Forcing in proof theory

Jeremy Avigad

Department of Philosophy

Carnegie Mellon University

avigad@cmu.edu

http://andrew.cmu.edu/~avigad

A brief history of forcing

Cohen, '63: the independence of CH and AC from set theory.

Kripke, '59-'65: semantics for modal and intuitionistic logic.

Perspectives:

• Set theory: generic extensions, approximations

• Modal logic: possible worlds

 \bullet Recursion theory: diagonalization, conditions

 \bullet Model theory: existentially closed models

• Categorical logic: logic of sheaves

• Descriptive set theory: generic truth

• Effective descriptive set theory

 \bullet Complexity theory

Themes: diagonalization, local/global properties, construction via approximations

What about proof theory?

Branches of proof theory:

- Structural proof theory (rules, normal forms)
- Proof complexity (length)
- "Hilbert-style" proof theory (provability)

(Modified) Hilbert-style proof theory:

- Formalize mathematical reasoning
- Understand infinitary reasoning in explicit, constructive terms

In contrast to forcing in set theory:

- Weaker theories
- Emphasis on syntax
- Emphasis on finitary and constructive aspects

Overview

- 1. The framework
 - (a) Minimal, intuitionistic, and classical logic
 - (b) The forcing relation
 - (c) Variations
- 2. Applications
 - (a) Subsystems of second-order arithmetic
 - (b) Intuitionistic theories
 - (c) "Point-free" model theory

From minimal to classical logic

Flavors of first-order logic:

• Minimal (M): nicest computational interpretation

• Intuitionistic (I): add "from \perp conclude φ "

• Classical (C): add $\neg\neg\varphi \rightarrow \varphi$ or $\varphi \vee \neg\varphi$

Intuitionistic to minimal (F): replace atomic A by $A \lor \bot$ or $\neg \neg A$. Then

$$\vdash_M \bot \to \varphi^F$$

Classical to minimal (N): also replace $\varphi \lor \psi$ by $\neg(\neg \varphi \land \neg \psi)$ and $\exists x \varphi$ by $\neg \forall x \neg \varphi$. Then

- $\bullet \vdash_M \varphi^N \leftrightarrow \neg \neg \varphi^N$
- $\Gamma \vdash_C \varphi$ implies $\Gamma^N \vdash_M \varphi^N$

The Kuroda translation (K): instead, add $\neg\neg$ after each universal quantifier.

- $\bullet \vdash_M \neg \neg \varphi^K \leftrightarrow \varphi^N$
- $\vdash_C \varphi$ implies $\vdash_M \neg \neg \varphi^K$

Kripke semantics

Start with:

- a poset P (possible worlds)
- a domain D(p) at each world
- for each $p \in P$ and atomic A, an interpretation of A at p

satisfying monotonicity: if $q \leq p$, then

- $D(q) \supseteq D(p)$
- If $p \Vdash A(a_0, \ldots, a_{k-1})$ then $q \Vdash A(a_0, \ldots, a_{k-1})$.

Extend the forcing relation to L(D) inductively:

- 1. $p \Vdash \theta \land \eta$ iff $p \Vdash \theta$ and $p \Vdash \eta$
- 2. $p \Vdash \theta \lor \eta$ iff $p \Vdash \theta$ or $p \Vdash \eta$
- 3. $p \Vdash \theta \rightarrow \eta \text{ iff } \forall q \leq p \ (q \Vdash \theta \rightarrow q \Vdash \eta)$
- 4. $p \Vdash \forall x \varphi(x) \text{ iff } \forall q \leq p \ \forall a \in D(q) \ q \Vdash \varphi(a)$
- 5. $p \Vdash \exists x \varphi(x) \text{ iff } \exists a \in D(p) \ p \Vdash \varphi(a)$

Kripke semantics (cont'd)

Theorem.

- (monotonicity): $p \Vdash \varphi$ and $q \leq p$ imply $q \Vdash \varphi$
- $\vdash_M \varphi$ implies $\Vdash \varphi$

For intuitionistic logic, add

• $p \not\Vdash \bot$

Theorem.

- $\bullet \ p \Vdash \bot \to \varphi$
- $\vdash_I \varphi$ implies $\Vdash \varphi$.

Forcing for classical logic

Weak forcing: define $\Vdash_C \varphi$ by $\Vdash_M \varphi^N$.

For example:

- $p \Vdash_C \theta \lor \eta$ iff $\forall q \le p \exists r \le q ((r \Vdash_C \theta) \lor (r \Vdash_C \eta))$
- $p \Vdash_C \neg \neg \theta$ iff $\forall q \leq p \; \exists r \leq q \; r \Vdash_C \theta$

Theorem.

- 1. monotonicity: $p \Vdash_C \varphi$ and $q \leq p$ imply $q \Vdash_C \varphi$
- 2. genericity: $p \Vdash_C \varphi$ iff $\forall q \leq p \; \exists r \leq q \; r \Vdash_C \varphi$
- 3. soundness: $\vdash_C \varphi$ implies $\Vdash_C \varphi$

Strong forcing: define $\Vdash_{C'} \varphi$ by $\Vdash_M \varphi^K$.

Then

$$\Vdash_C \varphi \text{ iff } \Vdash_{C'} \neg \neg \varphi$$

Notes and variations

- 1. $p \Vdash_C \varphi$ corresponds to " φ is true in every extension by a generic containing p"
- 2. Can replace $p \not\Vdash \bot$ by "if $p \Vdash \bot$ then $p \Vdash A(a_0, \ldots, a_{k-1})$."
- 3. Beth models:

 $p \Vdash \varphi \lor \psi$ iff for some covering C(p) of p, $\forall q \in C(p) \ ((q \Vdash \varphi) \lor (q \Vdash \psi))$ and similarly for \exists .

- 4. Replace the poset by a category (presheaf models)
- 5. Replace Beth's coverings by a Grothendieck topology (sheaf models)
- 6. Extend to higher-order logic (and set theory)

"Internalized" constructions

Think syntactically:

- Work in a theory T.
- Use definable predicates, Cond, \leq , Name, $p \Vdash A(a_0, \ldots, a_{k-1})$.
- Assume T proves monotonicity, etc.

Then T can verify the soundness of forcing:

- Minimal logic verifies minimal forcing
- Intuitionistic logic verifies intuitionistic forcing
- Classical logic verifies classical forcing
- With modified falsity, minimal logic verifies intuitionstic forcing
- With additional negations, minimal logic verifies classical forcing
- $\bullet\,$ One can also get genericity in minimal logic

Interlude

We've considered:

- 1. Minimal, intuitionistic, and classical logic
- 2. The forcing relation
- 3. Notes and variations

To interpret T_1 in T_2 :

- Define a poset, basic forcing notions in T_2 .
- Show axioms of T_1 are forced.
- Conclude: if T_1 proves φ , then T_2 proves " φ is forced."

For partial conservativity, show

• For $\varphi \in \Gamma$, if T_2 proves " φ is forced," then T_2 proves φ .

Applications

- 1. Subsystems of second-order arithmetic
 - Choice principles (Steele, Friedman)
 - Weak König's lemma
 - Ramsey's theorem
- 2. Intuitionistic theories
 - Goodman's theorem
 - Continuity, Bar recursion (Beeson, Grayson, Hayashi)
 - Interpreting classical theories in constructive ones
- 3. "Point-free" model theory
 - $\bullet\,$ Nonstandard arithmetic and analysis
 - Eliminating Skolem functions

Subsystems of arithmetic

Language: $0, 1, +, \times, <, \in, x, y, z, \dots X, Y, Z, \dots$

Full second-order arithmetic has:

- Quantifier-free defining equations
- Induction
- Comprehension: $\exists Z \ \forall x \ (x \in Z \leftrightarrow \varphi(x))$

One can also consider various choice principles.

Restrict induction to Σ^0_1 formulas with parameters, and restrict set existence principles:

- RCA_{θ} : recursive (Δ_1^0) comprehension
- WKL_0 : paths through infinite binary trees
- ACA_{θ} : arithmetic comprehension
- ATR_{θ} : transfinitely iterated arithmetic comprehension
- Π_1^1 - CA_0 : Π_1^1 comprehension

Weak König's lemma

König's lemma. Every infinite, finitely branching tree T has an infinite path

Kleene's basis theorem. The leftmost branch is computable in T'.

Weak König's lemma. Every infinite tree on $\{0, 1\}$ has an infinite path.

The Jockusch-Soare low basis theorem. Every such tree has a *low* path, i.e. satisfying $P' \leq_T T'$.

Iterative construction: at stage n, thin the tree to guarantee that $\varphi_n^P(0)$ will diverge, if possible; extend the path one step.

Weak König's lemma (cont'd)

Theorem (Friedman). WKL_0 is conservative over primitive recursive arithmetic for Π_2^0 sentences.

Theorem (Harrington). WKL_{θ} is, moreover, conservative over RCA_{θ} for Π_{1}^{1} sentences.

Proof.

- Start with a countable model of RCA_0 .
- Pick an infinite binary tree.
- Add a generic branch (conditions: infinite subtrees).
- Show Σ_1^0 induction is preserved.
- Iterate.

Weak König's lemma

There are two ways of interpreting WKL_{θ} in RCA_{θ} :

- Hájek: formalize a sharper version of the low basis theorem.
- Avigad: formalize the (iterated, proper-class) forcing argument. Conditions: sequences of names for infinite binary trees.

The two are incomparable! The latter works for weaker theories.

Variations:

- Brown and Simpson: use Cohen forcing to get a version of Baire Category theorem.
- Simpson and Smith: results for WKL and elementary arithmetic.
- Ferreira, Fernandes: results for WKL and feasible arithmetic.
- Simpson, Tanaka, Yamazaki: additional definability results.

Ramsey's theorem

Definition. RT(k) is the statement that every for 2-coloring of k tuples of natural numbers there is an infinite homogeneous set.

Theorem (Jockusch). There is a recursive coloring of triples such that 0' is computable from any infinite homogenous set.

Theorem (Simpson). For each (standard) $k \geq 3$, RT(k) is equivalent to arithmetic comprehension over RCA_{θ} .

What about RT(2)?

Ramsey's theorem (cont'd)

Theorem (Jockusch). There is a recursive coloring such that no infinite homogeneous set is computable from 0'.

Corollary. WKL_{θ} does not prove RT(2).

Theorem (Seetapun). If A is not recursive, there is a recursive coloring such that A is not computable from any infinite homogeneous set.

Corollary. $RCA_{\theta} + RT(2)$ does not prove ACA_{θ} .

It is open as to whether WKL_{θ} proves RT(2).

Ramsey's theorem (cont'd)

Theorem (Cholak, Jockusch, Slaman). Every 2-coloring C has an infinite homogeneous set H that is $low_2(C)$, i.e. H'' = C''.

Theorem (Cholak, Jockusch, Slaman).

 $RCA_0 + I\Sigma_2 + RT(2)$ is conservative over $RCA_0 + I\Sigma_2$ for Π_1^1 sentences.

 $\label{eq:condition} \mbox{first theorem}: \mbox{second theorem}: \mbox{Jockusch-Soare}: \mbox{Harrington}.$

Can the forcing argument be turned into a syntactic translation?

Goodman's theorem

Let HA^{ω} be a finite-type version of Heyting arithmetic (a conservative extension, without comprehension axioms).

The axiom of choice:

$$\forall x^{\sigma} \exists y^{\tau} \varphi(x,y) \to \exists f^{\sigma \to \tau} \forall x^{\sigma} \varphi(x,f(x)).$$

Classically, this implies comprehension. But intuitionistically:

Theorem (Goodman). $HA^{\omega} + AC$ is a conservative extension of HA^{ω} for arithmetic sentences.

Beeson's presentation:

- $HA^{\omega} + AC$ is realized in HA^{ω} , even with an extra function symbol.
- Force so that " φ is realized" implies " φ is true" for arithmetic sentences.

Interpreting classical theories constructively

The Gödel-Gentzen double-negation translation is a powerful tool:

- It reduces PA to HA, PA_2 to HA_2 , ZF to IZF.
- The Friedman-Dragalin translation recovers Π_2^0 theorems.

But these methods do not work for S_2^1 , $I\Sigma_1$, $\Sigma_1^1 - AC$, KP.

What goes wrong? Some examples:

- The double-negation interpretation of Σ_1 induction involves induction on predicates of the form $\neg\neg\exists x\ A(x,y)$.
- The double negation translation of the Σ_1^1 axiom of choice is of the form

$$\forall x \neg \neg \exists Y \ \varphi(x, Y) \rightarrow \neg \neg \exists Y \ \forall x \ \varphi(x, Y_x)$$

where φ is arithmetic.

Interpeting classical theories (cont'd)

We can use the latitude in defining " $p \Vdash \bot$ " to repair the double negation translation.

- Buchholz: theories of inductive definitions
- Coquand: Σ_1 induction
- Coquand and Hoffmann: bounded arithmetic
- Avigad: bounded arithmetic, Σ_1^1 -AC, admissible set theory

Interpreting classical theories (cont'd)

For arithmetic with Σ_1 induction, it suffices to obtain a forcing interpretation of Markov's principle:

$$\neg \forall x \ A(x) \to \exists x \ \neg A(x)$$

Take conditions p to be (codes for) finite sets of Π_1 sentences,

$$\{\forall x \ A_1(x), \forall x \ A_2(x), \dots, \forall x \ A_k(x)\}.$$

Define $p \leq q$ to be $p \supseteq q$.

For θ atomic, define $p \Vdash \theta$ to be

$$\exists y \ (A_1(y) \wedge \ldots \wedge A_k(y) \to \theta).$$

In particular, $p \Vdash \bot$ is

$$\exists y \ (\neg A_1(y) \lor \ldots \lor \neg A_k(y)).$$

Then it turns out that if $p \Vdash \neg \forall x \ A(x)$, then $p \Vdash \exists x \ \neg A(x)$.

In other words, Markov's principle is forced.

Point-free thinking

- Points in a topological space can be approximated by open neighborhoods.
- Real numbers can be approximated by rational intervals.
- A maximal ideal can be approximated by subideals.
- An ultrafilter can be approximated by filters.
- A maximally consistent sets can be approximated by finite consistent sets.

In constructive or restricted frameworks, it is often better to:

- Work with the approximations.
- Use generic objects.
- Reason about what is "forced" to be true.

Remember: genericity = Kripke models + double negation interpretation.

Weak theories of nonstandard arithmetic

Add to the language of PRA:

- a predicate, st(x) ("x is standard")
- a constant, ω

Let NPRA consist of PRA plus the following axioms:

- $\neg st(\omega)$
- $st(x) \land y < x \rightarrow st(y)$
- $st(x_1) \wedge \ldots \wedge st(x_k) \rightarrow st(f(x_1, \ldots, x_k))$, for each function symbol f
- A very restricted transfer principle (∀ sentences without parameters)

A short model-theoretic argument shows:

Theorem 1 Suppose NPRA proves $\forall^{st} x \exists y \ \varphi(x,y)$, with φ quantifier-free in the language of PRA. Then PRA proves $\forall x \exists y \ \varphi(x,y)$.

In particular, the conclusion holds if NPRA proves either $\forall x \; \exists y \; \varphi(x,y)$ or $\forall^{st} x \; \exists^{st} y \; \varphi(x,y)$.

Weak theories of nonstandard arithmetic (cont'd)

Claims:

- The result extends to higher type theories.
- One can formalize arguments in analysis and measure theory.
- The conservation result can be obtained by an explicit forcing translation.

In the translation, for example:

- The standard natural numbers correspond to bounded sequences of natural numbers.
- Reals correspond to bounded sequences of rationals.
- Nonstandardly large intervals translate to sequences of arbitrarily large intervals.

Eliminating Skolem functions

A Skolem axiom has the form

$$\forall \vec{x}, y \ (\varphi(\vec{x}, y) \to \varphi(\vec{x}, f(\vec{x}))),$$

"if anything satisfies $\exists y \ \varphi(\vec{x}, y), \ f(\vec{x}) \ \text{does.}$ "

These can be eliminated from first-order proofs.

- $\bullet\,$ The model-theoretic argument is easy.
- Syntactic arguments are harder, and worse than exponential.

Pudlák: Is there an example of a single Skolem axiom that cannot be eliminated efficiently?

Eliminating Skolem functions (cont'd)

Theorem (Avigad). In any theory in which one can code finite partial functions, one can interpret Skolem axioms efficiently.

The idea: force with finite approximations to each Skolem function.

Conclusion

Metamathematical proof theory involves

- reflecting on the methods of mathematics, and
- representing them syntactically.

One hopes for

- mathematical,
- philosophical, and
- $\bullet \ \ computational$

in sights.

Forcing can play a role, providing ways of

- \bullet interpreting "abstract" (or infinitary) principles, and
- $\bullet\,$ reasoning with approximations.