
Interactive theorem proving,
automated reasoning,

and dynamical systems

Jeremy Avigad

Department of Philosophy and
Department of Mathematical Sciences

Carnegie Mellon University

April 2016

Formal methods

“Formal methods” = logic-based methods in CS, in:

• automated reasoning

• hardware and software verification

• artificial intelligence

• databases

Formal methods

Based on logic and formal languages:

• syntax: terms, formulas, connectives, quantifiers, proofs

• semantics: truth, validity, satisfiability, reference

They can be used for:

• finding things (SAT solvers, constraint solvers, database query
languages)

• proving things (automated theorem proving, model checking)

• verifying correctness (interactive theorem proving)

Formal verification in industry

• Intel and AMD use ITP to verify processors.

• Microsoft uses formal tools such as Boogie and SLAM to
verify programs and drivers.

• Xavier Leroy has verified the correctness of a C compiler.

• Airbus uses formal methods to verify avionics software.

• Toyota uses formal methods for hybrid systems to verify
control systems.

• Formal methods were used to verify Paris’ driverless line 14 of
the Metro.

• The NSA uses (it seems) formal methods to verify
cryptographic algorithms.

Formal verfication in mathematics

There is no sharp line between industrial and mathematical
verification:

• Designs and specifications are expressed in mathematical
terms.

• Claims rely on background mathematical knowledge.

Mathematics is more interesting:

• Problems are conceptually deeper, less heterogeneous.

• More user interaction is needed.

Formal methods in mathematics

“Conventional” computer-assisted proof:

• carrying out long, difficult, computations

• proof by exhaustion

Formal methods for discovery:

• finding mathematical objects

• finding proofs

Formal methods for verification:

• verifying ordinary mathematical proofs

• verifying computations.

Formal methods in mathematics

Questions:

• How can computers help us reason about dynamical systems?

• How can computers help make results and computations more
reliable?

Outline

• Formal methods

• Interactive theorem proving

• Automated reasoning

• Verified computation

Interactive theorem proving

Working with a proof assistant, users construct a formal axiomatic
proof.

In most systems, this proof object can be extracted and verified
independently.

Interactive theorem proving

Some systems with large mathematical libraries:

• Mizar (set theory)

• HOL (simple type theory)

• Isabelle (simple type theory)

• HOL light (simple type theory)

• Coq (constructive dependent type theory)

• ACL2 (primitive recursive arithmetic)

• PVS (classical dependent type theory)

Interactive theorem proving

Some theorems formalized to date:

• the prime number theorem

• the four-color theorem

• the Jordan curve theorem

• Gödel’s first and second incompleteness theorems

• Dirichlet’s theorem on primes in an arithmetic progression

• Cartan fixed-point theorems

There are good libraries for elementary number theory, real and
complex analysis, point-set topology, measure-theoretic probability,
abstract algebra, Galois theory, . . .

Interactive theorem proving

Georges Gonthier and coworkers verified the Feit-Thompson Odd
Order Theorem in Coq.

• The original 1963 journal publication ran 255 pages.

• The formal proof is constructive.

• The development includes libraries for finite group theory,
linear algebra, and representation theory.

The project was completed on September 20, 2012, with roughly

• 150,000 lines of code,

• 4,000 definitions, and

• 13,000 lemmas and theorems.

Interactive theorem proving

Hales announced the completion of the formal verification of the
Kepler conjecture (Flyspeck) in August 2014.

• Most of the proof was verified in HOL light.

• The classification of tame graphs was verified in Isabelle.

• Verifying several hundred nonlinear inequalities required
roughly 5000 processor hours on the Microsoft Azure cloud.

Interactive theorem proving

Fabian Immler is working on verifying properties of dynamical
systems in Isabelle.

• Proved existence and uniqueness of solutions to ODE’s
(Picard-Lindelöf and variations).

• With code extraction, can compute solutions. Following
Tucker, has verified enclosures for the Lorenz attractor.

Interactive theorem proving

Johannes Hölzl, Luke Serafin, and I have verified the central limit
theorem in Isabelle.

The proof relied on Isabelle’s libraries for analysis, topology,
measure theory, measure-theoretic probability.

We proved:

• the portmanteau theorem (characterizations of weak
convergence)

• Skorohod’s theorem

• properties of characteristic functions and convolutions

• properties of the normal distribution

• the Levy uniqueness theorem

• the Levy continuity theorem

Interactive theorem proving

theorem (in prob_space) central_limit_theorem:

fixes
X :: "nat ⇒ ’a ⇒ real" and
µ :: "real measure" and
σ :: real and
S :: "nat ⇒ ’a ⇒ real"

assumes
X_indep: "indep_vars (λi. borel) X UNIV" and
X_integrable: "

∧
n. integrable M (X n)" and

X_mean_0: "
∧
n. expectation (X n) = 0" and

σ_pos: "σ > 0" and
X_square_integrable: "

∧
n. integrable M (λx. (X n x)2)" and

X_variance: "
∧
n. variance (X n) = σ2" and

X_distrib: "
∧
n. distr M borel (X n) = µ"

defines
"S n ≡ λx.

∑
i<n. X i x"

shows
"weak_conv_m (λn. distr M borel (λx. S n x / sqrt (n * σ2)))

(density lborel std_normal_density)"

The Lean Theorem Prover

Lean is a new interactive theorem prover, developed principally by
Leonardo de Moura at Microsoft Research, Redmond.

It was “announced” in the summer of 2015.

It is open source, released under a permissive license, Apache 2.0.

See http://leanprover.github.io.

http://leanprover.github.io

The Lean Theorem Prover

The aim is to bring interactive and automated reasoning together,
and build

• an interactive theorem prover with powerful automation

• an automated reasoning tool that
• produces (detailed) proofs,
• has a rich language,
• can be used interactively, and
• is built on a verified mathematical library.

The Lean Theorem Prover

Goals:

• Verify hardware, software, and hybrid systems.

• Verify mathematics.

• Combine powerful automation with user interaction.

• Support reasoning and exploration.

• Support formal methods in education.

• Create an eminently powerful, usable system.

• Bring formal methods to the masses.

The Lean Theorem Prover

Notable features:

• based on a powerful dependent type theory

• written in C++, with multi-core support

• small, trusted kernel with an independent type checker

• standard and HoTT instantiations

• powerful elaborator

• can use proof terms or tactics

• Emacs mode with proof-checking on the fly

• browser version runs in javascript

• already has a respectable library

• automation is now the main focus

The Lean Theorem Prover

structure semigroup [class] (A : Type) extends has_mul A :=

(mul_assoc : ∀ a b c, mul (mul a b) c = mul a (mul b c))

structure monoid [class] (A : Type)

extends semigroup A, has_one A :=

(one_mul : ∀ a, mul one a = a) (mul_one : ∀ a, mul a one = a)

definition pow {A : Type} [s : monoid A] (a : A) : N → A

| 0 := 1

| (n+1) := pow n * a

theorem pow_add (a : A) (m : N) : ∀ n, a^(m + n) = a^m * a^n

| 0 := by rewrite [nat.add_zero, pow_zero, mul_one]

| (succ n) := by rewrite [add_succ, *pow_succ, pow_add,

mul.assoc]

definition int.linear_ordered_comm_ring [instance] :

linear_ordered_comm_ring int := ...

The Lean Theorem Prover

theorem sqrt_two_irrational {a b : N} (co : coprime a b) :

a^2 6= 2 * b^2 :=

assume H : a^2 = 2 * b^2,

have even (a^2),

from even_of_exists (exists.intro _ H),

have even a,

from even_of_even_pow this,

obtain (c : N) (aeq : a = 2 * c),

from exists_of_even this,

have 2 * (2 * c^2) = 2 * b^2,

by rewrite [-H, aeq, *pow_two, mul.assoc, mul.left_comm c],

have 2 * c^2 = b^2,

from eq_of_mul_eq_mul_left dec_trivial this,

have even (b^2),

from even_of_exists (exists.intro _ (eq.symm this)),

have even b,

from even_of_even_pow this,

have 2 | gcd a b,

from dvd_gcd (dvd_of_even ‘even a‘) (dvd_of_even ‘even b‘),

have 2 | 1,
by rewrite [gcd_eq_one_of_coprime co at this]; exact this,

show false,

from absurd ‘2 | 1‘ dec_trivial

The Lean Theorem Prover

theorem is_conn_susp [instance] (n : N−2) (A : Type)

[H : is_conn n A] : is_conn (n .+1) (susp A) :=

is_contr.mk (tr north)

begin

apply trunc.rec, fapply susp.rec,

{ reflexivity },

{ exact (trunc.rec (λa, ap tr (merid a)) (center (trunc n A))) },

{ intro a, generalize (center (trunc n A)),

apply trunc.rec, intro a’, apply pathover_of_tr_eq,

rewrite [transport_eq_Fr,idp_con],

revert H, induction n with [n, IH],

{ intro H, apply is_prop.elim },

{ intros H,

change ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid a’),

generalize a’,

apply is_conn_fun.elim n

(is_conn_fun_from_unit n A a)

(λx : A, trunctype.mk’ n

(ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid x))),

intros,

change ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid a),

reflexivity } }

end

Outline

• Formal methods

• Interactive theorem proving

• Automated reasoning

• Verified computation

Automated reasoning

Ideal: given an assertion, ϕ, either

• provide a proof that ϕ is true (or valid), or

• give a counterexample

Dually: given some constraints either

• provide a solution, or

• prove that there aren’t any.

In the face of undecidability:

• search for proofs

• search for solutions

Automated reasoning

Some fundamental distinctions:

• Domain-general methods vs. domain-specific methods

• Decision procedures vs. search procedures

• “Principled” methods vs. heuristics

Automated reasoning

Domain-general methods:

• Propositional theorem proving

• First-order theorem proving

• Equational reasoning

• Higher-order theorem proving

• Nelson-Oppen “combination” methods

Domain-specific methods:

• Linear arithmetic (integer, real, or mixed)

• Nonlinear real arithmetic (real closed fields, transcendental
functions)

• Algebraic methods (such as Gröbner bases)

Automated reasoning

Formal methods in analysis:

• domain specific: reals, integers

• can emphasize either peformance or rigor

• can get further in restricted domains

Methods:

• quantifier elimination for real closed fields

• linear programming, semidefinite programming

• combination methods

• numerical methods

• heuristic symbolic methods

Symbolic methods

Decision procedures for real closed fields represent a symbolic
approach.

Problems:

• Complexity overwhelms.

• Polynomials may not be expressive enough.

• Undecidability sets in quickly.

How can we integrate numeric approaches?

• Calculations are only approximate.

• We want an exact guarantee.

Numeric methods

Sicun Gao, Ed Clarke, and I proposed a framework that offers:

• More flexibility: arbitrary computable functions

• A restriction: quantification only over bounded domains

• A compromise: approximate decidability (but with an exact
guarantee)

This provides a general framework for thinking about verification
problems.

Numeric methods

Choose a language with 0, +, −, <, ≤, | · |, and symbols for any
computable functions you want.

Fix a “tolerance” δ > 0. We defined:

• ϕ+δ, a slight strengthening of ϕ

• ϕ−δ, a slight weakening of ϕ

such that whenever δ′ ≥ δ ≥ 0, we have

ϕ+δ′ → ϕ+δ → ϕ→ ϕ−δ → ϕ−δ
′
.

Numeric methods

Say a formula ϕ is bounded if every quantifier is of the form
∀x ∈ [s, t] or ∃x ∈ [s, t] .

Theorem. There is an algorithm which, given any bounded
formula ϕ, correctly returns on of the following two answers:

• ϕ is true

• ϕ+δ is false.

For verification problems, think of the first answer as “the system
is safe,” and the second as “a small perturbation of the system is
unsafe.”

Note that there is a grey area where either answer is allowed.

Numeric methods

This is a theoretical result. The practical goal is to implement such
an algorithm.

Gao, Clarke, Soonho Kong, and others are developing a tool,
dReal:

• It focuses on the existential / universal fragment.

• It uses an SMT (“satisfiability modulo theories”) framework.

• It uses IBEX for interval constraint propagation.

• It uses the CAPD library to compute numerical enclosures for
ODE’s.

See https://dreal.github.io

https://dreal.github.io

A heuristic symbolic method

Consider the following implication:

0 < x < y , u < v

=⇒
2u + exp(1 + x + x4) < 2v + exp(1 + y + y4)

• This inference is not contained in linear arithmetic or real
closed fields.

• This inference is tight: symbolic or numeric approximations
are not useful.

• Backchaining using monotonicity properties suggests many
equally plausible subgoals.

• But, the inference is completely straightforward.

A heuristic symbolic method

Robert Lewis and I (initially with Cody Roux) have developed a
new approach, that:

• verifies inequalities on which other procedures fail

• extends beyond the language of RCF

• is amenable to producing proof terms

• captures natural patterns of inference

But:

• It is not complete.

• It not guaranteed to terminate.

It is designed to complement other procedures.

A heuristic symbolic method

The main ideas:

• Use forward reasoning (guided by the structure of the
problem).

• Show “hypotheses⇒ conclusion” by negating the conclusion
and deriving a contradiction.

• As much as possible, put terms in canonical “normal forms,”
e.g. to recognize that 3(x + y) is a multiple of 2y + 2x .

• Derive relationships between “terms of interest,” including
subterms of the original problem.

• Different modules contribute bits of information, based on
their expertise.

Computational structure

Blackboard
Stores definitions and

comparisons

Additive Module
Derives comparisons using

additive definitions

Multiplicative Module
Derives comparisons using

multiplicative definitions

Axiom Instantiation Module
Derives comparisons using universal

axioms

Exp/Log Module
Derives comparisons and

axioms involving exp and log

Min/Max
Module

Derives comparisons

involving min and

max

Congruence
Closure Module

Enforces proper

interpretation of

functions

Absolute Value
Module

Derives comparisons and

axioms involving abs

nth Root Module
Derives comparisons and axioms

about fractional exponents

A heuristic symbolic method

We have a prototype Python implementation, Polya.

The code is open-source and available online.

• An associated paper.

• Rob’s MS thesis.

• Slides from Rob’s talks (from which I have borrowed).

We are planning to implement this in Lean.

Outline

• Formal methods

• Interactive theorem proving

• Automated reasoning

• Verified computation

Verified computation

Important computational proofs have been verified:

• The four color theorem (Gonthier, 2004)

• The Kepler conjecture (Hales et al., 2014)

• Various aspects of Kenzo (computation in algebraic topology)
have been verified:
• in ACL2 (simplicial sets, simplicial polynomials)
• in Isabelle (the basic perturbation lemma)
• in Coq/SSReflect (effective homology of bicomplexes, discrete

vector fields)

Verified computation

Some approaches:

• rewrite the computations to construct proofs as well
(Flyspeck: nonlinear bounds)

• verify certificates (e.g. proof sketches, duality in linear
programming)

• verify the algorithm, and then execute it with a specialized
(trusted) evaluator (Four color theorem)

• verify the algorithm, extract code, and run it (trust a compiler
or interpreter) (Flyspeck: enumeration of tame graphs)

Verified computation

In dynamical systems:

• Immler and Hölzl have obtained verified solutions to ODE’s.

• Immler has obtained verified algorithms for geometric
zonotopes (for convex hull calculutions).

• He has verified and enclosure for the Lorenz attractor.

The formalizations are carried out in Isabelle, and Standard ML
code is extracted.

Conclusions

• Computers change the kinds of proofs that we can discover
and verify.

• In the long run, formal methods will play an important role in
mathematics.

• It will take clever ideas, and hard work, to understand how to
use them effectively.

