Interpreting classical theories in constructive ones

Jeremy Avigad

Department of Philosophy

Carnegie Mellon University

avigad+@cmu.edu

http://macduff.andrew.cmu.edu

A brief history of proof theory

Before the 19th century: There is no sharp distinction between constructive and nonconstructive reasoning in mathematics.

19th century: Foundational interest in the "concrete" content of abstract reasoning. Dedekind, Cantor, etc. introduce radically nonconstructive methods to mathematics. Kronecker objects.

Early 20th century: Hilbert tries to reconcile constructive and classical reasoning by justifying the latter on finitistic grounds.

1931: Gödel shows this to be infeasible.

Modified Hilbert's program: justify classical theories on constructive grounds; more generally, elucidate the relationships between them.

Classical theories vs. constructive theories

S_2^{1}	IS_2^{1}
$I\Sigma_1$	$I\Sigma_1^i, PRA$
$\begin{array}{c} PA, ACA_0\\ \boldsymbol{\Sigma}_1^1 - AC_0, KP \end{array}$	HA, T ML, IKP
$\Sigma_1^1 - AC, \ \widehat{ID}_1$	$\Sigma_1^1 - AC^i, ML + U$
$ATR_{\theta}, \ \widehat{ID}_{<\omega}, \ KPl_{\theta}$	$\widehat{ID}_{<\omega}, ML + U_{<\omega}$
$\begin{array}{ccc} KP\omega, & ID_1 \\ \Pi_1^1 - CA_0^- \end{array}$	$\begin{array}{l} IKP\omega, ID_1^{i,acc} \\ CZF, ML + U^e \end{array}$
$\Delta_2^1 - CA_0, KPi$	$T_0, IKPi$
Z_2	Z_2^i
ZFC	IZF

Bridging the gap

- The Gödel-Gentzen double-negation interpretation reduces PA to HA, Z_2 to Z_2^i , ZF to IZF.
- The Friedman-Dragalin translation recovers Π⁰₂ theorems.

But these methods do not work for S_2^1 , $I\Sigma_1$, $\Sigma_1^1 - AC$, KP. For these purposes, we can turn to

- Ordinal analysis
- Functional interpretation

These methods provide additional information, but from the reductive point of view, they are indirect.

What goes wrong? Some examples:

- The double-negation interpretation of Σ_1 induction involves induction on predicates of the form $\neg \neg \exists x \ A(x,y)$ (or equivalently, $\neg \forall x \ \neg A(x,y)$).
- The double negation translation of the Σ^1_1 axiom of choice is of the form

$$\forall x \neg \neg \exists Y \varphi(x, Y) \rightarrow \neg \neg \exists Y \forall x \varphi(x, Y_x)$$

where φ is arithmetic.

Repairing the double-negation translation

We can supplement the double-negation translation with a generalization of the Friedman-Dragalin translation, and reduce

- S_2^1 to IS_2^1
- S_2 to IS_2
- $I\Sigma_1$ to $I\Sigma_1^i$
- PA to HA
- $\Sigma_1^1 AC$ to $\Sigma_1^1 AC^i$
- KP to IKP
 - with or without infinity
 - with or without $\ensuremath{\mathbb{N}}$ as urelements
 - with foundation for all or just Σ_1 formulae
 - without extensionality in *IKP*

Credits

Buchholz '81: Reduces theories of iterated inductive definitions ID_{α} to intuitionistic theories of strictly positive inductive definitions (and even accessibility ones).

Coquand '98: Inspired by the Buchholz translation (with $\alpha = 1$), finds a remarkably simple reduction for $I\Sigma_1$.

Avigad '98: Recasts the Coquand interpretation slightly, and extends it to the other theories mentioned.

(Coquand and Hofmann independently obtained a different reduction for S_2^1 .)

The idea

Intuitionistic logic has a well-known constructive interpretation. Unfortunately, the negation of a formula, $\varphi \rightarrow \bot$, carries no useful constructive information.

- The Friedman-Dragalin solution: replace \perp with a formula $\exists x \ A(x)$.
- The Buchholz-Coquand solution: replace \perp dynamically; reinterpret implication as well.

A simple translation

Start with an intuitionistic language L, conditions p, q, \ldots , an order relation \prec , and a forcing notion $p \Vdash A$ for atomic formulae A.

Assume $p \Vdash A$ is monotone, and $p \Vdash \bot$ implies $p \Vdash A$.

Define:

$$\begin{array}{rcl} p \Vdash (\varphi \land \psi) &\equiv & p \Vdash \varphi \land p \Vdash \psi \\ p \Vdash (\varphi \lor \psi) &\equiv & p \Vdash \varphi \lor p \Vdash \psi \\ p \Vdash (\varphi \rightarrow \psi) &\equiv & \forall q \preceq p \ (q \Vdash \varphi \rightarrow q \Vdash \psi) \\ & p \Vdash \forall x \ \varphi &\equiv & \forall x \ p \Vdash \varphi \\ & p \Vdash \exists x \ \varphi &\equiv & \exists x \ p \Vdash \varphi \end{array}$$

Write $\Vdash \varphi$ if every condition forces φ .

Notes:

- 1. Treat \perp as an atomic formula
- 2. Monotonicity holds
- 3. If one has a "meet" operation, we have

$$p \Vdash (\varphi
ightarrow \psi) \equiv orall q \; (q \Vdash \varphi
ightarrow p \land q \Vdash \psi)$$

The main theorem

Theorem. Suppose Γ proves φ intuitionistically. Then $\Vdash \Gamma$ proves $\Vdash \varphi$.

Corollary. Suppose in an intuitionistic theory T' we can define such a forcing relation and prove that every axiom of another theory T is forced. Then whenever T proves φ , T' proves $\Vdash \varphi$

The trick is to pick useful forcing conditions.

Interpreting $I\Sigma_1$ in $I\Sigma_1^i + (MP_{pr})$

Under the double-negation interpretation, induction on $\exists x \ B(x,y)$ translates to induction on $\neg \forall x \ \neg B(x,y)$. We would be happier if the latter formula were again Σ_1 .

For primitive recursive matrices, Markov's principle takes the form

$$\neg \forall x \ A(x) \to \exists x \ \neg A(x) \tag{MP}_{pr}$$

In $I\Sigma_{1}^{i}$, (MP_{pr}) implies that the double-negation interpretation of any Σ_{1} formula is again Σ_{1} , so $I\Sigma_{1}$ is interpretable in $I\Sigma_{1}^{i} + (MP_{pr})$.

Interpreting Markov's principle

To interpret (M_{pr}) , use the forcing framework. Conditions p are finite sets of Π_1 sentences,

$$\{\forall x \ A_1(x), \forall x \ A_2(x), \ldots, \forall x \ A_k(x)\}.$$

Define $p \leq q$ to be $p \supseteq q$.

Write $p \vdash \varphi$ for

$$\exists y \ (A_1(y) \land \ldots \land A_k(y) \to \varphi).$$

For θ atomic, define $p \Vdash \theta$ to be $p \vdash \theta$.

Note that we have

$$p \Vdash (\varphi
ightarrow \psi) \equiv orall q \; (q \Vdash \varphi
ightarrow p \cup q \Vdash \psi).$$

Some details

Lemma. The following are provable in $I\Sigma_1^i$:

- 1. $\forall x \ A(x) \Vdash \forall x \ A(x)$
- 2. If $p \Vdash \neg \forall x A(x)$, then $p \Vdash \exists x \neg A(x)$.

Proof. For 1, we have

$$egin{array}{rcl} orall x \ A(x) &oddsymbol{ert} \forall x \ A(x) &oddsymbol{ert} A(x) &oddsymbol{ert} A(z)) \ &\equiv & orall z \ (orall x \ A(x) &oddsymbol{ert} A(z)) \ &\equiv & orall z \ (orall x \ A(x) &oddsymbol{ert} A(z)) \ &\equiv & orall z \ \exists y \ (A(y) ooo A(z)). \end{array}$$

For 2, let p be the set $\{\forall x \ B_1(x), \ldots, \forall x \ B_k(x)\}$, and suppose $p \Vdash \neg \forall x \ A(x)$. Then whenever $q \Vdash \forall x \ A(x)$, we have $p, q \Vdash \bot$.

By 1, we have $p, \forall x \ A(x) \Vdash \bot$. In other words,

$$\exists y \ (B_1(y) \land \ldots \land B_k(y) \land A(y) \to \bot)$$

which implies

$$\exists x, y \ (B_1(y) \land \ldots \land B_k(y) \to \neg A(x)),$$

which is to say

$$\exists x \ (p \vdash A(x)).$$

But this is just $p \Vdash \exists x A(x)$.

12

Conclusion

Theorem. If $I\Sigma_1^i + (MP_{pr})$ proves φ then then $I\Sigma_1^i$ proves $\Vdash \varphi$.

Proof. The preceding lemma handles (MP_{pr}) , induction on $\exists x \ B(x, y)$ translates to induction on $p \Vdash \exists x \ B(x, y)$, and the quantifier-free axioms are easy.

Corollary. $I\Sigma_1^i + (MP_{pr})$, and hence $I\Sigma_1$, are conservative over $I\Sigma_1^i$ for Π_2^0 sentences.

Proof. $\Vdash \forall x \exists y A(x,y)$ is equivalent to $\forall x \exists y A(x,y)$.

Admissible set theory

In the language of set theory, take equality to be *defined* by

$$x = y \equiv \forall z \ (z \in x \leftrightarrow z \in y).$$

The axioms of Kripke-Platek set theory (KP) are as follows:

- 1. Extensionality: $x = y \rightarrow (x \in w \rightarrow y \in w)$
- 2. Pair: $\exists x \ (y \in x \land z \in x)$
- 3. Union: $\exists x \ \forall z \in y \ \forall w \in z \ (w \in x)$
- 4. Δ_0 separation: $\exists x \ \forall z \ (z \in x \leftrightarrow z \in y \land \varphi(z))$ where φ is Δ_0 and x does not occur in φ
- 5. Δ_0 collection: $\forall x \in z \exists y \ \varphi(x, y) \rightarrow \exists w \ \forall x \in z \ \exists y \in w \ \varphi(x, y)$, where φ is Δ_0
- 6. Foundation: $\forall x \ (\forall y \in x \ \psi(y) \rightarrow \psi(x)) \rightarrow \forall x \ \psi(x)$, for arbitrary ψ

Note that the double-negation interpretation of collection is equivalent to

$$\forall x \in z \neg \forall y \neg \varphi^N(x, y) \rightarrow \neg \forall w \neg \forall x \in z \neg \forall y \in w \neg \varphi^N(x, y).$$

A three-step reduction

- 1. Remove extensionality: interpret *KP* in *KP*^{int}
- 2. Apply a double-negation translation: interpret KP^{int} in $IKP^{int,\#} + (MP_{res})$
- 3. Use a forcing relation:

interpret $IKP^{int,\#} + (MP_{res})$ in IKP^{int}

Eliminating extensionality

Life in an intensional universe can be strange. For example, there may be many "empty sets". That is: we can have simultaneously,

$$\forall z \ (z \not\in x), \forall z \ (z \not\in y), x \in w, y \not\in w.$$

Friedman: to interpret extensionality, say "x is isomorphic to y," $x \sim y$, if

$$\forall u \in x \; \exists v \in y \; (u \sim v) \land \forall u \in y \; \exists v \in x \; (u \sim v).$$

Then replace "element of" by "isomorphic to an element of"; i.e. define

$$x \in^* y \equiv \exists u \in x \ (y \sim u).$$

To make this work in the context of KP, one needs to show that isomorphism is Δ definable.

Theorem. KP is interpretable in KP^{int} .

The intermediate theory

Define an intermediate theory, $IKP^{int,\#}$, with axioms:

- 1. Pair and union: as before
- 2. Δ_0 separation: for negative formulae only
- 3. Δ_0 collection[#]:

 $\forall x \in z \exists y \varphi(x, y) \to \exists w \ \forall x \in z \ \neg \forall y \in w \ \neg \varphi(x, y)$ where φ is Δ_0 and negative.

4. Foundation: for negative formulae only

Define an axiom schema, (MP_{res}) :

 $\neg \forall x \; \varphi \to \exists w \; \neg \forall x \in w \; \neg \varphi$

for Δ_0 formulae φ .

Theorem. KP^{int} is interpretable in $IKP^{int,\#} + (MP_{res})$.

The forcing relation

Take conditions p to be finite sets of Π_1 setences, $\{\forall x \varphi_1(x), \forall x \varphi_2(x), \dots, \forall x \varphi_k(x)\},\$ where each φ_i is Δ_0 .

Write
$$p \vdash \psi$$
 for
 $\exists y \ (\forall x \in y \ \varphi_1(x) \land \ldots \land \forall x \in y \ \varphi_k(x) \to \psi).$

For θ atomic, define $p \Vdash \theta$ to be $p \vdash \theta$.

Some details

Lemma. If φ is negative and Δ_0 , then IKP^{int} proves the all the following:

- 1. $p \Vdash \varphi$ is equivalent to $p \vdash \varphi$.
- 2. If $p \Vdash \neg \forall x \varphi$ then $p \Vdash \exists w \neg \forall x \in w \varphi$
- 3. If $p \Vdash \forall x \in y \exists z \varphi$ then $p \Vdash \exists w \forall x \in y \neg \forall z \in w \neg \varphi$

Theorem. $IKP^{int,\#} + (MP_{res})$ is interpretable in IKP^{int} .

Corollary. If KP^{int} proves $\forall x \exists y \varphi$, where φ is Δ_0 , then IKP^{int} proves $\forall x \exists w \neg \forall y \in w \neg \varphi$.

Interpreting $\Sigma_1^1 - AC$

 Σ^1_1-AC is a theory in the language of second-order arithmetic with axioms

- 1. the quantifier-free axioms of PA
- 2. induction
- 3. arithmetic comprehension
- 4. arithmetic choice:

$$\forall x \; \exists Y \; \varphi(x,Y) \to \exists Y \; \forall x \; \varphi(x,Y_x)$$

where φ is arithmetic and the second "Y" codes a sequence of sets.

To interpret $\Sigma_1^1 - AC$, replace arithmetic choice by

 $\forall x \exists Y \varphi(x, Y) \to \exists W \forall x \exists Y \in W \varphi(x, Y),$

where W codes a countable collection of sets. Then "proceed as before," using a version of (MP) for arithmetic formulae.

Final questions

- 1. We now have yet another way of showing that PA is Π_2 conservative over HA. How does this relate to other methods?
- 2. Can this be extended to other theories, like ATR_0 , KPl, or KPi?