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Definitions in propositional proofs

Start with a standard axiomatic proof system for
propositional logic, with modus ponens the only rule of
inference.

Add definitions: iteratively introduce new variables Pϕ and
axioms Pϕ ↔ ϕ.

Naive elimination of definitions can be exponential. Can
one do better? In other words:

Are extended Frege systems p-equivalent to Frege
systems?

This is a major open question.
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First-order logic

Let Γ be a set of first-order sentences in a language L, and
let R0, R1, R2, . . . denote new relation symbols.

Definition 0.1 Say that Γ has an efficient elimination of
definitions if there is a polynomial p(x) such that if d is a
proof of a formula ψ in L from

Γ ∪ {∀~x0 (R0(~x0) ↔ ϕ0(~x0)), . . . ,

∀~xk (Rk(~xk) ↔ ϕk(~xk))},

where each ϕi involves at most R0, . . . , Ri−1, then there is a
proof d′ of ψ from Γ using only formulae in L, with
|d′| ≤ p(|d|).

This definition is monotone in Γ: if Γ has an efficient
elimination of definitions and Γ′ ⊇ Γ then so does Γ′.
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Eliminating definitions

Theorem 0.2 {∃x, y (x 6= y)} has an efficient elimination
of definitions.

Notes:

• Proof is not difficult (and may be folklore)

• Relies on equality

• Similar tricks have been used elsewhere

Corollary 0.3 First-order logic (with equality) has efficient
elimination of definitions if and only if propositional logic
does as well.

Corollary 0.4 One can eliminate “↔” efficiently from
standard first-order proof systems.
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The proof

Add constants a, b, with a 6= b. Code each natural number i
as a sequence of values a, a, . . . , a, b, a, . . . , a, a with b in the
ith position.

Recursively define a sequence of formulae ϕ̂i(~z, ~x) such that

• for each j < i, ϕ̂i(j̄, ~x) is equivalent to ϕj(~x), and

• ϕ̂i+1 is used only once in the definition of ϕ̂i.

For example, suppose ϕi+1 is the formula

Ri(~t) ∧ ¬Ri(~s)

Use a and b as truth values. Let θ(v, v′) be

∀~x, y ((R(~x) ↔ y = a) →
(~x = ~t→ y = v) ∧ (~x = ~s→ y = v′)).

Then ϕi+1 is equivalent to

∀v, v′ (θ(v, v′) → (v = a ∧ v′ 6= a)).

More generally:

• Put formulae in prenex form.

• If ↔ is not in the language, use positive and negative
representations of each definition.
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Skolem functions

A Skolem axiom has the form

∀~x, y (ϕ(~x, y) → ϕ(~x, f(~x))),

“if anything satisfies ∃y ϕ(~x, y), f(~x) does.”

These can be eliminated from first-order proofs.

• Model-theoretic argument is easy.

• Syntactic arguments are harder, and worse than
exponential.

Pudlák: Is there an example of a single Skolem axiom that
cannot be eliminated efficiently?
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Eliminating Skolem functions

Let Γ be a set of first-order sentences in a language L.

Definition 0.5 Say that Γ has an efficient elimination of
Skolem functions if there is a polynomial p(x) such that if d
is a proof of a formula ψ in L from

Γ ∪ {∀~x0, y (ϕ0(~x0, y) → ϕ0(~x0, f0(~x0))), . . . ,

∀~xk, y (ϕk(~xk, y) → ϕk(~xk, fk(~xk)))},

where each ϕi involves at most f0, . . . , fi−1, then there is a
proof d′ of ψ from Γ using only formulae in L, with
|d′| ≤ p(|d|).

By internalizing the model-theoretic argument, e.g.
Zermelo-Fraenkel set theory has efficient an elimination of
Skolem functions.

How little can we get away with?
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Coding finite functions

Definition 0.6 Say a set of sentences Γ codes finite
functions (efficiently) if for each n there are

• a definable element, “∅n”;

• a definable relation, “x0, . . . , xn−1 ∈ domn(p)”;

• a definable function, “evaln(p, x0, . . . , xn−1)”; and

• a definable function, “p⊕n (x0, . . . , xn−1 7→ y)”

such that, for each n, Γ proves

• ~x 6∈ domn(∅n)

• ~w ∈ domn(p⊕ (~x 7→ y)) ↔ (~w ∈ domn(p) ∨ ~w = ~x)

• evaln(p⊕n (~x 7→ y), ~x) = y

• ~w 6= ~x→ evaln(p⊕n (~x 7→ y), ~w) = evaln(p, ~w),

and such that the lengths of all the definitions and proofs
are bounded by a polynomial in n.

Intuition: evaln(p, x0, . . . , xn−1) means p(x0, . . . , xn−1).

Any “sequential” theory meets these criteria.
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The main theorem

Theorem 0.7 Suppose Γ codes finite functions. Then Γ
has an efficient elimination of Skolem functions.

Notes:

• Use forcing to describe a generic extension of the
universe with a new Skolem function.

• Conditions are finite partial functions approximating
the Skolem function being added.

• This is familiar to set theorists, but a novel application
to weak theories.

• Need to express the forcing relation in the underlying
language.

• Only the iterated version needs definitions.

Outline of the argument:

• If Γ plus the Skolem axiom proves ϕ, Γ proves “ϕ is
forced.”

• If ϕ does not mention the Skolem function, then Γ
proves ϕ.
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The forcing definition

Let us deal with a single Skolem axiom. Cond(p) says p is a
condition:

∀~x ∈ dom(p) ∀y (ϕ(~x, y) → ϕ(~x, p(x))).

For terms t involving f , define tp inductively as follows:

• xp ≡ x, for each variable x (other than p),

• (g(t0, . . . , tm))p ≡ g(tp0, . . . , t
p
m), for each function

symbol g of L, and

• (f(t0, . . . , tn))p ≡ p(tp0, . . . , t
p
n).

Define “tp is defined” inductively as follows:

• “xp is defined” is always true.

• “(g(t0, . . . , tm))p is defined,” where g is a function
symbol of L, is true if and only if tp0, . . . , t

p
m are all

defined.

• “(f(t0, . . . , tn))p is defined” is true if and only if
tp0, . . . , t

p
n are all defined and tp0, . . . , t

p
n ∈ dom(p).
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The forcing definition (cont’d)

If p and q are conditions, say p � q, “p is stronger than or
equal to q,” if p extends q as a function:

∀~x (~x ∈ dom(q) → ~x ∈ dom(p) ∧ p(~x) = q(~x)).

Define the relation p 
 θ inductively:

1. p 
 R(t0, . . . , tm) ≡ ∀q � p ∃r � q (tr0, . . . , t
r
m are all

defined and R(tr0, . . . , t
r
m)).

2. p 
 θ ∧ η ≡ p 
 θ and p 
 η.

3. p 
 θ → η ≡ ∀q � p (q 
 θ → q 
 η).

4. p 
 ¬θ ≡ ∀q � p q 6
 θ.

5. p 
 ∀x θ ≡ ∀x p 
 θ.

The quantifiers involving q and r range over conditions.

“θ is forced”, written 
 θ, means ∀p (p 
 θ),
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The main lemmata

Lemma 0.8 (monotonicity) For each formula θ of Lf , Γ
proves

p 
 θ ∧ q � p→ q 
 θ.

Lemma 0.9 For each formula θ of Lf , Γ proves

p 
 θ ↔ ∀q � p ∃r � q r 
 θ.

Corollary 0.10 For each formula θ of Lf , Γ proves


 (θ ↔ ¬¬θ).

Lemma 0.11 For any term t of Lf , Γ proves

∀q ∃r � q (tr is defined).

Lemma 0.12 For each formula θ of Lf , if θ is provable in
classical first-order logic, then Γ proves 
 θ.

Lemma 0.13 Γ proves 
 ∀~x, y (ϕ(~x, y) → ϕ(~x, f(~x))).

Lemma 0.14 For each formula θ of L, Γ proves
(p 
 θ) ↔ θ.

For nested Skolem axioms, use an iteration, with definitions.
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Questions

1. Can one eliminate definitions efficiently in the
propositional case?

2. Can one eliminate Skolem functions efficiently in pure
first order logic?

3. What can one say about first-order definitions in the
absence of equality?

4. What can one say about eliminating “↔” in the
absence of equality?

5. What can one say about intuitionistic theories?

6. Are there other interesting applications of forcing
arguments “low down”?
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