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Formal methods in mathematics

Formal methods are a body of logic-based methods used in
computer science to

® write specifications (for hardware, software, protocols, and so
on), and
® verify that artifacts meet their specifications.

They rely on:

e formal languages
e formal semantics

e formal rules of inference.



Formal methods in mathematics

There are:

® tools for automated reasoning

® tools that support robust user interaction.

Most domains require a combination of the two.
Formal methods can also be used for mathematics.

| will try to explain how, and why they are useful.



Interactive theorem provers

We have known since the early twentieth century that mathematics
can be formalized:

® Mathematical statements can be expressed in formal
languages, with precise grammar.

® Theorems can be proved from formal axioms, using prescribed
rules of inference.

With the help of computational proof assistants, this can be
carried out in practice.

In many systems, the formal proof can be extracted and verified
independently.



Interactive theorem provers

Proof assistants are now used for

® hardware, software, and systems verification

® mathematics and the mathematical sciences

Some proof assistants for mathematics:

® Mizar (1973, set theory)

e |sabelle (1986, simple type theory)

® Rocq (1989, dependent type theory)
e HOL Light (1994, simply type theory)
e Lean (2013, dependent type theory)

In this talk, | will focus on Lean.



The Lean interactive proof assistant

| will give a demonstration.
You can run a similar demonstration in your browser.
(The red highlighting signifies a link you can click.)

Notes:
® Put your cursor on any keyword with a squiggly blue underline
to see the response from Lean in the information window to
the right.
® Move your cursor through any proof to see the proof state
change.

® Hover over identifiers and symbols to see popup
documentation.


https://live.lean-lang.org/#code=import%20Mathlib.Analysis.Calculus.Taylor%0Aimport%20Mathlib.Tactic%0A%0A%23check%202%20%2B%20(2%20%3A%20%E2%84%9D)%0A%23eval%202%20%5E%202434%0A%0Asection%0Avariable%20%7BR%20%3A%20Type%7D%20%5BCommRing%20R%5D%0Avariable%20(x%20y%20z%20%3A%20R)%0A%0A%23conv%20ring_nf%20%3D%3E%20(x%20%2B%20y%20%2B%20z)%5E3%0A%0Aend%0A%0A%40%5Bsimp%5D%0Adef%20fib%20%3A%20%E2%84%95%20%E2%86%92%20%E2%84%95%0A%20%20%7C%200%20%3D%3E%200%0A%20%20%7C%201%20%3D%3E%201%0A%20%20%7C%20n%20%2B%202%20%3D%3E%20fib%20n%20%2B%20fib%20(n%20%2B%201)%0A%0A%23eval%20fib%206%0A%23eval%20List.range%2020%20%7C%3E.map%20fib%0A%0Atheorem%20foo%20(x%20y%20%3A%20%E2%84%9D)%20%3A%0A%20%20%20%20(x%2By)%5E3%20%3D%20x%5E3%20%2B%203*x%5E2*y%20%2B%203*x*y%5E2%20%2B%20y%5E3%20%3A%3D%20by%0A%20%20ring%0A%0A%23check%20foo%0A%0Atheorem%20bar%20(x%20%3A%20%E2%84%9D)%20%3A%202*x%20%E2%89%A4%20x%5E2%20%2B%201%20%3A%3D%20by%0A%20%20apply%20le_of_sub_nonneg%0A%20%20calc%0A%20%20%20%200%20%E2%89%A4%20(x%20-%201)%5E2%20%20%20%20%20%3A%3D%20by%20positivity%0A%20%20%20%20_%20%3D%20x%5E2%20%2B%201%20-%202*x%20%3A%3D%20by%20ring%0A%20%20%20%20%0Adef%20fib'%20(n%20%3A%20Nat)%20%3A%20Nat%20%3A%3D%0A%20%20aux%20n%200%201%0Awhere%20aux%0A%20%20%7C%200%2C%20x%2C%20_%20%3D%3E%20x%0A%20%20%7C%20n%2B1%2C%20x%2C%20y%20%3D%3E%20aux%20n%20y%20(x%20%2B%20y)%0A%0A%23eval%20fib'%2010000%0A%0Aopen%20Real%0Anoncomputable%20section%0A%0Adef%20phi%20%3A%3D%20(1%20%2B%20%E2%88%9A5)%20%2F%202%0Adef%20phi'%20%3A%3D%20(1%20-%20%E2%88%9A5)%20%2F%202%0A%0Atheorem%20phi_sq%20%3A%20phi%5E2%20%3D%20phi%20%2B%201%20%3A%3D%20by%0A%20%20field_simp%20%5Bphi%5D%0A%20%20ring_nf%0A%20%20simp%20%5Bsq_sqrt%5D%3B%20ring%0A%0Atheorem%20phi'_sq%20%3A%20phi'%5E2%20%3D%20phi'%20%2B%201%20%3A%3D%20by%0A%20%20field_simp%20%5Bphi'%5D%0A%20%20ring_nf%0A%20%20simp%20%5Bsq_sqrt%5D%3B%20ring%0A%0Atheorem%20fib_eq%20%3A%20%E2%88%80%20n%2C%20fib%20n%20%3D%20(phi%5En%20-%20phi'%5En)%20%2F%20%E2%88%9A5%0A%20%20%7C%200%20%3D%3E%20by%20simp%0A%20%20%7C%201%20%3D%3E%20by%20field_simp%20%5Bphi%2C%20phi'%5D%0A%20%20%7C%20n%2B2%20%3D%3E%20by%0A%20%20%20%20field_simp%20%5Bfib_eq%2C%20pow_add%2C%20phi_sq%2C%20phi'_sq%5D%0A%20%20%20%20ring%0A%0A%23check%20intermediate_value_Icc%0Aopen%20Set%0A%0Aexample%20%3A%20%E2%88%83%20x%20%3A%20%E2%84%9D%2C%20x%5E3%20%2B%202*x%20%2B%201%20%3D%200%20%3A%3D%20by%0A%20%20let%20f%20(x%20%3A%20%E2%84%9D)%20%3A%3D%20x%5E3%20%2B%202*x%20%2B%201%0A%20%20suffices%200%20%E2%88%88%20f%20''%20Icc%20(-1)%201%20by%0A%20%20%20%20simp%20%5Bf%5D%20at%20this%0A%20%20%20%20tauto%0A%20%20apply%20intermediate_value_Icc%0A%20%20.%20norm_num%0A%20%20.%20fun_prop%0A%20%20.%20simp%20%5Bf%5D%3B%20norm_num%0A

Lean and Mathlib

Very few mathematicians were using formal methods in 2017.

Things have changed dramatically since then:

Mathlib has almost 1.6 million lines of code.

The Lean Zulip channel has 9.5K members, about 850 active
in any two-week period.

There are have been a number of celebrated successes.
There are been a number of articles in the general media.

There are meetings, workshops, and summer schools related
to Lean.

There is growing interest and enthusiasm in the mathematical
community.


https://github.com/leanprover-community/mathlib4
https://leanprover-community.github.io/mathlib_stats.html
https://leanprover.zulipchat.com/
https://leanprover-community.github.io/events.html

Lean and Mathlib

Some history:

® The Lean project was launched in 2013 by Leonardo de
Moura, with Soonho Kong.

® |n 2017, Mathlib was separated from the main repository, and
the Lean Community was born.

® |ean 4 was officially released in 2023, with de Moura and
Sebastian Ullrich as principal developers.

® The Lean Focused Research Organization was launched in
2023.

It's an open source project: many people have contributed code,
libraries, tooling, infrastructure, documentation, teaching
materials, and more.


https://leanprover-community.github.io/
https://lean-fro.org/

Lean and Mathlib

v L Lean community

<« G = leanprover-community.github.o

Lean Community

Community
Zulip chat
GitHub
Blog
Community information
Teams
Papers about Lean
Projects using Lean
Teaching using Lean
Events

Installation
Get started
Debian/Ubuntu installation
Generic Linux installation
MacOS installation
Windows installation
Online version (no

installation)

Using Lake (build system)

Documentation

Learning resources (start

o

Community

Lean and its Mathematical Library
The Lean theorem prover is a proof assistant developed principally by Leonardo de Moura.

The community recently switched from using Lean 3 to using Lean 4. This website is still being updated, and
some pages have outdated information about Lean 3 (these pages are marked with a prominent banner). The old
Lean 3 community website has been archived.

The Lean mathematical library, mathlib, is a community-driven effort to build a unified library of mathematics
formalized in the Lean proof assistant. The library also contains definitions useful for programming. This project
is very active, with many regular contributors and daily activity.

You can get a bird's-eye view of what is in the mathlib library by reading the library overview, and read about
recent additions on our blog. The design and community organization of mathlib are described in the 2020 article




Lean and Mathlib

Some achievements:

® a formalization of perfectoid spaces (Buzzard, Commelin, and
Massot)

e the liquid tensor experiment (Commelin, Topaz, and many
others)

® a formalization of the sphere eversion theorem (Massot, Nash,
and van Doorn)

® Mehta's formalization of Campos, Griffiths, Morris, and
Sahasrabudhe's lower bounds in Ramsey theory

® the formalization of the Gowers, Green, Manners, and Tao
proof of the Polynomial Freiman-Ruzsa conjecture

® 3 formalized consistency proof for Quine's NF by Holmes and
Wilshaw.


https://leanprover-community.github.io/lean-perfectoid-spaces/
https://github.com/leanprover-community/lean-liquid
https://leanprover-community.github.io/sphere-eversion/
https://xenaproject.wordpress.com/2023/11/04/formalising-modern-research-mathematics-in-real-time/
https://teorth.github.io/pfr/
https://leanprover-community.github.io/con-nf/

Lean and Mathlib

Good press:

Quanta: “Building the Mathematical Library of the Future”

Quanta: “At the Math Olympiad, Computers Prepare to Go
for the Gold”

Nature: “Mathematicians Welcome Computer-Assisted Proof
in ‘Grand Unification’ Theory"”

Quanta: “Proof Assistant Makes Jump to Big-League Math”
New York Times: “A.l. is Coming for Mathematics Too"

Quanta: “'‘A-Team’ of Math Proves a Critical Link Between
Addition and Sets”

Scientific American: “Al Will Become Mathematicians’
‘Co-Pilot’”


https://www.quantamagazine.org/building-the-mathematical-library-of-the-future-20201001/
https://www.quantamagazine.org/at-the-international-mathematical-olympiad-artificial-intelligence-prepares-to-go-for-the-gold-20200921/
https://www.quantamagazine.org/at-the-international-mathematical-olympiad-artificial-intelligence-prepares-to-go-for-the-gold-20200921/
https://www.nature.com/articles/d41586-021-01627-2
https://www.nature.com/articles/d41586-021-01627-2
https://www.quantamagazine.org/lean-computer-program-confirms-peter-scholze-proof-20210728/
https://www.nytimes.com/2023/07/02/science/ai-mathematics-machine-learning.html
https://www.quantamagazine.org/a-team-of-math-proves-a-critical-link-between-addition-and-sets-20231206/
https://www.quantamagazine.org/a-team-of-math-proves-a-critical-link-between-addition-and-sets-20231206/
https://www.scientificamerican.com/article/ai-will-become-mathematicians-co-pilot/
https://www.scientificamerican.com/article/ai-will-become-mathematicians-co-pilot/

Lean and Mathlib

A.IL Is Coming for Mathematics, Too

For thousands of years, mathematicians have adapted to the

latest advances in logic and reasoning. Are they ready for artificial
intelligence?

Fsetiaee S [




Karlsruhe connections

Sebastian Ullrich
® master’s thesis under Avigad and Gregor Snelting
® PhD under Snelting
® Co-developer of Lean 4
® Head of Engineering and co-founder of the Lean FRO

Jakob von Raumer

® master’s thesis under Avigad, Awodey, and Snelting
® member of the programming paradigms group

Marc Huisinga

® master's thesis under Ullrich
® Research Software Engineer, Lean FRO

Markus Himmel

® bachelor's thesis under Ullrich
® Research Software Engineer, Lean FRO



Formal methods in mathematics

The Bulletin of the American Mathematical Society just ran two
consecutive special issues on new technologies for mathematics,
Will Machines Change Mathematics?

The collection explored:

e formalization and proof assistants

Al for mathematics

automated reasoning for mathematics

social, ethical consequences of the new technologies.


https://www.ams.org/journals/bull/2024-61-02

Formal methods in mathematics

MATHEMATICS AND THE FORMAL TURN

JEREMY AVIGAD

ABSTRACT. Since the early twentieth century, it has been understood that
mathematical definitions and proofs can be represented in formal systems sys-
tems with precise grammars and rules of use. Building on such foundations,
computational proof assistants now make it possible to encode mathematical
knowledge in digital form. This article enumerates some of the ways that these
and related technologies can help us do mathematics.

INTRODUCTION

One of the most striking contributions of modern logic is its demonstration
that mathematical definitions and proofs can be represented in formal axiomatic
systems. Among the earliest were Zermelo’s axiomatization of set theory, which was
introduced in 1908, and the system of ramified type theory, which was presented
by Russell and Whitehead in the first volume of Principia Mathematica in 1911.
These were so successful that Kurt Gédel began his famous 1931 paper on the
incompleteness theorems with the observation that “in them all methods of proof
used today in mathematics are formalized, that is, reduced to a few axioms and
rules of inference.” Cast in this light, Godel’s results are unnerving: no matter what
mathematical methods we subseribe to now or at any point in the future, there will
always be mathematical questions, even ones about the integers, that cannot be
settled on that basis—unless the methods are in fact inconsistent. But the positive



Applications

Some applications:

® verifying mathematics

® building mathematical libraries

® collaborating

e verifying mathematical computation
® using automated reasoning

® using machine learning

® synthesizing neural and symbolic Al

® teaching



Verifying mathematics

On December 5, 2020, Peter Scholze challenged anyone to
formally verify some of his recent work with Dustin Clausen.

Johan Commelin led the response from the Lean community. On
June 5, 2021, Scholze acknowledged the achievement.

“Exactly half a year ago | wrote the Liquid Tensor Experiment blog
post, challenging the formalization of a difficult foundational
theorem from my Analytic Geometry lecture notes on joint work
with Dustin Clausen. While this challenge has not been completed
yet, | am excited to announce that the Experiment has verified the
entire part of the argument that | was unsure about. | find it
absolutely insane that interactive proof assistants are now at the
level that within a very reasonable time span they can formally
verify difficult original research.”


https://github.com/leanprover-community/lean-liquid

Verifying mathematics

On November 9, 2023, W. T. Gowers, Ben Green, Freddie
Manners, and Terence Tao announced a proof of the PFR
conjecture.

On November 18, Tao asked for help verifying it.

Close to 30 members of the Lean community joined him. The
formalization was done by December 5.

See:
® the project page
® the article in Quanta


https://teorth.github.io/pfr/
https://www.quantamagazine.org/a-team-of-math-proves-a-critical-link-between-addition-and-sets-20231206/

Verifying mathematics

Quine introduced his New Foundations system (NF) in 1937.
Its consistency has been a longstanding open question.

Randall Holmes claimed a proof in 2015. Jamie Gabbay also
claimed one. The technical details were overwhelming.

In April 2024, Holmes announced that Sky Wilshaw, a Part IlI
(masters) student at Cambridge, formally verified Holmes' proof.



Verifying mathematics

“l have been convinced for a long time that | saw the path to
proving the result. The problem is that the argument is insanely
detailed and any paper text has something wrong with it. This can
be attributed partly to deficiencies of mine as an expositor, but
since | was the only one who saw it, | had to do the writing. It is
also intrinsic: there is a lot of elaborate and not necessarily
intuitive bookkeeping in the argument, and its very easy to write
things down wrong. | am sure now that (1) the Lean proof is
correct, | read the statements of the conclusions, and it proves the
right thing and (2) the paper as it stands is converging to the right
thing, because Sky is advising me where what | do differs from
what is done in the formal proof, and she appears to follow what |
have written now fairly happily.” (Holmes)



Building mathematical libraries

Lean’s Mathlib currently has almost 1.6 million lines of code.

We can look at:

® the repository

library statistics

APl documentation

® instances of the ring class

classes that the real numbers are instances of

This provides a searchable digital reference and repository of
knowledge.


https://github.com/leanprover-community/mathlib4
https://leanprover-community.github.io/mathlib_stats.html
https://leanprover-community.github.io/mathlib4_docs/
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Ring/Defs.html#Ring
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Real/Basic.html#Real

Collaboration

Digitizing mathematics is a collaborative effort.

The Lean community is a self-governing grassroots organization.
See:

® the web pages

® the community teams

The Lean Zulip channel currently has

® More than 9.5K subscribers
® About 850 active in any 15-day period

® about 1,000 messages every day


https://leanprover-community.github.io/
https://leanprover-community.github.io/teams.html
https://leanprover.zulipchat.com/

Collaboration

The liquid tensor experiment was a model for digital collaboration.

The formalization was in kept in a shared online repository.

® Participants followed an informal blueprint with links to the
repository.

Participants were in constant contact on Zulip.

® | ean made sure the pieces fit together.

Patrick Massot developed Blueprint software to support
collaborative projects like this.

A number of projects, including the sphere eversion project and the
polynomial Freiman-Rusza conjecture project follow this
methodology.



Collaboration

@ Blueprint for the Liq

& > C @ leanprovercommunitygithubio/liquid/sec-normed_groupshtml
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Blueprint for the Liquid Tensor Experiment
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Introduction

1 First part v 1.2 Variants of normed groups
Normed groups are well-studied objects. In this text it will be helpful to work with the more
1.1 Breen— : N
Deligne data ‘general notion of semi-normed group. This drops the separation axiom
lz| =0 <= z = 0butis otherwise the same as a normed group.
1.2 Variants of
normed groups ‘The main difference is that this includes “uglier” objects, but creates a “nicer” category:
semi-normed groups need not be Hausdorff, but quotents by arbitrary (possibly non-closed)
1.3 Spaces of subgroups are naturally semi-normed groups.
convergent power
series Nevertheless, there i the occasional use for the more restrctive notion of normed group,
1.4 Some normed ‘when we come to polyhedral lattices below (see Section L6).
homological In this text, a morphism of (semi)-normed groups will always be bouned. If the morphism is
algebra

supposed o be norm-nonincreasing, this will be mentioned explicily.

1.5 Completions
of locally

Defin n 121 7
constant Let 70 be a real number. An r-normed Z{T!]-module is a semi-normed group V-
functions ;
endowed with an automorphism T: V' — V such that for all v € V we have
1.6 Polyhedral 1) = o]
lattices

“The remainder of this subsection sets up some algebraic variants of semi-normed groups.

1.7 Key technical

result Definition 1.22 4

2 Second part > A pseudo-normed group is an abelian group (M, +), together with an increasing
filtration M, C M of subsets M, indexed by R, such that each M, contains 0, is

3 Bibliography closed under negation, and M, + My, C Mo, c; An example would be M

Ror
M = Qpvith M= {z : Ja] < c}.

Section 1 graph
Section 2 graph A pseudo-normed group M is exhaustive if U, M, = M.
Al pseudo-normed groups that we consider will have a topology on the filtration sets M.
The most general variant i the following notion.
Definition 123
A pseudo-normed group M is CH-filtered if each of the sets M is endowed with a

topological space structure making it a compact Hausdorff space, such that following
maps are all continuous:

« the inclusion M,, M, (for ¢; < ) “« 1+
«_the negation M. — M;



Verifying mathematical computation

Proof assistants can be used to verify the correctness of
mathematical results obtained by computation.

There are efforts to use Lean:
® to verify reductions for optimization problems
® as a scientific programming language
Broader applications of formal verification:

® hardware and software

cyber-physical systems

network protocols

privacy and security

blockchain and decentralized finance


https://github.com/verified-optimization/CvxLean
https://github.com/lecopivo/SciLean

Automated reasoning

Automated reasoning tools hold promise for solving combinatorial
problems in mathematics.

For example, Joshua Brakensiek, Marijn Heule, John Mackey, and
David Narvéaez used a SAT solver to resolve Keller's conjecture:

Quanta, “Computer Search Settles 90-Year-Old Math Problem”

The SAT solver output a proof that was checked with a verified
proof checker.

Josh Clune verified the key mathematical reduction in Lean.


https://www.quantamagazine.org/computer-search-settles-90-year-old-math-problem-20200819
https://github.com/JOSHCLUNE/Keller_reduction

Automated reasoning

‘The Resolution of Keller'

& 5 C & cscmuedy/-mheule/keller/

W Google M CMU M Research B Teaching M Service M Reference B News M Popular M @ JeremyA @ DeepL

Figure 1: Two-dimensional tiing

Keller graphs

Q<% O»»0@

Figure 1: a gap-free tling of the two-dimensional space
with equal-sized square tles. The bold blue edges denote
that two tiles are fully connected.

Figure 2: a partial ting of the three-dimensional space
with equal-sized cubes. The only way to tile the entire
‘space would result in a fully face-sharing square at the
position of the blue squares.

Figure 2: Three-dimensional tiing

Acrucial step in proving Keller's conjecture in the seventh dimension is a reformulation of

the problem as a property of Keller graphs, an invention by Corradi and Szabo in 1950.
The Keller graphs are constructed using two parameters: the dimension n and the shifts.
Each vertex in a Keller graph can be considered a dice with n dots such that each dotis
colored using a palette of 25 colors. The colors come in s pairs of opposite colors. For
‘example, black and white are opposite colors. Red and green are opposite colors as well.
Two vertices (dice) are connected if 1) they have at least two dots that differ in color and

2) they have at least one dot with opposite colors.

Let's consider the graph with n=2 an s=2. For the two pairs of opposite colors we will use
blackiwhite and red/green. Figure 3 shows this graph. Al 16 different dice are shown. The
top dice (black + white) is connected to the left-most dice (red + black) because both dots
are different (requirement 1) and the color of their second dot is opposite (white versus
black, thus requirement 2). The top dice is not connected to the dice with two red dots:
The colors of both dots differ, but they don't have a dot with opposite colors.

Corradi and Szabo showed that Keller's conjecture s false for dimension n if there exists
aKeller graph with dimension n and some shift s such that 2°n dice are fully connected,
Keller's conjecture would have been faise if there were 4 dice that were fully connected in
the shown graph. However, observe that there are not even 3 dice that are fully

connected.

Automated reasoning

Figure 3: a Keller graph

In recent years Kisielewicz and Lysakowska made significant progress regarding Keller's conjecture. In short, they

® Other bookmarks




Automated reasoning

The Happy Ending Theorem (Erdos, Szekeres, and Klein) says that
for every positive n, any sufficiently large finite set of points in
general position contains a convex n-gon.

One can also ask about empty n-gons.
There are infinite sets of points with no empty convex 7-gon.

In 2024, Heule and Scheucher used a SAT solver to show that 30
points guarantee the existence of an empty hexagon, but not 29.

Also in 2024, Subercaseaux, Nawrocki, Gallicchio, Codel, Carneiro,
and Heule verified the reduction to a SAT problem in Lean (and
ran a verified checker on the SAT solver’s proof).


https://arxiv.org/abs/2403.00737
https://arxiv.org/abs/2403.17370

Machine learning

Applications of machine learning to mathematics are a new
frontier.

There have been important machine-learning projects using Mizar,
HOL Light, Metamath, Isabelle, Coq, Lean, and others.

OpenAl got a neural theorem prover for Lean to solve problems
from the International Mathematics Olympiad.

Searching for formally checkable contact provides a clear signal.


https://openai.com/blog/formal-math/

Using symbolic Al and machine learning

Symbolic Al and machine learning have complementary strengths.
It's an important challenge to synthesize the two.

Mathematics is the best place to start. Al can be used for
mathematical discovery as well as verification.

See:

® This survey of automated reasoning for mathematics, and the
references to machine learning there.

® | L MLean
® | ean Copilot


https://www.andrew.cmu.edu/user/avigad/Papers/ar4math.pdf
https://github.com/cmu-l3/llmlean
https://github.com/lean-dojo/LeanCopilot

Teaching

Proof assistants offer a lot of potential for teaching mathematics.

Interaction provides:

® immediate feedback and positive encouragement
® error messages and correction

® information about the current state of a proof

® means to search, experiment, and explore

® increased student engagement

There is a lot of helpful information on the teaching page of the
Lean community web site.


https://leanprover-community.github.io/teaching/

Teaching

Some of my favorite teaching resources:

® The Natural Number Game
® The Set Theory Game

® The Mechanics of Proof

® \erbose Lean

® How to Prove it With Lean
® Mathematics in Lean

® | ogic and Mechanized Reasoning

Lean’s widgets library offers promising opportunities.


https://adam.math.hhu.de/
https://adam.math.hhu.de/
https://hrmacbeth.github.io/math2001/
https://leanprover-community.github.io/mathematics_in_lean
https://djvelleman.github.io/HTPIwL/
https://leanprover-community.github.io/mathematics_in_lean
https://avigad.github.io/lamr/
https://github.com/leanprover-community/ProofWidgets4

Why formal methods

Formal technology can help us:

o verify results,

® build mathematical libraries,

® explore new concepts,

® collaborate,

® teach mathematics,

® carry out mathematical computation more rigorously,

® explore applications of automated reasoning and machine
learning, and

® discover new mathematics.

Digital mathematical technology is transformative, and has a lot to
contribute to mathematics.



