Two traditions

Weak theories of nonstandard arithmetic and analysis

Jeremy Avigad Department of Philosophy Carnegie Mellon University avigad@cmu.edu http://andrew.cmu.edu/~avigad

Contents

1. Background

2. Weak theories of nonstandard arithmetic

- 3. A forcing interpretation
- 4. Formalizing real analysis

Developing mathematics in weak theories:

- In the tradition of Weyl, Hilbert, Bernays, Kreisel, Feferman, Takeuti, Friedman, Simpson, ...
- Recent interest in conservative extensions of primitive recursive arithmetic, elementary arithmetic, feasible arithmetic
- Goals:
 - Minimizing ontological commitments
 - Understanding mathematics in concrete computational terms

Nonstandard analysis:

- Semantic approach (Robinson): reason about saturated models
- Syntactic approach (Kreisel, Nelson): reason axiomatically
- Obtain enriched universes for doing mathematics

A mixed marriage

Why combine the two traditions?

Weak theories of nonstandard arithmetic and analysis may provide a natural setting for:

- Developing real analysis (Chauqui, Suppes, Sommer)
 - studying complexity issues (à la Ko, Ferreira)
 - extracting numeric bounds (à la Kohlenbach)
- Formalizing combinatorial arguments (like those of Ajtai, Wilkie, Woods)
- Formalizing Nelson's *Radically elementary probability* theory

Weak theories of arithmetic

The set of primitive recursive functions is the smallest set of functions from \mathbb{N} to \mathbb{N} (of various arities)

- containing 0, S(x) = x + 1, $p_i^n(x_1, ..., x_n) = x_i$
- closed under composition
- closed under primitive recursion:

 $f(0, \vec{z}) = g(\vec{z}), \quad f(x+1, \vec{z}) = h(f(x, \vec{z}), x, \vec{z})$

Primitive recursive arithmetic is an axiomatic theory, with

- defining equations for the primitive recursive functions
- quantifier-free induction

PRA can be presented either as a first-order theory or as a quantifier-free calculus.

Similarly, ERA axiomatizes the elementary functions, and PV axiomatizes the polynomial time computable functions.

A nonstandard version

Add to the language of PRA:

- a predicate, st(x) ("x is standard")
- $\bullet\,$ a constant, ω

Let NPRA consist of PRA plus the following axioms:

- $\neg st(\omega)$
- $st(x) \land y < x \rightarrow st(y)$
- $st(x_1) \land \ldots \land st(x_k) \to st(f(x_1, \ldots, x_k))$, for each function symbol f
- \forall -transfer without parameters: $\forall^{st} \vec{x} \ \psi(\vec{x}) \rightarrow \forall \vec{x} \ \psi(\vec{x})$, for ψ quantifier-free with the free variables shown.

A short model-theoretic argument shows the following:

Theorem 1 Suppose NPRA proves $\forall^{st}x \exists y \varphi(x,y)$, with φ quantifier-free in the language of PRA. Then PRA proves $\forall x \exists y \varphi(x,y)$.

In particular, the conclusion holds if *NPRA* proves either $\forall x \exists y \varphi(x, y) \text{ or } \forall^{st} x \exists^{st} y \varphi(x, y).$

Higher type versions

The *finite types* are defined as follows:

- N is a finite type
- If σ and τ are finite types, so are $\sigma \times \tau$ and $\sigma \to \tau$

The *primitive recursive* functionals of finite type allow:

- λ abstraction, and application
- Restricted higher-type primitive recursion:

 $F(0, \vec{z}) = G(\vec{z}), \quad F(n+1, \vec{z}) = H(F(n), n, \vec{z})$

where $F(n, \vec{z})$ has type N.

The theory PRA^{ω} axiomatizes these functionals, and is a conservative extension of PRA.

Define $NPRA^{\omega}$ in analogy to NPRA.

Theorem 2 Suppose NPRA^{ω} proves $\forall^{st}x \exists y \varphi(x, y)$, for φ a quantifier-free formula in the language of PRA^{ω}. Then PRA^{ω} proves $\forall x \exists y \varphi(x, y)$.

The forcing interpretation

A direct interpretation

Why go beyond the model theoretic proof?

- obtain an explicit translation
- obtain bounds on lengths of proofs, additional information

Ideas:

- Use a forcing relation to describe nonstandard extension.
- Add a "generic" nonstandard element, $\omega.$
- Work internally, in the language of PRA^{ω} .
- If $NPRA^{\omega}$ proves φ , PRA^{ω} proves " φ is forced."

Names:

- Replace the constant ω by a variable.
- Replace each variable x_i by a term $\tilde{x}_i(\omega)$.
- Replace terms $t[\omega, x_1, \dots, x_k]$ by $t[\omega, \tilde{x}_1(\omega), \dots, \tilde{x}_k(\omega)]$. (Call this \hat{t} .)

Conditions: A condition is a 3-ary relation $p(u, v, \omega)$. Intuitively, this represents the assertion $\forall^{st}u \ \forall v \ p(u, v, \omega)$, or the set

 $\{\forall v \ p(0, v, \omega), \forall v \ p(1, v, \omega), \forall v \ p(2, v, \omega), \ldots\}$

A condition p is stronger than q, written $p \leq q$, if $\forall u, v, \omega \ (p(u, v, \omega) \rightarrow q(u, v, \omega)).$

The atomic case: Say $p \Vdash t_1 = t_2$ if and only if

 $\exists z \; \forall \omega \; (\forall u < z \; \forall v \; p(u, v, \omega) \to \widehat{t}_1 = \widehat{t}_2)$

In other words, $p \Vdash t_1 = t_2$ if and only if $t_1 = t_2$ follows from a finite subset of the set above.

The forcing interpretation (continued)

The full forcing relation is defined inductively, as follows:

$$\begin{aligned} 1. \ p \Vdash \bot &\equiv \exists z \ \forall \omega \ \neg \forall u < z \ \forall v \ p(u, v, \omega). \\ 2. \ p \Vdash t_1 = t_2 \equiv \exists z \ \forall \omega \ (\forall u < z \ \forall v \ p(u, v, \omega) \to \hat{t}_1 = \hat{t}_2). \\ 3. \ p \Vdash t_1 < t_2 \equiv \exists z \ \forall \omega \ (\forall u < z \ \forall v \ p(u, v, \omega) \to \hat{t}_1 < \hat{t}_2). \\ 4. \ p \Vdash st(t) \equiv \exists z \ \forall \omega \ (\forall u < z \ \forall v \ p(u, v, \omega) \to \hat{t} < z). \\ 5. \ p \Vdash \varphi \to \psi \equiv \forall q \ \preceq p \ (q \Vdash \varphi \to q \Vdash \psi). \\ 6. \ p \Vdash \varphi \land \psi \equiv (p \Vdash \varphi) \land (p \Vdash \psi). \\ 7. \ p \Vdash \forall x \ \varphi \equiv \forall \tilde{x} \ (p \Vdash \varphi) \end{aligned}$$

Define $\neg \varphi, \varphi \lor \psi, \exists x \varphi$ from these connectives in the usual way.

Theorem 3 If $NPRA^{\omega}$ proves φ , PRA^{ω} proves $\forall^{st}u \ (\omega > u) \Vdash \varphi$.

The conservation theorem follows from this.

Interlude

Remember the table of contents:

- 1. Background
- 2. Weak theories of nonstandard arithmetic
- 3. A forcing interpretation
- 4. Formalizing real analysis

Developing real analysis

Definitions in $NPRA^{\omega}$:

- \mathbb{N}^* : the nonstandard natural numbers (type N)
- \mathbb{N} : the standard numbers (i.e. satisfying $st(x^{\mathbb{N}})$)
- \mathbb{Z}^*, \mathbb{Z} : the nonstandard / standard integers
- \mathbb{Q}^*, \mathbb{Q} : the nonstandard / standard rationals
- $q \in \mathbb{Q}^*$ is bounded if $\lceil q \rceil$ is standard
- q is *infinitesimal* if it is zero or 1/q is unbounded
- $q \sim r$ if q r is infinitesimal
- $x \in \mathbb{R}$ means that $x \in \mathbb{Q}^*$ and x is bounded
- $x =_{\mathbb{R}} y$ means $x \sim y$

In other words, we are taking \mathbb{R} to be $(\mathbb{Q}^*)^{bdd} / \sim$, and dispensing with \mathbb{R}^* entirely.

The advantage: reals are type 0 objects.

A function $f : \mathbb{R} \to \mathbb{R}$ is a function $\mathbb{Q}^* \to \mathbb{Q}^*$ satisfying

$$\forall r \in \mathbb{R} \ (f(r) \in \mathbb{R}) \land \forall r, s \in \mathbb{R} \ (r =_{\mathbb{R}} s \to f(r) =_{\mathbb{R}} f(s)).$$

A surprise

Theorem 4 (NERA^{ω}) Every function $f : \mathbb{R} \to \mathbb{R}$ is continuous.

What is going on? Variables range over *internal* functions.

The function $f \in \mathbb{Q}^* \to \mathbb{Q}^*$ defined by

$$f(x) = \begin{cases} 0 & \text{if } x \leq_{\mathbb{Q}^*} 0 \\ 1 & \text{otherwise,} \end{cases}$$

is not a function from \mathbb{R} to \mathbb{R} : for example, $1/\omega =_{\mathbb{R}} 0$ but $f(1/\omega) \neq_{\mathbb{R}} f(0)$.

On the other hand, the function $g \in \mathbb{Q}^* \to \mathbb{Q}^*$ defined by

$$g(x) = \begin{cases} 0 & \text{if } x \leq_{\mathbb{R}} 0 \\ 1 & \text{otherwise} \end{cases}$$

is not represented by a term of $N\!ERA^{\omega},$ since $x\leq_{\mathbb{R}} 0$ is external.

The intermediate value theorem

Theorem 5 Suppose $f \in [0,1] \to \mathbb{R}$, f(0) = -1, and f(1) = 1. Then there is an $x \in [0,1]$ such that f(x) = 0.

Proof. Considering f as a function on \mathbb{Q}^* , let

 $j = \max\{i < \omega \mid f(i/\omega) <_{\mathbb{Q}^*} 0\}$

and let $x = j/\omega$. Since $j/\omega \sim (j+1)/\omega$, we have

$$f((j+1)/\omega) =_{\mathbb{R}} f(j/\omega) \leq_{\mathbb{R}} 0 \leq_{\mathbb{R}} f((j+1)/\omega)$$

and so $f(x) =_{\mathbb{R}} 0$.

The extreme value theorem

Theorem 6 If $f \in [0, 1] \rightarrow \mathbb{R}$, then f attains a maximum value.

Proof. Again considering f as a function on \mathbb{Q}^* , let

$$y = \max_{0 \le i \le \omega} f(i/\omega),$$

let $x = j/\omega$ satisfy $f(x) =_{\mathbb{Q}^*} y$. That y is a maximum is guaranteed by the fact that for any $x' \in [0, 1]$, there is an i such that $x' \sim i/\omega$.

Notes

References:

- 1. Jeremy Avigad, "Weak theories of nonstandard arithmetic and analysis," to appear in Stephen Simpson, ed., *Reverse Mathematics 2001*.
- 2. Jeremy Avigad and Jeffrey Helzner, "Transfer principles in intuitionistic nonstandard arithmetic," to appear in the Archive for Mathematical Logic.

Notes:

- 1. One can also study intuitionistic theories.
- 2. In the case of NPRA, we can allow Σ_1 standard induction.
- 3. Using nonstandard numbers, one can interpret weak König's lemma.
- 4. We can show that many of the results are optimal.

Questions

- 1. Can some of the results be strengthened?
- 2. Can these methods be used to to extract bounds from proofs in analysis?
- 3. What does it take to formalize nonstandard arguments in combinatorics and proof complexity?
- 4. What does it take to formalize measure-theoretic probability (following Nelson)?
- 5. Can one develop a nonstandard feasible analysis?