
Eliminating definitions and Skolem functions
in first-order logic

Jeremy Avigad

Carnegie Mellon University

avigad@cmu.edu

http://www.andrew.cmu.edu/∼avigad

1

Definitions in propositional proofs

Start with a standard axiomatic proof system for
propositional logic, with modus ponens the only rule of
inference.

Add definitions: iteratively introduce new variables Pϕ and
axioms Pϕ ↔ ϕ.

Naive elimination of definitions can be exponential. Can
one do better? In other words:

Are extended Frege systems p-equivalent to Frege
systems?

This is a major open question.

2

First-order logic

Let Γ be a set of first-order sentences in a language L, and
let R0, R1, R2, . . . denote new relation symbols.

Definition 0.1 Say that Γ has an efficient elimination of
definitions if there is a polynomial p(x) such that if d is a
proof of a formula ψ in L from

Γ ∪ {∀~x0 (R0(~x0) ↔ ϕ0(~x0)), . . . ,

∀~xk (Rk(~xk) ↔ ϕk(~xk))},

where each ϕi involves at most R0, . . . , Ri−1, then there is a
proof d′ of ψ from Γ using only formulae in L, with
|d′| ≤ p(|d|).

This definition is monotone in Γ: if Γ has an efficient
elimination of definitions and Γ′ ⊇ Γ then so does Γ′.

3

Eliminating definitions

Theorem 0.2 {∃x, y (x 6= y)} has an efficient elimination
of definitions.

Notes:

• Proof is not difficult (and may be folklore)

• Relies on equality

• Similar tricks have been used elsewhere

Corollary 0.3 First-order logic (with equality) has efficient
elimination of definitions if and only if propositional logic
does as well.

Corollary 0.4 One can eliminate “↔” efficiently from
standard first-order proof systems.

4

The proof

Add constants a, b, with a 6= b. Code each natural number i
as a sequence of values a, a, . . . , a, b, a, . . . , a, a with b in the
ith position.

Recursively define a sequence of formulae ϕ̂i(~z, ~x) such that

• for each j < i, ϕ̂i(j̄, ~x) is equivalent to ϕj(~x), and

• ϕ̂i+1 is used only once in the definition of ϕ̂i.

For example, suppose ϕi+1 is the formula

Ri(~t) ∧ ¬Ri(~s)

Use a and b as truth values. Let θ(v, v′) be

∀~x, y ((R(~x) ↔ y = a) →
(~x = ~t→ y = v) ∧ (~x = ~s→ y = v′)).

Then ϕi+1 is equivalent to

∀v, v′ (θ(v, v′) → (v = a ∧ v′ 6= a)).

More generally:

• Put formulae in prenex form.

• If ↔ is not in the language, use positive and negative
representations of each definition.

5

Skolem functions

A Skolem axiom has the form

∀~x, y (ϕ(~x, y) → ϕ(~x, f(~x))),

“if anything satisfies ∃y ϕ(~x, y), f(~x) does.”

These can be eliminated from first-order proofs.

• Model-theoretic argument is easy.

• Syntactic arguments are harder, and worse than
exponential.

Pudlák: Is there an example of a single Skolem axiom that
cannot be eliminated efficiently?

6

Eliminating Skolem functions

Let Γ be a set of first-order sentences in a language L.

Definition 0.5 Say that Γ has an efficient elimination of
Skolem functions if there is a polynomial p(x) such that if d
is a proof of a formula ψ in L from

Γ ∪ {∀~x0, y (ϕ0(~x0, y) → ϕ0(~x0, f0(~x0))), . . . ,

∀~xk, y (ϕk(~xk, y) → ϕk(~xk, fk(~xk)))},

where each ϕi involves at most f0, . . . , fi−1, then there is a
proof d′ of ψ from Γ using only formulae in L, with
|d′| ≤ p(|d|).

By internalizing the model-theoretic argument, e.g.
Zermelo-Fraenkel set theory has efficient an elimination of
Skolem functions.

How little can we get away with?

7

Coding finite functions

Definition 0.6 Say a set of sentences Γ codes finite
functions (efficiently) if for each n there are

• a definable element, “∅n”;

• a definable relation, “x0, . . . , xn−1 ∈ domn(p)”;

• a definable function, “evaln(p, x0, . . . , xn−1)”; and

• a definable function, “p⊕n (x0, . . . , xn−1 7→ y)”

such that, for each n, Γ proves

• ~x 6∈ domn(∅n)

• ~w ∈ domn(p⊕ (~x 7→ y)) ↔ (~w ∈ domn(p) ∨ ~w = ~x)

• evaln(p⊕n (~x 7→ y), ~x) = y

• ~w 6= ~x→ evaln(p⊕n (~x 7→ y), ~w) = evaln(p, ~w),

and such that the lengths of all the definitions and proofs
are bounded by a polynomial in n.

Intuition: evaln(p, x0, . . . , xn−1) means p(x0, . . . , xn−1).

Any “sequential” theory meets these criteria.

8

The main theorem

Theorem 0.7 Suppose Γ codes finite functions. Then Γ
has an efficient elimination of Skolem functions.

Notes:

• Use forcing to describe a generic extension of the
universe with a new Skolem function.

• Conditions are finite partial functions approximating
the Skolem function being added.

• This is familiar to set theorists, but a novel application
to weak theories.

• Need to express the forcing relation in the underlying
language.

• Only the iterated version needs definitions.

Outline of the argument:

• If Γ plus the Skolem axiom proves ϕ, Γ proves “ϕ is
forced.”

• If ϕ does not mention the Skolem function, then Γ
proves ϕ.

9

The forcing definition

Let us deal with a single Skolem axiom. Cond(p) says p is a
condition:

∀~x ∈ dom(p) ∀y (ϕ(~x, y) → ϕ(~x, p(x))).

For terms t involving f , define tp inductively as follows:

• xp ≡ x, for each variable x (other than p),

• (g(t0, . . . , tm))p ≡ g(tp0, . . . , t
p
m), for each function

symbol g of L, and

• (f(t0, . . . , tn))p ≡ p(tp0, . . . , t
p
n).

Define “tp is defined” inductively as follows:

• “xp is defined” is always true.

• “(g(t0, . . . , tm))p is defined,” where g is a function
symbol of L, is true if and only if tp0, . . . , t

p
m are all

defined.

• “(f(t0, . . . , tn))p is defined” is true if and only if
tp0, . . . , t

p
n are all defined and tp0, . . . , t

p
n ∈ dom(p).

10

The forcing definition (cont’d)

If p and q are conditions, say p � q, “p is stronger than or
equal to q,” if p extends q as a function:

∀~x (~x ∈ dom(q) → ~x ∈ dom(p) ∧ p(~x) = q(~x)).

Define the relation p θ inductively:

1. p R(t0, . . . , tm) ≡ ∀q � p ∃r � q (tr0, . . . , t
r
m are all

defined and R(tr0, . . . , t
r
m)).

2. p θ ∧ η ≡ p θ and p η.

3. p θ → η ≡ ∀q � p (q θ → q η).

4. p ¬θ ≡ ∀q � p q 6 θ.

5. p ∀x θ ≡ ∀x p θ.

The quantifiers involving q and r range over conditions.

“θ is forced”, written θ, means ∀p (p θ),

11

The main lemmata

Lemma 0.8 (monotonicity) For each formula θ of Lf , Γ
proves

p θ ∧ q � p→ q θ.

Lemma 0.9 For each formula θ of Lf , Γ proves

p θ ↔ ∀q � p ∃r � q r θ.

Corollary 0.10 For each formula θ of Lf , Γ proves

 (θ ↔ ¬¬θ).

Lemma 0.11 For any term t of Lf , Γ proves

∀q ∃r � q (tr is defined).

Lemma 0.12 For each formula θ of Lf , if θ is provable in
classical first-order logic, then Γ proves θ.

Lemma 0.13 Γ proves ∀~x, y (ϕ(~x, y) → ϕ(~x, f(~x))).

Lemma 0.14 For each formula θ of L, Γ proves
(p θ) ↔ θ.

For nested Skolem axioms, use an iteration, with definitions.

12

Questions

1. Can one eliminate definitions efficiently in the
propositional case?

2. Can one eliminate Skolem functions efficiently in pure
first order logic?

3. What can one say about first-order definitions in the
absence of equality?

4. What can one say about eliminating “↔” in the
absence of equality?

5. What can one say about intuitionistic theories?

6. Are there other interesting applications of forcing
arguments “low down”?

13

