Translating nonstandard proofs

 to constructive onesJeremy Avigad
Department of Philosophy
Carnegie Mellon University
avigad@cmu.edu http://andrew.cmu.edu/~avigad

Conservation theorems in proof theory

A conservation theorem is one of the following form: if T_{1} proves φ for some φ in Γ, then T_{2} proves φ as well (or perhaps a translation, φ^{\prime}).

These provide foundational reductions:

- Infinitary to finitary
- Nonconstructive to constructive
- Impredicative to predicative
- Nonstandard to standard

Kreisel's "unwinding" program: find constructive content in classical proofs.

Contemporary work in "proof mining" by Kohlenbach and students, Schwichtenberg, Berger, Coquand, Lombardi, et al.

Nonstandard analysis

Robinson (1966): Reason about saturated elementary extensions of a suitable mathematical universe

Kreisel (1969): Axiomatic nonstandard second-order and higher-order arithmetic

Friedman: Nonstandard Peano arithmetic

Nelson (1977): Axiomatic nonstandard set theory

Others have considered weaker theories, constructive theories, etc.

Nonstandard first-order arithmetic

Add to the language of first-order (Peano) arithmetic:

- a predicate, $\operatorname{st}(x)$ (" x is standard")
- a constant, ω

Axioms of nonstandard $P A$:

- All the axioms of first-order arithmetic
- $\neg s t(\omega)$, and $s t(x) \wedge y<x \rightarrow s t(y)$
- Transfer: $\operatorname{st}(\vec{z}) \rightarrow\left(\varphi(\vec{z}) \leftrightarrow \varphi^{s t}(\vec{z})\right)$ for φ in the original language
- Standard induction:

$$
\varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(x+1)) \rightarrow \forall^{s t} x \varphi(x)
$$

Theorem (Friedman). $N P A$ is a conservative extension of $P A$.

Note: the saturation principle

$$
\forall^{s t} x \exists y \varphi(x, y) \rightarrow \exists y \forall^{s t} x \varphi\left(x, y_{x}\right)
$$

raises the strength to second-order arithmetic.

A weak theory of nonstandard arithmetic

Start with Primitive recursive arithmetic (PRA):

- Defining equations for the primitive recursive functions
- Quantifier-free induction

A nonstandard version, $N P R A$:

- $\neg s t(\omega)$
- $s t(x) \wedge y<x \rightarrow s t(y)$
- $s t\left(x_{1}\right) \wedge \ldots \wedge \operatorname{st}\left(x_{k}\right) \rightarrow \operatorname{st}\left(f\left(x_{1}, \ldots, x_{k}\right)\right)$, for each function symbol f
- A very restricted transfer principle (\forall sentences without parameters)

A short model-theoretic argument shows:
Theorem (Avigad). Suppose $N P R A$ proves $\forall^{s t} x \exists y \varphi(x, y)$, with φ quantifier-free in the language of PRA. Then PRA proves $\forall x \exists y \varphi(x, y)$.

In particular, the conclusion holds if $N P R A$ proves either $\forall x \exists y \varphi(x, y)$ or $\forall^{s t} x \exists^{s t} y \varphi(x, y)$.

An explicit translation

In fact, an explicit "forcing" translation interprets the nonstandard theory in a conservative extension (i.e. with variables and quantifiers ranging over functions).

- The translation is efficient.
- It extends smoothly to higher types.
- It works for weaker theories (elementary arithmetic, polynomial time computable arithmetic).
- The strongest version gives constructive proofs.
- Stronger transfer, saturation, and induction principles can be added "gingerly."
- Standard induction translates to ordinary induction.
- Can add Skolem functions to obtain more transfer.

Weak theories of nonstandard arithmetic

Benefits:

- Can formalize arguments in ordinary analysis
- Real numbers are type 0 objects (bounded nonstandard rationals)
- Can formalize measure theoretic arguments
- Can formalize nonstandard arguments in combinatorics, probability theory
- Weak König's lemma (compactness) holds on the standard part.

In the translation, for example:

- The standard natural numbers correspond to bounded sequences of natural numbers.
- Reals correspond to bounded sequences of rationals.
- Nonstandardly large intervals translate to sequences of arbitrarily large intervals.

Two small applications

Henry Towsner used the translation to:

1. Obtain a standard version of a nonstandard theorem by Renling Jin
2. Obtain a standard version of Wilkie's nonstandard proof of a result, due to Ajtai

The translations were fairly straightforward.

Theorem (Jin). Let U be a cut in a nonstandard model of arithmetic, with $H \notin U$. Let A and B be subsets of $\{0,1, \ldots, H\}$. If $0<s t(|A| / H)$, and $0<s t(|B| / H)$, then $A+B$ is not U-nowhere dense.

Corollaries:

- If A and B are sequences of natural numbers with positive upper Banach density, then $A+B$ is piecewise syndetic.
- Steinhaus' theorem...

Steinhaus' theorem

Theorem (Steinhaus 1920): Let A and B be subsets of \mathbb{R} with positive Lebesgue measure.
 Then $A+B$ includes an interval.

Corollary: If A has positive Lebesgue measure, $A-A$ includes an interval.

Steinhaus' theorem is an easy consequence of the Lebesgue density theorem, which, in turn, is usually proved using Vitali's theorem.

Find a constructive version:

- Rework Jin's argument, to make it as direct as possible.
- Translate.
- Tinker.

A constructive rewording

Without loss of generality, we can assume that A and B are compact (even subsets of $[0,1 / 2]$).

Theorem. Suppose A and B are compact subsets of $[0,1 / 2]$, and $A+B$ is nowhere dense. Then $\min (\mu(A), \mu(B))=0$.

Read:

- Compact: closed, and for every $\varepsilon>0$, there is a finite ε-net.
- Nowhere dense: for every $(x, y) \subseteq[0,1]$, there is a $(u, v) \subseteq(x, y)$ such that $(x, y) \cap(A+B)=\emptyset$.

An explicit proof

Lemma. Suppose n is a multiple of 4 ,

- $S \subseteq\{0, \ldots, n\}$
- $T \subseteq\{0, \ldots, n\}$
- $\{n, \ldots, 3 n / 2\} \nsubseteq S+T$

Then $|S|+|T| \leq 3 n / 2+1$.

In particular, either $|S| \leq \frac{3}{4} n$ or $|T| \leq \frac{3}{4} n$.

Proof. Suppose $z \in\{n, \ldots, 3 n / 2\}$, but $z \notin S+T$.

Then for every x in $S, z-x$ is not in T. So $x \mapsto z-x$ is an injection from S to $\{0, \ldots, 3 n / 2\} \backslash T$.

An explicit proof

For every n :

- divide $[0,1 / 2]$ into 2^{n} subintervals.
- Find a $1 / 2^{n+1}$-net for A, and rationals q_{1}, \ldots, q_{k} approximating these to within $1 / 2^{n+1}$.
- Put an "x" in each interval containing or adjacent to a q_{i}.

Then

- A is covered by the intervals with x's.
- If there is an x in an interval, there is a point of A in that interval or the one adjacent.

Do the same for B.

An explicit proof

Take the "sumset," based on left endpoints. So if there is an " x " in the sumset, there is a point of $A+B$ nearby.

Since $A+B$ is nowhere dense, we can find a $(u, v) \subseteq[1 / 2,3 / 4]$ disjoint from $A+B$.

For n large enough, (u, v) will have an interval without an "x."

By the lemma, either A or B is covered by less than three quarters of the intervals.

Iterate.

Future work

The applications would be much more impressive if:

- a constructive proof, or constructive information, had been explicitly sought,
- the "unwinding" had been more difficult, making the translation-heuristic indispensible.

There are plenty of places to look for such applications: anywhere nonconstructive or analytic methods are used to obtain "concrete" results, e.g. in number theory or combinatorics.

Extra slides...

The forcing interpretation (simplest version)

Names:

- Replace the constant ω by a variable.
- Replace each variable x_{i} by a term $\tilde{x}_{i}(\omega)$.
- Replace terms $t\left[\omega, x_{1}, \ldots, x_{k}\right]$ by $t\left[\omega, \tilde{x}_{1}(\omega), \ldots, \tilde{x}_{k}(\omega)\right] .($ Call this \widehat{t}.

Conditions: A condition is a unary relation $\alpha(\omega)$, satisfying

$$
\forall z \exists \omega \geq z \alpha(\omega)
$$

A condition α is stronger than β, written $\alpha \preceq \beta$, if $\forall \omega(\alpha(\omega) \rightarrow \beta(\omega))$.

The atomic case: Say $\alpha \Vdash t_{1}=t_{2}$ if and only if

$$
\exists z \forall \omega \geq z\left(\alpha(\omega) \rightarrow \widehat{t}_{1}=\widehat{t}_{2}\right)
$$

In other words, $\alpha \Vdash t_{1}=t_{2}$ on all but a finite subset of α.

The forcing interpretation (continued)

The full forcing relation is defined inductively, as follows:

$$
\begin{aligned}
& \text { 1. } \alpha \Vdash t_{1}=t_{2} \equiv \exists z \forall \omega \geq z\left(\alpha(\omega) \rightarrow \widehat{t}_{1}=\widehat{t}_{2}\right) . \\
& \text { 2. } \alpha \Vdash t_{1}<t_{2} \equiv \exists z \forall \omega \geq z\left(\alpha(\omega) \rightarrow \widehat{t}_{1}<\widehat{t}_{2}\right) . \\
& \text { 3. } \alpha \Vdash s t(t) \equiv \exists z \forall \omega \geq z(\alpha(\omega) \rightarrow \widehat{t}<z) \text {. } \\
& \text { 4. } \alpha \Vdash \varphi \wedge \psi \equiv(\alpha \Vdash \varphi) \wedge \alpha(\Vdash \psi) \text {. } \\
& \text { 5. } \alpha \Vdash \varphi \rightarrow \psi \equiv \forall \beta \preceq \alpha(\beta \Vdash \varphi \rightarrow \beta \Vdash \psi) \text {. } \\
& \text { 6. } \alpha \Vdash \neg \varphi \equiv \forall \beta \preceq \alpha \beta \Vdash \varphi \\
& \text { 7. } \alpha \Vdash \varphi \vee \psi \equiv \forall \alpha \preceq \beta \exists \gamma \preceq \beta((\gamma \Vdash \varphi) \vee(\gamma \Vdash \psi)) \\
& \text { 8. } \alpha \Vdash \forall x \varphi \equiv \forall \tilde{x}(\alpha \Vdash \varphi) \\
& \text { 9. } \alpha \Vdash \exists x \equiv \forall \alpha \preceq \beta \exists \gamma \preceq \beta \exists \tilde{x}(\gamma \Vdash \varphi)
\end{aligned}
$$

Theorem 1 If NPRA A^{ω} proves $\varphi, P R A^{\omega}+\left(\Sigma_{1}-I N D\right)$ proves $\Vdash \varphi$.

The conservation theorem follows from this.

The forcing interpretation (variations)

To translate $N P R A^{\omega}$ to $P R A^{\omega}$, take conditions to be of the form $\langle\alpha, f\rangle$ satisfying

$$
\forall z \exists \omega(\alpha(\omega) \wedge f(\omega) \geq z)
$$

The relation $\langle\beta, g\rangle \preceq\langle\alpha, f\rangle$ is defined by

$$
\langle\beta, g\rangle \preceq\langle\alpha, f\rangle \equiv \forall \omega(\beta(\omega) \rightarrow \alpha(\omega) \wedge g(\omega) \leq f(\omega))
$$

Define, for example,
$\langle\alpha, f\rangle \Vdash t_{1}=t_{2} \equiv \exists z \forall \omega\left(\alpha(\omega) \wedge f(\omega) \geq z \rightarrow \widehat{t_{1}}=\widehat{t_{2}}\right)$

To translate $N P R A^{\omega}$ to constructive $P R A^{\omega}$, something slightly more complicated works.

Developing real analysis

Definitions in $N P R A^{\omega}$:

- \mathbb{N}^{*} : the nonstandard natural numbers (type N)
- \mathbb{N} : the standard numbers (i.e. satisfying $\left.s t\left(x^{\mathrm{N}}\right)\right)$
- $\mathbb{Z}^{*}, \mathbb{Z}$: the nonstandard / standard integers
- $\mathbb{Q}^{*}, \mathbb{Q}$: the nonstandard / standard rationals
- $q \in \mathbb{Q}^{*}$ is bounded if $\ulcorner q\urcorner$ is standard
- q is infinitesimal if it is zero or $1 / q$ is unbounded
- $q \sim r$ if $q-r$ is infinitesimal
- $x \in \mathbb{R}$ means that $x \in \mathbb{Q}^{*}$ and x is bounded
- $x=_{\mathbb{R}} y$ means $x \sim y$

In other words, we are taking \mathbb{R} to be $\left(\mathbb{Q}^{*}\right)^{b d d} / \sim$, and dispensing with \mathbb{R}^{*} entirely.

The advantage: reals are type 0 objects.

A surprise

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function $\mathbb{Q}^{*} \rightarrow \mathbb{Q}^{*}$ satisfying $\forall r \in \mathbb{R}(f(r) \in \mathbb{R}) \wedge \forall r, s \in \mathbb{R}\left(r=_{\mathbb{R}} s \rightarrow f(r)=_{\mathbb{R}} f(s)\right)$.

Theorem $2\left(N E R A^{\omega}\right)$ Every function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous.

The point: variables range over internal functions.
The function $f \in \mathbb{Q}^{*} \rightarrow \mathbb{Q}^{*}$ defined by

$$
f(x)= \begin{cases}0 & \text { if } x \leq_{\mathbb{Q}^{*}} 0 \\ 1 & \text { otherwise }\end{cases}
$$

is not a function from \mathbb{R} to \mathbb{R} : for example, $1 / \omega=_{\mathbb{R}} 0$ but $f(1 / \omega) \neq \mathbb{R} f(0)$.

On the other hand, the function $g \in \mathbb{Q}^{*} \rightarrow \mathbb{Q}^{*}$ defined by

$$
g(x)= \begin{cases}0 & \text { if } x \leq_{\mathbb{R}} 0 \\ 1 & \text { otherwise }\end{cases}
$$

is not represented by a term of $N E R A^{\omega}$, since $x \leq_{\mathbb{R}} 0$ is external.

The intermediate value theorem

Theorem 3 Suppose $f \in[0,1] \rightarrow \mathbb{R}, f(0)=-1$, and $f(1)=1$. Then there is an $x \in[0,1]$ such that $f(x)=0$.

Proof. Considering f as a function on \mathbb{Q}^{*}, let

$$
j=\max \left\{i<\omega \mid f(i / \omega)<\mathbb{Q}^{*} 0\right\}
$$

and let $x=j / \omega$. Since $j / \omega \sim(j+1) / \omega$, we have

$$
f((j+1) / \omega)=_{\mathbb{R}} f(j / \omega) \leq_{\mathbb{R}} 0 \leq_{\mathbb{R}} f((j+1) / \omega)
$$

and so $f(x)=\mathbb{R}_{\mathbb{R}} 0$.

The extreme value theorem

Theorem 4 If $f \in[0,1] \rightarrow \mathbb{R}$, then f attains a maximum value.

Proof. Again considering f as a function on \mathbb{Q}^{*}, let

$$
y=\max _{0 \leq i \leq \omega} f(i / \omega)
$$

let $x=j / \omega$ satisfy $f(x)=\mathbb{Q}^{*} y$. That y is a maximum is guaranteed by the fact that for any $x^{\prime} \in[0,1]$, there is an i such that $x^{\prime} \sim i / \omega$.

Lebesgue measure via Löb measure

Let ω be nonstandard, and let $A \subset \mathbb{Q}^{*}$ be the set

$$
\{0,1 / \omega, 2 / \omega, \ldots, 1-2 / \omega, 1-1 / \omega, 1\}
$$

For any internal subset $B \subseteq A$, define

$$
\mu(B)=|B| / \omega .
$$

Say an external subset E is Löb measurable if

$$
\mu(E)=\inf _{B \subseteq E} \mu(B)=\sup _{B \supseteq E} \mu(B)
$$

If $X \subseteq[0,1]$ (possibly external) let

$$
\widehat{X}=\{q \in A \mid \exists x \in X(q \sim x)\}
$$

Then X is Lebesgue measurable iff \widehat{X} is Löb measurable, in which case $\lambda(X)=\mu(\widehat{X})$.

Lebesgue measure in our weak theories

Let $\varphi(x)$ be any property of reals, i.e. satisfying

$$
r==_{\mathbb{R}} r^{\prime} \wedge \varphi(r) \rightarrow \varphi\left(r^{\prime}\right)
$$

Let $A=\{0,1 / \omega, 2 / \omega, \ldots, 1-2 / \omega, 1-1 / \omega, 1\}$.

Say $\lambda(\varphi)=s$ iff for every standard $\varepsilon>0$ there are sets B and C such that

- $\forall r \in A(r \in B \rightarrow \varphi(r) \wedge \varphi(r) \rightarrow r \in C)$
- $|B| / \omega>s-\varepsilon$
- $|C| / \omega<s+\varepsilon$

So, for example, φ holds almost surely on $[0,1]$ if for every standard $\varepsilon>0$, there is a set $B \subseteq A$ such that $|B| / \omega>1-\varepsilon$ and $\forall r(r \in B \rightarrow \varphi(r))$.

A theorem by Renling Jin

Define the (upper) Banach density of $A \subseteq \mathbb{N}$:

$$
B D(A)=\lim _{n \rightarrow \infty} \sup _{b-a=n} \frac{|A \cap[a, b]|}{n+1}
$$

A set A is piecewise syndetic if for some k there are arbitrarily long sequences a_{0}, \ldots, a_{n} in A with $a_{i+1}-a_{i} \leq k$.

Theorem. If $B D(A)>0$ and $B D(B)>0, A+B$ is piecewise syndetic.

