterized the classes of L series
intensionally, though in the simpler case where the modulus is
prime also gives the extensional characterization.

In 1897 he denoted the L-functions by Z (s, χ).

Later in the same work he used more general series:

φ(M) lim
s=1

(s−1)
∑
q

[k(cq)+k(c−1
q )]

lq1

qs
1

= − lim(s−1)Sχ
L′(s, k , χ)

L(s, k , χ)



de la Vallée Poussin 1895–1897

Summary:

1. de la Vallée Poussin used functional notation χ(n) for
characters.

2. He determined general properties that the characters satisfy.

3. He used a particular notation, Sχ to signify summation over
characters.

4. His also gave an extensional classification of the characters.

5. He used the notation Z (s, χ).

6. Moreover, he took summations over characters when they
occurred in the argument position.



de la Vallée Poussin 1895–1897

And yet, at times, he seems strikingly old fashioned.

After deriving a key identity involving the series L(s, χ), he writes

. . . and this equation (E ) represents, in reality, ϕ(M)
distinct equations, obtained by exchanging the different
characters among them.



Analysis

Changes:

• Characters are named, occur in expressions, and as arguments
to other functions.

• Their properties are abstracted, characterized.

• One sums over characters rather than representing data.

• One begins to make distinctions based on values rather than
representations.

Effects:

• Expressions become simpler.

• Proofs become more modular.

• One needs to keep track of less information at any point in
the proof.

• It becomes easy to generalize (e.g. to arbitrary group
characters).



Conclusions

We argued that “doing metaphysics” should amount to weighing
benefits and concerns.

We have seen some benefits of the modern understanding of
characters.

Concerns:

• Loss of concrete, computational meaning.

• Neglect of additional, potentially useful information.

• The language has to be adapted to support the abstractions,
for example, to allow summation of characters.



Conclusions

We saw similar concerns in Frege:

• Want to carry out mathematical constructions and operations
uniformly.

• Traditional methods have to be extended (carefully) to
support this.

“Metaphysics” involves balancing

• consistency, coherence, control, appropriateness, applicability,
preservation of meaning, with

• efficiency, ease of use, generalizability, uniformity,
convenience, cognitive reach.



Conclusions

We haven’t provided a simple answer to the questions “do
characters exist?” and “what properties do they have?”.

But we have explored some of the advantages and disadvantages
of the modern understanding.

This, we hope, sheds some light on modern mathematics and its
objects.



Conclusions

The origins of set theory are often located in Cantor’s work on the
infinite.

We have located additional motivations in algebra.

Algebraic / axiomatic methods:

• Reduce detail manifested in particular expressions and
calculations.

• Support modularity, thereby simplifying the “proof context.”

• Support generalization and reuse.



Conclusions

Reaping all the benefits requires a language and framework that
allows one to:

• “see” algebraic structure in sets of numbers, functions,
equivalence classes, transformations, . . . ;

• construct increasingly elaborate instances of such structures;

• treat these structures uniformly;

• do all this in a clear, coherent, consistent way.

This is (in large part) what set theory was designed to do.

In sum, Mic (echoing Ernst Mach) is right: mathematics is all
about introducing ideal objects to support economy of thought and
expression.


