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A brief history of proof theory

Before the 19th century: There is no sharp distinction
between constructive and nonconstructive reasoning in
mathematics.

19th century: Foundational interest in the ‘“concrete”
content of abstract reasoning. Dedekind, Cantor, etc.
introduce radically nonconstructive methods to mathe-
matics. Kronecker objects.

Early 20th century: Hilbert tries to reconcile construc-
tive and classical reasoning by justifying the latter on
finitistic grounds.

1931: Godel shows this to be infeasible.

Modified Hilbert’'s program: justify classical theories
on constructive grounds; more generally, elucidate the
relationships between them.
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Bridging the gap
e The Godel-Gentzen double-negation interpretation
reduces PA to HA, Z, to Z;, ZF to IZF.

e The Friedman-Dragalin translation recovers N3 the-
orems.

But these methods do not work for SI, I¥,, “1—-AC,
KP. For these purposes, we can turn to

e Ordinal analysis
e Functional interpretation

These methods provide additional information, but from
the reductive point of view, they are indirect.

What goes wrong? Some examples:

e T he double-negation interpretation of 21 induc-
tion involves induction on predicates of the form
——3dx A(xz,y) (or equivalently, =V -A(x,y)).

e The double negation translation of the >} axiom of
choice is of the form

Ve ——3Y ¢(z,Y) — —=—-3Y Vz o(z,Y,)
where ¢ is arithmetic.



Repairing the double-negation translation

We can supplement the double-negation translation with
a generalization of the Friedman-Dragalin translation,
and reduce

o S1toIS;3

e 5> to 15>

e I¥; to IS

e PAto HA

e >1—AC to X1—AC"

e KPtoIKP
— with or without infinity
— with or without N as urelements
— with foundation for all or just >; formulae

— without extensionality in IKP



Credits

Buchholz '81: Reduces theories of iterated inductive
definitions ID, to intuitionistic theories of strictly posi-
tive inductive definitions (and even accessibility ones).

Coquand '98: Inspired by the Buchholz translation
(with @ = 1), finds a remarkably simple reduction for
1>,.

Avigad '98: Recasts the Coquand interpretation slightly,
and extends it to the other theories mentioned.

(Coquand and Hofmann independently obtained a dif-
ferent reduction for S3.)



The idea

Intuitionistic logic has a well-known constructive inter-
pretation. Unfortunately, the negation of a formula,
@ — 1, carries no useful constructive information.

e [ he Friedman-Dragalin solution: replace L with a
formula Jz A(x).

e T he Buchholz-Coquand solution: replace L. dynam-
ically; reinterpret implication as well.



A simple translation

Start with an intuitionistic language L, conditions p,q,.. .,
an order relation <, and a forcing notion p I A for
atomic formulae A.

Assume p IF A is monotone, and p - L implies p IF A.

Define:
plE(eAY) = plEeApl-d
plE(pVvYy) = plkpVvplEay
plE(p—v) = Vg=p(glrp—ql-y)
plEVYrp = Vrplkp
plFdr e = dxplke

Write Ik ¢ if every condition forces .

Notes:
1. Treat L as an atomic formula
2. Monotonicity holds

3. If one has a “meet” operation, we have

pl-(p—=v)=VYq(qlFp —=pAqlF9)



T he main theorem

Theorem. Suppose I' proves ¢ intuitionistically. Then
I T proves I .

Corollary. Suppose in an intuitionistic theory 77 we can
define such a forcing relation and prove that every axiom
of another theory T is forced. Then whenever T proves
o, T proves IF ¢

The trick is to pick useful forcing conditions.



Interpreting 7I>; in X! + (MP,,)

Under the double-negation interpretation, induction on
Jx B(x,y) translates to induction on =Vx —=B(x,y). We
would be happier if the latter formula were again ;.

For primitive recursive matrices, Markov's principle takes
the form

Vo A(z) — Jz —A(x) (MP,,)

In IX%, (MP,) implies that the double-negation inter-
pretation of any 2 formula is again 21, so [2; is in-
terpretable in IX' 4+ (MP,,).
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Interpreting Markov’s principle

To interpret (M,.), use the forcing framework. Condi-
tions p are finite sets of I; sentences,

{Ve A1(x),Vx Az(x),... Vo Ap(x)}.
Define p < q to be p D q.

Write p = ¢ for
Jy (A1(y) Ao A Ap(y) — 0).

For 6 atomic, define pl-60 to be pt+ 6.

Note that we have

pl-(p—=v)=Vq(qglFp —=pUql-1).
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Some details

Lemma. The following are provable in I¥}:
1. Vo A(x) IF Vo A(x)

2. If plF =Vz A(x), then plF Jdz —-A(x).

Proof. For 1, we have

Ve A(x) IF Vo A(x) Vz (Vx A(x) IF A(2))
Vz (Vo A(x) F A(2))

Vz Jy (A(y) — A(2)).

For 2, let p be the set {Vx Bi(x),...,Vx Bi(x)}, and
suppose p Ik =Vax A(xz). Then whenever g IF Vz A(x), we
have p,q I L.

By 1, we have p,Vz A(z) IF L. In other words,

Jy (Bi(y) A ... ABr(y) ANA(y) — L)
which implies
Jz,y (B1(y) A ... A Be(y) — —A(2)),
which is to say
Jdr (p - A(x)).
But this is just p - 3z A(x).
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Conclusion

Theorem. If I¥} 4+ (MP,) proves ¢ then then I¥}
proves I .

Proof. The preceeding lemma handles (MP,,), induc-
tion on dx B(x,y) translates to induction on p IF 32 B(x,vy),
and the quantifier-free axioms are easy.

Corollary. I3} 4 (MP,;), and hence I%;, are conserva-
tive over I} for MY sentences.

Proof. | Vx Jy A(x,y) is equivalent to Vx 3y A(x,y).
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Admissible set theory

In the language of set theory, take equality to be defined

by

r=y=Vz(z€x< zcy).

The axioms of Kripke-Platek set theory (KP) are as
follows:

1.

2.

Extensionality: r =y — (z € w — y € w)
Pair: 3x (y € x ANz € x)
Union: 3z Vz € y Vw € z (w € x)

Ap separation: Iz Vz (z € x — z € y A p(z)) where
@ iIs Ag and x does not occur in ¢

Ao collection: Vx € z Ay p(x,y) — Jw Vx € z Ty €
w p(x,y), where ¢ is Ag

Foundation: Vx (Vy € = ¥(y) — ¥(x)) — Vz ¢ (x),
for arbitrary

Note that the double-negation interpretation of collec-
tion is equivalent to

Ve € z =Vy ¢ (z,y) — —Vw =z € z =Vy € w =™ (z, y).
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A three-step reduction
1. Remove extensionality:
interpret KP in KP™

2. Apply a double-negation translation:
interpret KP™ in IKP™% 4 (MP,es)

3. Use a forcing relation:
interpret IKP"™# + (MP,,) in IKP™

15



Eliminating extensionality

Life in an intensional universe can be strange. For ex-
ample, there may be many “empty sets’. That is: we
can have simultaneously,

Vz(z€x),Vz (2 €y),x € w,y &w.
Friedman: to interpret extensionality, say "z is isomor-
phic to y,”" =z ~y, if
VuezIwey(u~v)AVu €y v €z (u~wv).

Then replace “element of” by “isomorphic to an ele-
ment of"”; i.e. define

re*y=Juex (y~u).

To make this work in the context of KP, one needs to
show that isomorphism is A definable.

Theorem. KP is interpretable in KP™t,
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The intermediate theory

Define an intermediate theory, IKP™# with axioms:
1. Pair and union: as before
2. Ao separation: for negative formulae only

3. A collection#:

Ve € z Jy p(z,y) — Jw Vz € z -Vy € w ~p(x,y)

where ¢ is Ap and negative.
4. Foundation: for negative formulae only

Define an axiom schema, (MP,;):
—Vz o — Jw -V € w ~p

for Ap formulae .

Theorem. KP™ is interpretable in IKP™:# + (MPy.s).
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The forcing relation

Take conditions p to be finite sets of I} setences,

{Vz p1(z),Vz p2(2), ...,V pr(x)},
where each ¢; is Ap.

Write p - 4 for
Jy (Vz ey pi(x) A...A\Vz €y pr(x) — ).

For 6 atomic, define pl-60 to be p+ 6.
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Some details

Lemma. If ¢ is negative and Ag, then IKP™ proves
the all the following:

1. plF ¢ is equivalent to pF .
2. If plF =Vx ¢ then plk Jw -V € w ¢

3. If pl-Vx € ydz p then pl-Jw Ve € y =Vz € w —p

Theorem. [KP™%# 4 (MP,.) is interpretable in IKP" .

Corollary. If KP™ proves Vz 3y ¢, where ¢ is Ao, then
IKP"™ proves Vz Jw —Vy € w —p.
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Interpreting >1-AC

Z}—AC is a theory in the language of second-order arith-
metic with axioms

1. the quantifier-free axioms of PA
2. induction
3. arithmetic comprehension

4. arithmetic choice:
Ve 3Y o(x,Y) — Y Vz po(x,Y;)

where ¢ is arithmetic and the second “Y" codes a
sequence of sets.

To interpret Z%—AC, replace arithmetic choice by

Ve 3Y p(x,Y) > AW Ve IY € W o(z,Y),

where W codes a countable collection of sets. Then
“proceed as before,” using a version of (MP) for arith-
metic formulae.
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Final questions

1. We now have yet another way of showing that PA

is N> conservative over HA. How does this relate to
other methods?

2. Can this be extended to other theories, like ATRy,
KPl, or KP:i7?
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