
Computability in ergodic theory

Jeremy Avigad

Department of Philosophy and Department of Mathematical Sciences
Carnegie Mellon University

(joint work with Philipp Gerhardy, Ksenija Simic, and Henry Towsner)

November, 2007



Ergodic theory

A discrete dynamical system consists of a structure, X , and an map T
from X to X :

• Think of the underlying set of X as the set of states of a system.
• If x is a state, T x gives the state after one unit of time.

In ergodic theory, X is assumed to be a finite measure space
(X,B, µ):

• B is a σ -algebra (the “measurable subsets”).
• µ is a σ -additive measure, with µ(X) = 1.

T is assumed to be a measure preserving transformation,
i.e. µ(T −1 A) = µ(A) for every A ∈ B.



Ergodic theory

Call (X,B, µ, T ) a measure preserving system.

• These can model physical systems (e.g. Hamilton’s equations
preserve Lebesgue measure).

• They can model probabilistic processes.
• They have applications to number theory and combinatorics.



The metamathematics of ergodic theory

Ergodic theory emerged from seventeenth century dynamics and
nineteenth century statistical mechanics.

Since Poincaré, the emphasis has been on characterizing structural
properties of dynamical systems, especially with respect to long term
behavior (stability, recurrence).

Today, the field uses structural, infinitary, and nonconstructive
methods that are characteristic of modern mathematics.

These are often at odds with computational concerns.



The metamathematics of ergodic theory

Central questions:

• To what extent can the methods and objects of ergodic theory be
given a direct computational interpretation?

• How can we locate the “constructive content” of the
nonconstructive methods?

I’ll start with an overview of some results:
• the von Neumann and Birkhoff ergodic theorems
• negative results
• positive results

Then, as time allows, I’ll present some of the details.



The ergodic theorems

Consider the orbit x, T x, T 2x, . . ., and let f : X → R be some
measurement. Consider the averages

1
n
( f (x)+ f (T x)+ . . .+ f (T n−1x)).

For each n ≥ 1, define An f to be the function 1
n

∑
i<n f ◦ T i .

Theorem (Birkhoff). For every f in L1(X ), (An f ) converges
pointwise almost everywhere, and in the L1 norm.

A space is ergodic if for every A, T −1(A) = A implies µ(A) = 0 or
µ(A) = 1.

If X is ergodic, then (An f ) converges to the constant function∫
f dµ.



The ergodic theorems

Recall that L2(X ) is the Hilbert space of square-integrable functions
on X modulo a.e. equivalence, with inner product

( f, g) =

∫
f g dµ

Theorem (von Neumann). For every f in L2(X ), (An f ) converges
in the L2 norm.

A measure-preserving transformation T gives rise to an isometry T̂
on L2(X ),

T̂ f = f ◦ T .

Riesz showed that the von Neumann ergodic theorem holds, more
generally, for any nonexpansive operator T̂ on a Hilbert space
(i.e. satisfying ‖T̂ f ‖ ≤ ‖ f ‖ for every f in H.)



Bounding the rate of convergence

Can we compute a bound on the rate of convergence of (An f ) from
the inital data (T and f )?

In other words: can we compute a function r : Q → N such that for
every rational ε > 0,

‖Am f − Ar(ε) f ‖ < ε

whenever m ≥ r(ε)?

Krengel (et al.): convergence can be arbitrarily slow.

But computability is a different question.

Note that the question depends on suitable notions of computability in
analysis (I’ll come back to this).



Observations

If (an)n∈N is a sequence of reals that decreases to 0, no matter how
slowly, one can compute a bound on the rate of convergence from
(an).

But there are bounded, computable, decreasing sequences (bn) of
rationals that do not have a computable limit.

There are also computable sequences (cn) of rationals that converge to
0, with no computable bound on the rate of convergence.

Conclusion: at issue is not the rate of convergence, but its
predictability.



A negative result

Theorem (A-S). There are a computable measure-preserving
transformation of [0, 1] under Lebesgue measure and a computable
characteristic function f = χA, such that if f ∗

= limn An f , then
‖ f ∗

‖2 is not a computable real number.

In particular, f ∗ is not a computable element of L2(X ), and there is
no computable bound on the rate of convergence of (An f ) in either
the L2 or L1 norm.



A positive result

Theorem (A-G-T). Let T̂ be a nonexpansive operator on a separable
Hilbert space and let f be an element of that space. Let
f ∗

= limn An f . Then f ∗, and a bound on the rate of convergence of
(An f ) in the Hilbert space norm, can be computed from f , T̂ , and
‖ f ∗

‖.

In particular, if T̂ arises from an ergodic transformation T , then f ∗ is
computable from T and f .



A constructive mean ergodic theorem

When there is no computable bound on the rate of convergence, is
there anything more we can say?

The assertion that the sequence (An f ) converges can be represented
as follows:

∀ε > 0 ∃n ∀m ≥ n (‖Am f − An f ‖ < ε).

This is classically equivalent to the assertion that for any function K ,

∀ε > 0 ∃n ∀m ∈ [n, K (n)] (‖Am f − An f ‖ < ε).



A constructive mean ergodic theorem

Theorem (A-G-T). Let T̂ be any nonexpansive operator on a Hilbert
space, let f be any element of that space, and let ε > 0, and let K be
any function. Then there is an n ≥ 1 such that for every m in
[n, K (n)], ‖Am f − An f ‖ < ε.

In fact, we provide a bound on n expressed solely in terms of K and
ρ = ‖ f ‖/ε (and independent of T̂ ).

As special cases, we have the following:

• If K = nO(1), then n( f, ε) = 22O(ρ2 log log ρ)
.

• If K = 2O(n), then n( f, ε) = 21
O(ρ2)

.

• If K = O(n) and T̂ is an isometry, then n( f, ε) = 2O(ρ2 log ρ).



A constructive pointwise ergodic theorem

The following is classically equivalent to the pointwise ergodic
theorem:

Theorem (A-G-T). For every f in L2(X ), λ1 > 0, λ2 > 0, and K
there is an n ≥ 1 satisfying

µ({x | max
n≤m≤K (n)

|An f (x)− Am f (x)| > λ1}) ≤ λ2.

We provide explicit bounds on n in terms of f , λ1, λ2, and K .



Hard and soft analysis

On his blog, Terence Tao recently emphasized the distinction between
“hard” and “soft” analysis.

“Hard” (or “quantitative,” or “finitary”) analysis deals with the
cardinality of finite sets, the measure of bounded sets, the value of
convergent integrals, the norm of finite-dimensional vectors, etc.

“Soft” analysis deals with infinitary objects, like sequences,
measurable sets and functions, σ -algebras, Banach spaces, etc.

“To put it more symbolically, hard analysis is the mathematics of ε,
N , O(), and ≤; soft analysis is the mathematics of 0, ∞, ∈, and →.”

Tao independently observed that the methods described here provide
“hard” analogues of “soft” results.



Hard and soft analysis

Theorem (Tao). Let T1, . . . , Tl be commuting measure preserving
transformations of X , and f1, . . . , fl ∈ L∞(X ). Then the sequence of
“diagonal averages”

1
N

N−1∑
n=0

f1(T n
1 x) · · · fl(T n

l x)

converges in the L2 norm.

When l = 1, this is essentially the mean ergodic theorem.

Tao’s method: run the “Furstenberg correspondence” in reverse, and
prove a finitary combinatorial statement by induction.

When l = 1, this statement is an instance of our constructive MET.



Details

Thus ends the overview. Now for some of the details:

• Notions of computability in analysis.
• A proof of the mean ergodic theorem.
• Noncomputability of the rate of convergence.
• Computability of the rate of convergence from ‖ f ∗

‖.
• Our constructive mean ergodic theorem.



Computability and analysis

Definition. A real number r ∈ R is computable if there is a
computable function α : N → Q such that limn→∞ α(n) = r and

∀n ∀m ≥ n (|α(m)− α(n)| < 1/2n).

In other words, α is a computable Cauchy sequence, with an explicit
rate of convergence, representing r .

Definition. A function f : R → R is computable if there is a
computable function F(α, n), such that whenever α represents a real
number x , λn.F(α, n) represents the real number f (x).

Fact. With the obvious extension to binary functions, addition and
multiplication are computable.

Note: computable implies continuous.



Computability in analysis

What is special about R?
• There is a countable dense subset, Q.
• One can construct R as the Cauchy completion of Q.
• With a natural encoding of Q, operations we care about are

computable.

The idea generalizes to separable metric spaces, and structures built
on these.

For example: a computable Hilbert space is given by a countable set
S, operations + and x 7→ q · x for q ∈ Q, and an inner product (x, y),
such that S is an inner product space in the usual sense; the
corresponding Hilbert space is the Cauchy completion.

Fact. A bounded linear operator T can be defined, equivalently, by its
operation on S.



Computability in analysis

How to handle measure spaces? Think of [0, 1] under Lebesgue
measure, or {0, 1}

ω under coin-flipping measure.

Define a countable algebra of “simple” sets C, and a σ -additive
measure µ on those.

Then define the σ -algebra of measurable functions to be the
completion of C under the metric d(A, B) = µ(A 4 B), modulo the
relation C ≈ D given by µ(C 4 D) = 0.

Alternative approach: define a countable set C of simple functions,
with an “integration” operation f . Define the L1 space as a
completion.

In the usual cases, these turn out to be equivalent. Note that a
measurable set of function is only defined up to points of measure 0.



Recap

Let (X,B, µ, T ) be a measure preserving system, and let f : X → R
be a measurable function. For every n ≥ 1, let

(An f )(x) =
1
n

∑
i<n

f (T i x).

The pointwise ergodic theorem says that for f in L1, (An f )
converges pointwise a.e.

The mean ergodic theorem says that for f in L2, (An f ) converges in
the L2 norm.

In general, the rate of convergence cannot be computed from T and
f . But it can be computed from T , f , and ‖ f ∗

‖.



Recap

Of course, in particular cases, one can compute rates of convergence.

For example, the law of large numbers is a special case of the ergodic
theorem, and there one has explicit bounds.

General computability results are only useful in fixing the outer limits
of what can be done.

On the other hand, our constructive ergodic theorems give explicit
bounds on how far one has to look to find pockets of “local” stability.



The mean ergodic theorem

Theorem. If T is any nonexpansive linear operator on a Hilbert space
and f is any element, then the sequence (An f ) converges.

Proof. Let M = {h | T h = h} be the subspace consisting of
fixed-points of T . Clearly Anh = h for every h ∈ M .

Let N be subspace generated by vectors of the form u − T u.

For any g of the form u − T u we have
‖Ang‖ =

1
n ‖u − T nu‖ ≤ 2‖u‖/n, which converges to 0.

Passing to limits (using the fact that An satisfies ‖Anv‖ ≤ ‖v‖ for any
v), we have that Ang converges to 0 for every g ∈ N .



The mean ergodic theorem

For arbitrary f , write f = g + h, where g is the projection of f on
N , and h = f − g. It suffices to show that h is in M .

We have

‖T h − h‖
2

= ‖T h‖
2
− 2〈T h, h〉 + ‖h‖

2

≤ ‖h‖
2
− 2〈T h, h〉 + ‖h‖

2

= 2〈h, h〉 − 2〈T h, h〉

= 2〈h − T h, h〉,

and the right-hand side is equal to 0, since h is orthogonal to N . So
T h = h.



What can go wrong

What is so nonconstructive about that?

Answer: assuming the existence of the projection of f on N .

One can show (constructively) that if the projection exists, it is equal
to f − limn→∞ An f = limn→∞(yn − T yn), where

yn =
n − 1

n
f +

n − 2
n

T f + · · · +
1
n

T n−1 f.

(Simic and I learned this from Bas Spitters.) But, in general,
(yn − T yn) will not have a computable rate of convergence.

Theorem (A-S). There are a computable measure-preserving
transformation of [0, 1] under Lebesgue measure and a computable
characteristic function f = χA, such that if f ∗

= limn An f , then
‖ f ∗

‖2 is not a computable real number.



What can go wrong

Example (Bishop): imagine a vat of clear liquid partitioned into two
parts.

Question: how can you determine whether there is a leak?

Answer: Put red dye on one side. If there is a leak then, “in the limit,”
all the liquid will turn pink.

Formally: given a Turing machine, M , define a computable real
number rM such that rM 6= 0 if and only if M halts on input 0.

Then design a transformation of [0, 1] that is either the identity or a
rotation by rM . Apply it to χ[0,1/2].

Dividing [0, 1] into countably many pieces and doing this for each
Turing machine yields a solution to the halting problem from ‖ f ∗

‖.



What can go wrong

The system in the example just described is not ergodic, and the limit
of (An f ) has a noncomputable norm.

Can one find an example where the system is ergodic, (An f )
converges to 0, but at a noncomputable rate?

Recall that there are bounded, computable, decreasing sequences (bn)

of rationals that do not have a computable limit.

There are also computable sequences (cn) of rationals that converge to
0, with no computable bound on the rate of convergence.

But if (an) is monotone and has a computable limit, then it has a
computable bound on the rate of convergence.



A positive result

Theorem (A-G-T). Let T̂ be a nonexpansive operator on a separable
Hilbert space and let f be an element of that space. Let
f ∗

= limn An f . Then f ∗, and a bound on the rate of convergence of
(An f ) in the Hilbert space norm, can be computed from f , T̂ , and
‖ f ∗

‖.

In particular, if T̂ arises from an ergodic transformation T , then f ∗ is
computable from T and f .

The idea: because the mean ergodic theorem is proved by taking a
projection, it is similar to the first example on the previous slide.



Formal axiomatic frameworks for analysis

The finite types are defined as follows:
• N is a finite type
• If σ and τ are finite types, so are σ × τ and σ → τ

For example, the reals can be represented as type N → N functionals.
Functions from R to R can be represented by type
(N → N ) → (N → N ).

The primitive recursive functionals of finite type allow:
• λ abstraction, application, pairing, projection
• Higher-type primitive recursion:

F(0) = G, F(n + 1) = H(F(n), n)

The theory PRAω (i.e. Gödel’s theory T ) axiomatizes these.



Formal axiomatic frameworks for analysis

Adding induction on the natural numbers provide higher-order
variants of classical (Peano) and constructive (Heyting) first-order
arithmetic.

• PAω = PRAω + induction
• HAω = PRAωi + induction

These are conservative extensions of PA and HA respectively.

In fact, one can add quantifier-free choice axioms (QF-AC) to PAω,
and full choice (AC) to HAω. One can also add Markov’s principle
(MP) and and an “independence of premise” principle (IP∀) to HAω.

With appropriate coding, the language of PAω provides natural means
of representing common structures in analysis, like complete
separable metric spaces, Hilbert spaces, Banach spaces, and so on.



Formal axiomatic frameworks for analysis

The Gödel-Gentzen double-negation translation interprets classical
logic in intuitionistic logic:

• AN
≡ ¬¬A for atomic A

• (ϕ ∨ ψ)N
≡ ¬(¬ϕN

∧ ¬ψN )

• (∃x ϕ)N
≡ ¬∀x ¬ϕN .

The translation commutes with ∀, ∧, →.

Theorem. If 0 ` ϕ classically, 0N
` ϕN in intuitionistic logic.

Corollary. If PAω + (QF-AC) ` ϕ, then
HAω + (MP)+ (IP∀)+ (AC) ` ϕN

Corollary. If PAω + (QF-AC) ` ∀x ∃y R(x, y) for a primitive
recursive R, then HAω + (MP)+ (IP∀)+ (AC) ` ∀x ∃y R(x, y).



The Dialectica interpretation

Assigns to every formula ϕ in the language of PRAω a formula

ϕD
≡ ∃x ∀y ϕD(x, y)

where x and y are sequences of variables and ϕD is quantifier-free.

Idea: ∀y ϕD(x, y) asserts that x is an explicit witness to the truth of ϕ,
carrying extra information.

Inductively one shows:

Theorem (Gödel). If HAω + (MP)+ (IP∀)+ (AC) proves ϕ, there is
a sequence of terms t such that quantifier-free PRAω proves ϕD(t, y).



The Dialectica interpretation

Define the translation inductively, assuming

ϕD
= ∃x ∀y ϕD and ψD

= ∃u ∀v ψD.

1. For θ an atomic formula, θ D
= θD = θ .

2. (ϕ ∧ ψ)D
= ∃x, u ∀y, v (ϕD ∧ ψD).

3. (ϕ ∨ ψ)D
= ∃z, x, u ∀y, v ((z = 0 ∧ ϕD) ∨ (z = 1 ∧ ψD)).

4. (∀z ϕ(z))D
= ∃X ∀z, y ϕD(X (z), y, z).

5. (∃z ϕ(z))D
= ∃z, x ∀y ϕD(x, y, z).

6. (ϕ → ψ)D
= ∃U, Y ∀x, v (ϕD(x, Y (x, v)) → ψD(U (x), v)).

The last clause is a Skolemization of the formula

∀x ∃u ∀v ∃y (ϕD(x, y) → ψD(u, v)).



Applying the Dialectica interpretation

Recipe:
• Start with a nonconstructive proof.
• Formalize it in PAω + (QF-AC).
• Apply a double-negation translation.
• Get a proof in HAω + (MP)+ (IP∀)+ (AC).
• Apply the Dialectica interpretation

There are ways of handling certain nonconstructive set existence
principles, like weak König’s lemma and arithmetic comprehension.

There is also a modification of the D-interpretation, due to
Kohlenbach, that makes it easier to extract bounds instead of
witnesses.



The no-counterexample interpretation

Consider a sentence of the following form:

∀x ∃y ∀z A(x, y, z)

where A is quantifier-free. The ND-interpretation yields:

∀x, Z ∃y A(x, y, Z(y))

If the first statement is true, one can compute a y from x and Z in the
second statement. Such a y foils the putative counterexample
function, Z .

The Skolemization of this formula is Kreisel’s no-counterexample
interpretation:

∃Y ∀x, Z A(x, Y (x, Z), z(Y (x, Z))),

This works for any number of quantifiers.



The no-counterexample interpretation

Recall our constructive version of the mean ergodic theorem:

Theorem (A-G-T). Let T̂ be any nonexpansive operator on a Hilbert
space, let f be any element of that space, and let ε > 0, and let K be
any function. Then there is an n ≥ 1 such that for every m in
[n, K (n)], ‖Am f − An f ‖ < ε.

This is just a nicer formulation of the no-counterexample
interpretation of the MET.



Analyzing the proof of the mean ergodic theorem

The bad news: the proof of the MET cannot be carried out in PAω. It
uses a nonconstructive set existence principle (“arithmetic
comprehension”).

Specifically: recall the subspace N generated by vectors of the form
u − T u. In fact, it suffices to consider u of the form T i f . We need the
projection of f onto this space.

For each n, let gn be the projection of f onto the space spanned by
{ f − T f, T f − T 2 f, . . . , T n−1 f − T n f }. Then g = limn gn is the
projection we want.

For each n, let an = ‖gn‖. Then the sequence (an) is increasing, and
bounded by ‖ f ‖.

The projection on N can be computed from a rate of convergence for
the sequence (an). But this is not always computable.



Analyzing the proof of the mean ergodic theorem

The fact that every bounded increasing sequence of real numbers
converges can be expressed as follows:

∀a : N → R, c ∈ R(∀i (ai ≤ ai+1 ≤ c) →

∀ε > 0 ∃n ∀m ≥ n (|am − an| ≤ ε)).

“Arithmetic comprehension” implies that there is a function, r ,
bounding the rate of convergence:

∀a : N → R, c ∈ R (∀i (ai ≤ ai+1 ≤ c) →

∃r ∀ε > 0 ∀m ≥ r(ε) (|am − ar(ε)| ≤ ε)).

In general, r cannot be computed from the sequence (ai ).

The good news: a trick due to Kohlenbach can be applied here.



Analyzing the proof of the mean ergodic theorem

Note that we can prove

(an) converges with rate r → (An f ) converges

constructively.

The ND-interpretation gives us explicit witnesses to the translation of
the conclusion from a weakening of the hypothesis:

∀a : N → R, c ∈ R (∀i (ai ≤ ai+1 ≤ c) →

∀ε > 0,M∃n (M(n) ≥ n → (|aM(n) − an| ≤ ε)).

This last principle can be given a clear computational interpretation:
iteratively compute 0,M(0),M(M(0)), . . . until one finds a value of
n such that |aM(n) − an| ≤ ε.



Analyzing the proof of the mean ergodic theorem

In practice, one never formalizes a source proof completely.

But the metamathematical result provides a powerful heuristic:
formalize intermediate lemmas and statements, and then fill in the
gaps.

In our case, the proof involves working backwards to obtain the
relevant “counterexample” functions on the sequence (gn).

For example, here is one of our lemmas:

Lemma. Let ε > 0, let m ≥ 1, let d ′′′
= d29m4

‖ f ‖
4/ε4

e. Further
suppose ‖gi − gi+d ′′′‖ ≤ ε/8. Then for any n ≤ m,
‖Am( f − gi )− An( f − gi )‖ ≤ ε.

About five or six such lemmas yield the desired theorem.



Conclusions

General remarks:
• Looking at general results in analysis through the lens of

computability raises interesting issues.
• Ergodic theory is a natural market for such analyses, since it

combines “hard” computational concerns with “soft” structural
characterizations.

• Mathematical logic and methods of “proof mining” provide
general tools and insights.

Future plans:
• Towsner and I are analyzing applications of ergodic methods in

combinatorics.
• There seems to be no shortage of areas where “soft” results can

be mined for quantitative bounds and dependences.


