Logic and Interactive Theorem Proving

Jeremy Avigad
Department of Philosophy and
Department of Mathematical Sciences
Carnegie Mellon University

December 2015

Mathematical language

Three notions of "mathematical language":

- informal: ordinary mathematical writings, textbooks, journal articles
- formal: written in symbolic logic
- semiformal: stylized languages used by interactive proof assistants

Informal proof

Proof. Suppose that E is a semistable elliptic curve over Q. Assume first that the representation $\bar{\rho}_{E, 3}$ on $E[3]$ is irreducible. Then if $\rho_{0}=\bar{\rho}_{E, 3}$ restricted to $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}(\sqrt{-3}))$ were not absolutely irreducible, the image of the restriction would be abelian of order prime to 3 . As the semistable hypothesis implies that all the inertia groups outside 3 in the splitting field of ρ_{0} have order dividing 3 this means that the splitting field of ρ_{0} is unramified outside 3. However, $\mathbf{Q}(\sqrt{-3})$ has no nontrivial abelian extensions unramified outside 3 and of order prime to 3 . So ρ_{0} itself would factor through an abelian extension of \mathbf{Q} and this is a contradiction as ρ_{0} is assumed odd and irreducible. So ρ_{0} restricted to $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}(\sqrt{-3}))$ is absolutely irreducible and $\rho_{E, 3}$ is then modular by Theorem 0.2 (proved at the end of Chapter 3). By Serre's isogeny theorem, E is also modular (in the sense of being a factor of the Jacobian of a modular curve).

So assume now that $\bar{\rho}_{E, 3}$ is reducible. Then we claim that the representation $\bar{\rho}_{E, 5}$ on the 5-division points is irreducible. This is because $X_{0}(15)(\mathbf{Q})$ has only four rational points besides the cusps and these correspond to nonsemistable curves which in any case are modular; cf. [$\mathrm{BiKu}, \mathrm{pp} .79-80]$. If we knew that $\bar{\rho}_{E, 5}$ was modular we could now prove the theorem in the same way

Informal proof

Theorem

Every natural number greater than equal to 2 can be written as a product of primes.

Proof.

We proceed by induction on n. Let n be any natural number greater than 2. If n is prime, we are done; we can consider n itself as a product with one term. Otherwise, n is composite, and we can write $n=m \cdot k$ where m and k are smaller than n. By the inductive hypothesis, each of m can be written as a product of primes, say $m=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{u}$ and $k=q_{1} \cdot q_{2} \cdot \ldots \cdot q_{v}$. But then we have

$$
n=m \cdot k=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{u} \cdot q_{1} \cdot q_{2} \cdot \ldots \cdot q_{v}
$$

a product of primes, as required.

Informal proof

Theorem

$\sqrt{2}$ is irrational.

Proof.

Suppose $\sqrt{2}=a / b$ for some pair of integers a and b. By removing any common factors, we can assume a / b is in lowest terms, so that a and b have no factor in common. Then $a=\sqrt{2} b$, and squaring both sides, we have $a^{2}=2 b^{2}$.

The last equation implies that a^{2} is even, and since the square of an odd number is odd, a itself must be even as well. We therefore have $a=2 c$ for some integer c. Substituting this into the equation $a^{2}=2 b^{2}$, we have $4 c^{2}=2 b^{2}$, and hence $2 c^{2}=b^{2}$. This means that b^{2} is even, and so b is even as well.

The fact that a and b are both even contradicts the fact that a and b have no common factor. So the original assumption that $\sqrt{2}=a / b$ is false.

Formal proof

Natural deduction in symbolic logic gives an idealized model of reasoning:
$\begin{array}{ll}\frac{\neg \operatorname{even}(b)}{} \quad \frac{\forall x\left(\neg \operatorname{even}(x) \rightarrow \neg \operatorname{even}\left(x^{2}\right)\right)}{\left.\neg \operatorname{even}(b) \rightarrow \neg \operatorname{even}\left(b^{2}\right)\right)} \\ & \frac{\neg \operatorname{even}\left(b^{2}\right)}{\operatorname{even}(b)}\end{array} \quad \operatorname{even}\left(b^{2}\right)$.

Semiformal proof

theorem sqrt_two_irrational \{a b : $\mathbb{N}\}$ (co : coprime a b) :
$a^{\wedge} 2 \neq 2$ * $\mathrm{b}^{\wedge} 2$:=
assume H : $\mathrm{a}^{\wedge} 2=2$ * $\mathrm{b}^{\wedge} 2$,
have even (a^2), from even_of_exists (exists.intro _ H),
have even a, from even_of_even_pow this, obtain (c : nat) (aeq : a = 2 * c), from exists_of_even this, have $2 *\left(2 * c^{\wedge} 2\right)=2 * b^{\wedge} 2$,
by rewrite [-H, aeq, *pow_two, algebra.mul.assoc, algebra.mul.
left_comm c],
have $2 * c^{\wedge} 2=b^{\wedge} 2$, from eq_of_mul_eq_mul_left dec_trivial this, have even ($\mathrm{b}^{\wedge} 2$),
from even_of_exists (exists.intro _ (eq.symm this)),
have even b, from even_of_even_pow this,
assert $2 \mid \operatorname{gcd} \mathrm{a}$ b,
from dvd_gcd (dvd_of_even 'even a') (dvd_of_even 'even b'), have $2 \mid 1$,
by rewrite [gcd_eq_one_of_coprime co at this]; exact this, show false, from absurd '2 | 1' dec_trivial

Mathematical language

What they are good for:

- Informal language: ordinary communication, reading, and understanding
- Formal language: reasoning about mathematical reasoning, studying its properties
- Semiformal language: implementation, interaction with computers

Semiformal languages are between the other two:

- more precise than informal language
- more expressive than symbolic logic

Mathematical language

Two different aspects of mathematical language:

- assertion language: making mathematical statements
- proof language: writing mathematical proofs

An assertion:

- Every prime number greater than 2 is odd.
- $\forall n$ prime $(n) \wedge n>2 \rightarrow \operatorname{odd}(n)$.
- $\forall \mathrm{n}$, prime $\mathrm{n} \rightarrow \mathrm{n}>2 \rightarrow$ odd n

First-order logic

We start with a language, that is, a specification of constant symbols, function symbols, and relation symbols.

For example, we will consider the following "language of arithmetic":

- Constant symbols: $0,1,2, \ldots$
- Function symbols:,$+ \times$, exponentiation
- Predicates and relations: $=,<, \leq, \mid$, even, odd, prime, \ldots

Intuitively, we have designed this language to talk about $\mathbb{N}=\{0,1,2,3, \ldots\}$.

Formally, we are just dealing with symbols.

First-order logic

Once we have specified the language, we get a set of terms:

- Start with variables and constant symbols.
- Build more complex terms with function symbols.

Examples: $x, \quad 0, \quad(x+y) \times 0, \quad x \times 2+y \times 0, \quad \ldots$
Intuition: terms name elements of the intended universe, modulo an assignment of values to the free variables.

First-order logic

We also get formulas:

- Start with basic predicates and relations on terms.
- Build more complex formulas:
- $P \wedge Q$: " P and Q "
- $P \vee Q$: " P or Q "
- $P \rightarrow Q$: "if P then Q "
- $\neg P$: "not P "
- $\forall x P$: "for every x, P^{\prime}
- $\exists x P$: "for some $x, P^{\prime \prime}$

Examples: $s=t \wedge 0<s, \quad \operatorname{prime}(x), \quad \forall x \exists y(x<y \wedge y<x+2)$
Intuition: formulas say things about the intended universe, modulo an assignment of values to the free variables.

First-order logic

Every natural number is even or odd, but not both.

First-order logic

Every natural number is even or odd, but not both.

$$
\forall x((\operatorname{even}(x) \vee \operatorname{odd}(x)) \wedge \neg(\operatorname{even}(x) \wedge \operatorname{odd}(x)))
$$

First-order logic

Every natural number is even or odd, but not both.

$$
\forall x((\operatorname{even}(x) \vee \operatorname{odd}(x)) \wedge \neg(\operatorname{even}(x) \wedge \operatorname{odd}(x)))
$$

If some natural number, x, is even, then so is x^{2}.

First-order logic

Every natural number is even or odd, but not both.

$$
\forall x((\operatorname{even}(x) \vee \operatorname{odd}(x)) \wedge \neg(\operatorname{even}(x) \wedge \operatorname{odd}(x)))
$$

If some natural number, x, is even, then so is x^{2}.

$$
\forall x\left(\operatorname{even}(x) \rightarrow \operatorname{even}\left(x^{2}\right)\right)
$$

First-order logic

Every natural number is even or odd, but not both.

$$
\forall x((\operatorname{even}(x) \vee \operatorname{odd}(x)) \wedge \neg(\operatorname{even}(x) \wedge \operatorname{odd}(x)))
$$

If some natural number, x, is even, then so is x^{2}.

$$
\forall x\left(\operatorname{even}(x) \rightarrow \operatorname{even}\left(x^{2}\right)\right)
$$

For any three natural numbers x, y, and z, if x divides y and y divides z, then x divides z.

First-order logic

Every natural number is even or odd, but not both.

$$
\forall x((\operatorname{even}(x) \vee \operatorname{odd}(x)) \wedge \neg(\operatorname{even}(x) \wedge \operatorname{odd}(x)))
$$

If some natural number, x, is even, then so is x^{2}.

$$
\forall x\left(\operatorname{even}(x) \rightarrow \operatorname{even}\left(x^{2}\right)\right)
$$

For any three natural numbers x, y, and z, if x divides y and y divides z, then x divides z.

$$
\forall x, y, z(x|y \wedge y| z \rightarrow x \mid z)
$$

First-order logic

Every natural number is even or odd, but not both.

$$
\forall x((\operatorname{even}(x) \vee \operatorname{odd}(x)) \wedge \neg(\operatorname{even}(x) \wedge \operatorname{odd}(x)))
$$

If some natural number, x, is even, then so is x^{2}.

$$
\forall x\left(\operatorname{even}(x) \rightarrow \operatorname{even}\left(x^{2}\right)\right)
$$

For any three natural numbers x, y, and z, if x divides y and y divides z, then x divides z.

$$
\forall x, y, z(x|y \wedge y| z \rightarrow x \mid z)
$$

For every $x>1$, there is a prime number between x and $2 x$.

First-order logic

Every natural number is even or odd, but not both.

$$
\forall x((\operatorname{even}(x) \vee \operatorname{odd}(x)) \wedge \neg(\operatorname{even}(x) \wedge \operatorname{odd}(x)))
$$

If some natural number, x, is even, then so is x^{2}.

$$
\forall x\left(\operatorname{even}(x) \rightarrow \operatorname{even}\left(x^{2}\right)\right)
$$

For any three natural numbers x, y, and z, if x divides y and y divides z, then x divides z.

$$
\forall x, y, z(x|y \wedge y| z \rightarrow x \mid z)
$$

For every $x>1$, there is a prime number between x and $2 x$.

$$
\forall x(x>1 \rightarrow \exists y(\operatorname{prime}(y) \wedge x<y \wedge y<2 \times x))
$$

First-order logic

Every natural number is even or odd, but not both.

$$
\forall x, \quad((\text { even } x \vee \text { odd } x) \wedge \neg(\text { even } x \wedge \text { odd } x))
$$

If some natural number, x, is even, then so is x^{2}.

$$
\forall x \text {, even } x \rightarrow \text { even (} x^{\wedge} 2 \text {) }
$$

For any three natural numbers x, y, and z, if x divides y and y divides z, then x divides z.

$$
\forall \mathrm{xyz} \mathrm{z}, \mathrm{x}|\mathrm{y} \rightarrow \mathrm{y}| \mathrm{z} \rightarrow \mathrm{x} \mid \mathrm{z}
$$

For every $x>1$, there is a prime number between x and $2 x$.

$$
\forall \mathrm{x},(\mathrm{x}>1 \rightarrow \exists \mathrm{y}, \text { prime } \mathrm{y} \wedge \mathrm{x}<\mathrm{y} \wedge \mathrm{y}<2 * \mathrm{x})
$$

Natural deduction

A formal system called natural deduction, designed by Gerhard Gentzen, provides a nice formal model of mathematical proof.

The basic notion: a proof from hypotheses.
A complex proof is built up from simpler proofs using logical rules.
Over the course of a proof, hypotheses can change.
For example, we can temporarily assume A in order to prove $A \rightarrow B$.

Natural deduction

$$
\begin{gathered}
\bar{A}^{a} \\
\vdots \\
\frac{B}{A \rightarrow B} \\
\\
\frac{A \rightarrow \mathrm{I}}{A \wedge B} \wedge \mathrm{I} \\
\frac{A \wedge B}{A} \wedge \mathrm{E}_{1} \quad \frac{A \wedge B}{B} \wedge \mathrm{E}_{\mathrm{r}} \\
\frac{\square}{A}^{a} \\
\vdots \\
\frac{\perp}{\neg A} a \neg \mathrm{I} \\
\frac{\neg A \quad A}{\perp} \neg \mathrm{E} \\
\end{gathered}
$$

Natural deduction

$$
\begin{aligned}
& \bar{A}^{a} \bar{B}^{b} \\
& \frac{A}{A \vee B} \vee \mathrm{I}_{1} \quad \frac{B}{A \vee B} \vee \mathrm{I}_{\mathrm{r}} \\
& \begin{array}{lll}
A \vee B \quad C & C \\
& C
\end{array} \\
& \overline{\neg A}^{a} \\
& \frac{\perp}{A} \perp \mathrm{E} \\
& \frac{\perp}{A} \text { a RAA }
\end{aligned}
$$

Natural deduction

$$
\begin{aligned}
& \frac{A(x)}{\forall y A(y)} \forall \mathrm{I} \quad \frac{\forall x A(x)}{A(t)} \forall \mathrm{E} \\
& \overline{A(y)}^{a} \\
& \frac{A(t)}{\exists x A(x)} \text { ㅍ } \\
& \begin{array}{cc}
\exists x A(x) & \vdots \\
B & B \exists \mathrm{E}
\end{array}
\end{aligned}
$$

Examples

We'll do some of these in natural deduction, and in Lean:

- show $A \wedge B \rightarrow B \wedge A$
- show $A \rightarrow C$, assuming $A \rightarrow B$ and $B \rightarrow C$
- show B, assuming $A \vee B$ and $\neg A$
- show C, assuming $A \vee B, A \rightarrow C$, and $B \rightarrow C$
- show $\forall x(A(x) \wedge B(x)) \rightarrow \forall x A(x)$
- show $\neg \exists x A(x) \rightarrow \forall x \neg A(x)$

Beyond first-order logic

What if we want a system to do all of mathematics, not just reason about the natural numbers?

Two options:

- Set theory: write down a powerful set of axioms describing sets. Show that ordinary mathematical objects (numbers, functions, relations, points, lines, triangles, groups, hyperbolic manifolds, ...) can be defined as various kinds of sets.
- Type theory: extend first-order logic with constructions for functions, propositions, and inductive definitions, and construct mathematical objects from those.

The two approaches are essentially inter-translatable.
Interactive theorem provers usually use a variant of type theory.

