
Logic and Interactive Theorem Proving

Jeremy Avigad

Department of Philosophy and
Department of Mathematical Sciences

Carnegie Mellon University

December 2015

Mathematical language

Three notions of “mathematical language”:

• informal: ordinary mathematical writings, textbooks, journal
articles

• formal: written in symbolic logic

• semiformal: stylized languages used by interactive proof
assistants

Informal proof

Informal proof

Theorem
Every natural number greater than equal to 2 can be written as a
product of primes.

Proof.
We proceed by induction on n. Let n be any natural number
greater than 2. If n is prime, we are done; we can consider n itself
as a product with one term. Otherwise, n is composite, and we can
write n = m · k where m and k are smaller than n. By the inductive
hypothesis, each of m can be written as a product of primes, say
m = p1 · p2 · . . . · pu and k = q1 · q2 · . . . · qv . But then we have

n = m · k = p1 · p2 · . . . · pu · q1 · q2 · . . . · qv ,

a product of primes, as required.

Informal proof

Theorem√
2 is irrational.

Proof.
Suppose

√
2 = a/b for some pair of integers a and b. By removing

any common factors, we can assume a/b is in lowest terms, so
that a and b have no factor in common. Then a =

√
2b, and

squaring both sides, we have a2 = 2b2.

The last equation implies that a2 is even, and since the square of
an odd number is odd, a itself must be even as well. We therefore
have a = 2c for some integer c . Substituting this into the equation
a2 = 2b2, we have 4c2 = 2b2, and hence 2c2 = b2. This means
that b2 is even, and so b is even as well.

The fact that a and b are both even contradicts the fact that a
and b have no common factor. So the original assumption that√

2 = a/b is false.

Formal proof

Natural deduction in symbolic logic gives an idealized model of
reasoning:

¬even(b)

∀x (¬even(x)→ ¬even(x2))

¬even(b)→ ¬even(b2))

¬even(b2) even(b2)

⊥
even(b)

Semiformal proof

theorem sqrt_two_irrational {a b : N} (co : coprime a b) :

a^2 6= 2 * b^2 :=

assume H : a^2 = 2 * b^2,

have even (a^2), from even_of_exists (exists.intro _ H),

have even a, from even_of_even_pow this,

obtain (c : nat) (aeq : a = 2 * c), from exists_of_even this,

have 2 * (2 * c^2) = 2 * b^2,

by rewrite [-H, aeq, *pow_two, algebra.mul.assoc, algebra.mul.

left_comm c],

have 2 * c^2 = b^2, from eq_of_mul_eq_mul_left dec_trivial this,

have even (b^2),

from even_of_exists (exists.intro _ (eq.symm this)),

have even b, from even_of_even_pow this,

assert 2 | gcd a b,

from dvd_gcd (dvd_of_even ‘even a‘) (dvd_of_even ‘even b‘),

have 2 | 1,
by rewrite [gcd_eq_one_of_coprime co at this]; exact this,

show false, from absurd ‘2 | 1‘ dec_trivial

Mathematical language

What they are good for:

• Informal language: ordinary communication, reading, and
understanding

• Formal language: reasoning about mathematical reasoning,
studying its properties

• Semiformal language: implementation, interaction with
computers

Semiformal languages are between the other two:

• more precise than informal language

• more expressive than symbolic logic

Mathematical language

Two different aspects of mathematical language:

• assertion language: making mathematical statements

• proof language: writing mathematical proofs

An assertion:

• Every prime number greater than 2 is odd.

• ∀n prime(n) ∧ n > 2→ odd(n).

• ∀ n, prime n → n > 2 → odd n

First-order logic

We start with a language, that is, a specification of constant
symbols, function symbols, and relation symbols.

For example, we will consider the following “language of
arithmetic”:

• Constant symbols: 0, 1, 2, . . .

• Function symbols: +, ×, exponentiation

• Predicates and relations: =, <, ≤, |, even, odd , prime, . . .

Intuitively, we have designed this language to talk about
N = {0, 1, 2, 3, . . .}.

Formally, we are just dealing with symbols.

First-order logic

Once we have specified the language, we get a set of terms:

• Start with variables and constant symbols.

• Build more complex terms with function symbols.

Examples: x , 0, (x + y)× 0, x × 2 + y × 0, . . .

Intuition: terms name elements of the intended universe, modulo
an assignment of values to the free variables.

First-order logic

We also get formulas:

• Start with basic predicates and relations on terms.

• Build more complex formulas:
• P ∧ Q: “P and Q”
• P ∨ Q: “P or Q”
• P → Q: “if P then Q”
• ¬P: “not P”
• ∀x P : “for every x , P”
• ∃x P : “for some x , P”

Examples: s = t ∧ 0 < s, prime(x), ∀x ∃y (x < y ∧ y < x + 2)

Intuition: formulas say things about the intended universe, modulo
an assignment of values to the free variables.

First-order logic

Every natural number is even or odd, but not both.

∀x ((even(x) ∨ odd(x)) ∧ ¬(even(x) ∧ odd(x)))

If some natural number, x , is even, then so is x2.

∀x (even(x)→ even(x2))

For any three natural numbers x , y , and z , if x divides y and y
divides z , then x divides z .

∀x , y , z (x | y ∧ y | z → x | z)

For every x > 1, there is a prime number between x and 2x .

∀x (x > 1→ ∃y (prime(y) ∧ x < y ∧ y < 2× x))

First-order logic

Every natural number is even or odd, but not both.

∀x ((even(x) ∨ odd(x)) ∧ ¬(even(x) ∧ odd(x)))

If some natural number, x , is even, then so is x2.

∀x (even(x)→ even(x2))

For any three natural numbers x , y , and z , if x divides y and y
divides z , then x divides z .

∀x , y , z (x | y ∧ y | z → x | z)

For every x > 1, there is a prime number between x and 2x .

∀x (x > 1→ ∃y (prime(y) ∧ x < y ∧ y < 2× x))

First-order logic

Every natural number is even or odd, but not both.

∀x ((even(x) ∨ odd(x)) ∧ ¬(even(x) ∧ odd(x)))

If some natural number, x , is even, then so is x2.

∀x (even(x)→ even(x2))

For any three natural numbers x , y , and z , if x divides y and y
divides z , then x divides z .

∀x , y , z (x | y ∧ y | z → x | z)

For every x > 1, there is a prime number between x and 2x .

∀x (x > 1→ ∃y (prime(y) ∧ x < y ∧ y < 2× x))

First-order logic

Every natural number is even or odd, but not both.

∀x ((even(x) ∨ odd(x)) ∧ ¬(even(x) ∧ odd(x)))

If some natural number, x , is even, then so is x2.

∀x (even(x)→ even(x2))

For any three natural numbers x , y , and z , if x divides y and y
divides z , then x divides z .

∀x , y , z (x | y ∧ y | z → x | z)

For every x > 1, there is a prime number between x and 2x .

∀x (x > 1→ ∃y (prime(y) ∧ x < y ∧ y < 2× x))

First-order logic

Every natural number is even or odd, but not both.

∀x ((even(x) ∨ odd(x)) ∧ ¬(even(x) ∧ odd(x)))

If some natural number, x , is even, then so is x2.

∀x (even(x)→ even(x2))

For any three natural numbers x , y , and z , if x divides y and y
divides z , then x divides z .

∀x , y , z (x | y ∧ y | z → x | z)

For every x > 1, there is a prime number between x and 2x .

∀x (x > 1→ ∃y (prime(y) ∧ x < y ∧ y < 2× x))

First-order logic

Every natural number is even or odd, but not both.

∀x ((even(x) ∨ odd(x)) ∧ ¬(even(x) ∧ odd(x)))

If some natural number, x , is even, then so is x2.

∀x (even(x)→ even(x2))

For any three natural numbers x , y , and z , if x divides y and y
divides z , then x divides z .

∀x , y , z (x | y ∧ y | z → x | z)

For every x > 1, there is a prime number between x and 2x .

∀x (x > 1→ ∃y (prime(y) ∧ x < y ∧ y < 2× x))

First-order logic

Every natural number is even or odd, but not both.

∀x ((even(x) ∨ odd(x)) ∧ ¬(even(x) ∧ odd(x)))

If some natural number, x , is even, then so is x2.

∀x (even(x)→ even(x2))

For any three natural numbers x , y , and z , if x divides y and y
divides z , then x divides z .

∀x , y , z (x | y ∧ y | z → x | z)

For every x > 1, there is a prime number between x and 2x .

∀x (x > 1→ ∃y (prime(y) ∧ x < y ∧ y < 2× x))

First-order logic

Every natural number is even or odd, but not both.

∀x ((even(x) ∨ odd(x)) ∧ ¬(even(x) ∧ odd(x)))

If some natural number, x , is even, then so is x2.

∀x (even(x)→ even(x2))

For any three natural numbers x , y , and z , if x divides y and y
divides z , then x divides z .

∀x , y , z (x | y ∧ y | z → x | z)

For every x > 1, there is a prime number between x and 2x .

∀x (x > 1→ ∃y (prime(y) ∧ x < y ∧ y < 2× x))

First-order logic

Every natural number is even or odd, but not both.

∀x, ((even x ∨ odd x) ∧ ¬(even x ∧ odd x))

If some natural number, x , is even, then so is x2.

∀x, even x → even (x^2)

For any three natural numbers x , y , and z , if x divides y and y
divides z , then x divides z .

∀x y z, x | y → y | z → x | z

For every x > 1, there is a prime number between x and 2x .

∀x, (x > 1 → ∃y, prime y ∧ x < y ∧ y < 2 * x)

Natural deduction

A formal system called natural deduction, designed by Gerhard
Gentzen, provides a nice formal model of mathematical proof.

The basic notion: a proof from hypotheses.

A complex proof is built up from simpler proofs using logical rules.

Over the course of a proof, hypotheses can change.

For example, we can temporarily assume A in order to prove
A→ B.

Natural deduction

a
A
...
B

a →I
A→ B

A→ B A →E
B

A B ∧I
A ∧ B

A ∧ B ∧El
A

A ∧ B ∧Er
B

a
A
...
⊥

a ¬I¬A

¬A A ¬E⊥

Natural deduction

A ∨Il
A ∨ B

B ∨Ir
A ∨ B

A ∨ B

a
A
...
C

b
B
...
C

a,b ∨E
C

⊥ ⊥E
A

a
¬A

...
⊥

a RAA
A

Natural deduction

A(x)
∀I

∀y A(y)

∀x A(x)
∀E

A(t)

A(t)
∃I

∃x A(x) ∃x A(x)

a
A(y)

...
B

a ∃E
B

Examples

We’ll do some of these in natural deduction, and in Lean:

• show A ∧ B → B ∧ A

• show A→ C , assuming A→ B and B → C

• show B, assuming A ∨ B and ¬A
• show C , assuming A ∨ B, A→ C , and B → C

• show ∀x (A(x) ∧ B(x))→ ∀x A(x)

• show ¬∃x A(x)→ ∀x ¬A(x)

Beyond first-order logic

What if we want a system to do all of mathematics, not just
reason about the natural numbers?

Two options:

• Set theory: write down a powerful set of axioms describing
sets. Show that ordinary mathematical objects (numbers,
functions, relations, points, lines, triangles, groups, hyperbolic
manifolds, . . .) can be defined as various kinds of sets.

• Type theory: extend first-order logic with constructions for
functions, propositions, and inductive definitions, and
construct mathematical objects from those.

The two approaches are essentially inter-translatable.

Interactive theorem provers usually use a variant of type theory.

