Logic and Interactive Theorem Proving

Jeremy Avigad

Department of Philosophy and
Department of Mathematical Sciences
Carnegie Mellon University

December 2015



Mathematical language

Three notions of “mathematical language”:

e informal: ordinary mathematical writings, textbooks, journal
articles

e formal: written in symbolic logic

e semiformal: stylized languages used by interactive proof
assistants



Informal proof

Proof. Suppose that FE is a semistable elliptic curve over Q. Assume
first that the representation pg3 on E[3] is irreducible. Then if py = pgg3
restricted to Gal(Q/Q (v/—3)) were not absolutely irreducible, the image of the
restriction would be abelian of order prime to 3. As the semistable hypothesis
implies that all the inertia groups outside 3 in the splitting field of pp have
order dividing 3 this means that the splitting field of pg is unramified outside
3. However, Q(v/—3) has no nontrivial abelian extensions unramified outside 3
and of order prime to 3. So pg itself would factor through an abelian extension
of Q and this is a contradiction as py is assumed odd and irreducible. So
po restricted to Gal(Q/Q(+/=3)) is absolutely irreducible and pg3 is then
modular by Theorem 0.2 (proved at the end of Chapter 3). By Serre’s isogeny
theorem, E is also modular (in the sense of being a factor of the Jacobian of a
modular curve).

So assume now that jg 3 is reducible. Then we claim that the represen-
tation gg s on the 5-division points is irreducible. This is because Xo(15) (Q)
has only four rational points besides the cusps and these correspond to non-
semistable curves which in any case are modular; cf. [BiKu, pp. 79-80]. If we
knew that pg s was modular we could now prove the theorem in the same way



Informal proof

Theorem
Every natural number greater than equal to 2 can be written as a
product of primes.

Proof.

We proceed by induction on n. Let n be any natural number
greater than 2. If nis prime, we are done; we can consider n itself
as a product with one term. Otherwise, n is composite, and we can
write n = m- k where m and k are smaller than n. By the inductive
hypothesis, each of m can be written as a product of primes, say
m=py-pr-...-ppand k=q1-qg>-...-q,. But then we have

n=m-k=p1-p2-... Py qr-q2-..-qy,

a product of primes, as required. O



Informal proof

Theorem
V2 is irrational.

Proof.

Suppose v/2 = a/b for some pair of integers a and b. By removing
any common factors, we can assume a/b is in lowest terms, so
that a and b have no factor in common. Then a = v/2b, and
squaring both sides, we have a® = 2b°.

The last equation implies that a° is even, and since the square of
an odd number is odd, a itself must be even as well. We therefore
have a = 2¢ for some integer c. Substituting this into the equation
a® = 2b2, we have 4c2 = 2b2, and hence 2¢2 = b2. This means
that b? is even, and so b is even as well.

The fact that a and b are both even contradicts the fact that a
and b have no common factor. So the original assumption that

V2 = a/b is false. O



Formal proof

Natural deduction in symbolic logic gives an idealized model of
reasoning:

Vx (—even(x) — —even(x?))

—even(b) —even(b) — —even(b?))

—even(b?) even(b?)

N S
even(b)



Semiformal proof

theorem sqrt_two_irrational {a b : N} (co : coprime a b)

a"2 # 2 % b2 :=
assume H : a”2 = 2 *x b2,
have even (a"2), from even_of_exists (exists.intro _ H),
have even a, from even_of_even_pow this,
obtain (c : nat) (aeq : a = 2 * c), from exists_of_even this,
have 2 * (2 * ¢c"2) = 2 * b~2,

by rewrite [-H, aeq, *pow_two, algebra.mul.assoc, algebra.mul.

left_comm c],

have 2 * c”2 = b"2, from eq_of_mul_eq_mul_left dec_trivial this,
have even (b~2),

from even_of_exists (exists.intro _ (eq.symm this)),
have even b, from even_of_even_pow this,
assert 2 | ged a b,

from dvd_gcd (dvd_of_even ‘even a‘) (dvd_of_even ‘even b‘),
have 2 | 1,

by rewrite [gcd_eq_one_of_coprime co at this]; exact this,
show false, from absurd ‘2 | 1 dec_trivial



Mathematical language

What they are good for:
e Informal language: ordinary communication, reading, and
understanding
e Formal language: reasoning about mathematical reasoning,
studying its properties
e Semiformal language: implementation, interaction with
computers

Semiformal languages are between the other two:
e more precise than informal language

e more expressive than symbolic logic



Mathematical language

Two different aspects of mathematical language:
e assertion language: making mathematical statements

e proof language: writing mathematical proofs

An assertion:
e Every prime number greater than 2 is odd.
e Vn prime(n) A n > 2 — odd(n).

eV n, primen - n>2 — oddn



First-order logic

We start with a language, that is, a specification of constant
symbols, function symbols, and relation symbols.

For example, we will consider the following “language of
arithmetic”:

e Constant symbols: 0, 1, 2, ...

e Function symbols: +, X, exponentiation

e Predicates and relations: =, <, <, |, even, odd, prime, ...

Intuitively, we have designed this language to talk about
N=1{0,1,2,3,...}.

Formally, we are just dealing with symbols.



First-order logic

Once we have specified the language, we get a set of terms:
e Start with variables and constant symbols.

e Build more complex terms with function symbols.

Examples: x, 0, (x+y)x0, xx2+4+yx0,

Intuition: terms name elements of the intended universe, modulo
an assignment of values to the free variables.



First-order logic

We also get formulas:

e Start with basic predicates and relations on terms.

e Build more complex formulas:
e PAQ: "Pand Q'
e PVQ: “Por Q"
e P— Q: “if Pthen Q"
e —P: “not P"
o Vx P: “for every x, P"
e Jx P: “for some x, P”

Examples: s=tA0<s, prime(x), Vx3dy(x<yAy<x+2)

Intuition: formulas say things about the intended universe, modulo
an assignment of values to the free variables.



First-order logic

Every natural number is even or odd, but not both.



First-order logic

Every natural number is even or odd, but not both.

Vx ((even(x) V odd(x)) A =(even(x) A odd(x)))



First-order logic

Every natural number is even or odd, but not both.
Vx ((even(x) V odd(x)) A =(even(x) A odd(x)))

If some natural number, x, is even, then so is x2.



First-order logic

Every natural number is even or odd, but not both.
Vx ((even(x) V odd(x)) A =(even(x) A odd(x)))

If some natural number, x, is even, then so is x2.

Vx (even(x) — even(x?))



First-order logic

Every natural number is even or odd, but not both.
Vx ((even(x) V odd(x)) A =(even(x) A odd(x)))

If some natural number, x, is even, then so is x2.

Vx (even(x) — even(x?))

For any three natural numbers x, y, and z, if x divides y and y
divides z, then x divides z.



First-order logic

Every natural number is even or odd, but not both.
Vx ((even(x) V odd(x)) A =(even(x) A odd(x)))
If some natural number, x, is even, then so is x2.

Vx (even(x) — even(x?))

For any three natural numbers x, y, and z, if x divides y and y
divides z, then x divides z.

Vx,y,z(x|yAy|z—=x]|z)



First-order logic

Every natural number is even or odd, but not both.
Vx ((even(x) V odd(x)) A =(even(x) A odd(x)))

If some natural number, x, is even, then so is x2.

Vx (even(x) — even(x?))

For any three natural numbers x, y, and z, if x divides y and y
divides z, then x divides z.

Vx,y,z(x|yAy|z—=x]|z)

For every x > 1, there is a prime number between x and 2x.



First-order logic

Every natural number is even or odd, but not both.
Vx ((even(x) V odd(x)) A =(even(x) A odd(x)))

If some natural number, x, is even, then so is x2.

Vx (even(x) — even(x?))

For any three natural numbers x, y, and z, if x divides y and y
divides z, then x divides z.

Vx,y,z (x|yNylz—x]|2)
For every x > 1, there is a prime number between x and 2x.

Vx (x >1— Ty (prime(y) Ax <y Ay <2 xx))



First-order logic

Every natural number is even or odd, but not both.
Vx, ((even x V odd x) A —(even x A odd x))
If some natural number, x, is even, then so is x2.

Vx, even x — even (x72)

For any three natural numbers x, y, and z, if x divides y and y
divides z, then x divides z.

Vxyz,x|y—=>yl|lz—ox|z
For every x > 1, there is a prime number between x and 2x.

Vx, (x >1 — Jdy, prime y A x <y Ay <2 % x)



Natural deduction

A formal system called natural deduction, designed by Gerhard
Gentzen, provides a nice formal model of mathematical proof.

The basic notion: a proof from hypotheses.
A complex proof is built up from simpler proofs using logical rules.
Over the course of a proof, hypotheses can change.

For example, we can temporarily assume A in order to prove
A— B.



Natural deduction

A
A_>BB A —E
—AEB a —I
AAABB o A//L\\B B, Ags AEL
AC
: _'AJ_ A g
1




Natural deduction

A B
AV B AV B
L

A

A° B

AVB_ € C o
a

—A




Natural deduction

A(x) Vx A(x)
Wy Ay) A
Aly)
A(t) . .
Ix A(x) IxA(x) B




Examples

We'll do some of these in natural deduction, and in Lean:

e show AAB—-BAA

e show A — C, assuming A— Band B— C

e show B, assuming AV B and —A

e show C, assuming AVB, A— C,and B— C
e show Vx (A(x) A B(x)) — Vx A(x)

e show —3x A(x) — Vx —A(x)



Beyond first-order logic

What if we want a system to do all of mathematics, not just
reason about the natural numbers?

Two options:

e Set theory: write down a powerful set of axioms describing
sets. Show that ordinary mathematical objects (numbers,
functions, relations, points, lines, triangles, groups, hyperbolic
manifolds, ...) can be defined as various kinds of sets.

e Type theory: extend first-order logic with constructions for
functions, propositions, and inductive definitions, and
construct mathematical objects from those.

The two approaches are essentially inter-translatable.

Interactive theorem provers usually use a variant of type theory.



