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Conservation theorems in proof theory

A conservation theorem is one of the following
form: if T1 proves ϕ for some ϕ in Γ, then T2

proves ϕ as well (or perhaps a translation, ϕ′).

These provide foundational reductions:

• Infinitary to finitary

• Nonconstructive to constructive

• Impredicative to predicative

• Nonstandard to standard

Kreisel’s “unwinding” program: find constructive
content in classical proofs.

Contemporary work in “proof mining” by
Kohlenbach and students, Schwichtenberg,
Berger, Coquand, Lombardi, et al.
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Nonstandard analysis

Robinson (1966): Reason about saturated
elementary extensions of a suitable mathematical
universe

Kreisel (1969): Axiomatic nonstandard
second-order and higher-order arithmetic

Friedman: Nonstandard Peano arithmetic

Nelson (1977): Axiomatic nonstandard set theory

Others have considered weaker theories,
constructive theories, etc.
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Nonstandard first-order arithmetic

Add to the language of first-order (Peano) arithmetic:

• a predicate, st(x) (“x is standard”)

• a constant, ω

Axioms of nonstandard PA:

• All the axioms of first-order arithmetic

• ¬st(ω), and st(x) ∧ y < x → st(y)

• Transfer: st(~z) → (ϕ(~z) ↔ ϕst(~z)) for ϕ in the

original language

• Standard induction:

ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1)) → ∀stx ϕ(x)

Theorem (Friedman). NPA is a conservative

extension of PA.

Note: the saturation principle

∀stx ∃y ϕ(x, y) → ∃y ∀stx ϕ(x, yx)

raises the strength to second-order arithmetic.
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A weak theory of nonstandard arithmetic

Start with Primitive recursive arithmetic (PRA):

• Defining equations for the primitive recursive

functions

• Quantifier-free induction

A nonstandard version, NPRA:

• ¬st(ω)

• st(x) ∧ y < x → st(y)

• st(x1) ∧ . . . ∧ st(xk) → st(f(x1, . . . , xk)), for each

function symbol f

• A very restricted transfer principle (∀ sentences

without parameters)

A short model-theoretic argument shows:

Theorem (Avigad). Suppose NPRA proves

∀stx ∃y ϕ(x, y), with ϕ quantifier-free in the language

of PRA. Then PRA proves ∀x ∃y ϕ(x, y).

In particular, the conclusion holds if NPRA proves

either ∀x ∃y ϕ(x, y) or ∀stx ∃sty ϕ(x, y).
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An explicit translation

In fact, an explicit “forcing” translation interprets
the nonstandard theory in a conservative
extension (i.e. with variables and quantifiers
ranging over functions).

• The translation is efficient.

• It extends smoothly to higher types.

• It works for weaker theories (elementary
arithmetic, polynomial time computable
arithmetic).

• The strongest version gives constructive
proofs.

• Stronger transfer, saturation, and induction
principles can be added “gingerly.”

• Standard induction translates to ordinary
induction.

• Can add Skolem functions to obtain more
transfer.
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Weak theories of nonstandard arithmetic

Benefits:

• Can formalize arguments in ordinary analysis

• Real numbers are type 0 objects (bounded
nonstandard rationals)

• Can formalize measure theoretic arguments

• Can formalize nonstandard arguments in
combinatorics, probability theory

• Weak König’s lemma (compactness) holds on
the standard part.

In the translation, for example:

• The standard natural numbers correspond to
bounded sequences of natural numbers.

• Reals correspond to bounded sequences of
rationals.

• Nonstandardly large intervals translate to
sequences of arbitrarily large intervals.
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Two small applications

Henry Towsner used the translation to:

1. Obtain a standard version of a nonstandard
theorem by Renling Jin

2. Obtain a standard version of Wilkie’s
nonstandard proof of a result, due to Ajtai

The translations were fairly straightforward.

Theorem (Jin). Let U be a cut in a
nonstandard model of arithmetic, with H 6∈ U .
Let A and B be subsets of {0, 1, . . . ,H}. If
0 < st(|A|/H), and 0 < st(|B|/H), then A + B is
not U -nowhere dense.

Corollaries:

• If A and B are sequences of natural numbers
with positive upper Banach density, then
A + B is piecewise syndetic.

• Steinhaus’ theorem. . .
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Steinhaus’ theorem

Theorem (Steinhaus 1920): Let A and B be
subsets of R with positive Lebesgue measure.
Then A + B includes an interval.

Corollary: If A has positive Lebesgue measure,
A−A includes an interval.

Steinhaus’ theorem is an easy consequence of the
Lebesgue density theorem, which, in turn, is
usually proved using Vitali’s theorem.

Find a constructive version:

• Rework Jin’s argument, to make it as direct
as possible.

• Translate.

• Tinker.
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A constructive rewording

Without loss of generality, we can assume that A

and B are compact (even subsets of [0, 1/2]).

Theorem. Suppose A and B are compact
subsets of [0, 1/2], and A + B is nowhere dense.
Then min(µ(A), µ(B)) = 0.

Read:

• Compact: closed, and for every ε > 0, there is
a finite ε-net.

• Nowhere dense: for every (x, y) ⊆ [0, 1], there
is a (u, v) ⊆ (x, y) such that
(x, y) ∩ (A + B) = ∅.
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An explicit proof

Lemma. Suppose n is a multiple of 4,

• S ⊆ {0, . . . , n}
• T ⊆ {0, . . . , n}
• {n, . . . , 3n/2} 6⊆ S + T

Then |S|+ |T | ≤ 3n/2 + 1.

In particular, either |S| ≤ 3
4n or |T | ≤ 3

4n.

Proof. Suppose z ∈ {n, . . . , 3n/2}, but z 6∈ S +T .

Then for every x in S, z − x is not in T . So
x 7→ z − x is an injection from S to
{0, . . . , 3n/2} \ T .
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An explicit proof

For every n:

• divide [0, 1/2] into 2n subintervals.

• Find a 1/2n+1-net for A, and rationals
q1, . . . , qk approximating these to within
1/2n+1.

• Put an “x” in each interval containing or
adjacent to a qi.

Then

• A is covered by the intervals with x’s.

• If there is an x in an interval, there is a point
of A in that interval or the one adjacent.

Do the same for B.
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An explicit proof

Take the “sumset,” based on left endpoints. So if
there is an “x” in the sumset, there is a point of
A + B nearby.

Since A + B is nowhere dense, we can find a
(u, v) ⊆ [1/2, 3/4] disjoint from A + B.

For n large enough, (u, v) will have an interval
without an “x.”

By the lemma, either A or B is covered by less
than three quarters of the intervals.

Iterate.
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Future work

The applications would be much more impressive
if:

• a constructive proof, or constructive
information, had been explicitly sought,

• the “unwinding” had been more difficult,
making the translation-heuristic indispensible.

There are plenty of places to look for such
applications: anywhere nonconstructive or
analytic methods are used to obtain “concrete”
results, e.g. in number theory or combinatorics.
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Extra slides. . .
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The forcing interpretation (simplest version)

Names:

• Replace the constant ω by a variable.

• Replace each variable xi by a term x̃i(ω).

• Replace terms t[ω, x1, . . . , xk] by

t[ω, x̃1(ω), . . . , x̃k(ω)]. (Call this t̂.)

Conditions: A condition is a unary relation α(ω),

satisfying

∀z ∃ω ≥ z α(ω).

A condition α is stronger than β, written α ¹ β, if

∀ω (α(ω) → β(ω)).

The atomic case: Say α ° t1 = t2 if and only if

∃z ∀ω ≥ z (α(ω) → t̂1 = t̂2).

In other words, α ° t1 = t2 on all but a finite subset

of α.
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The forcing interpretation (continued)

The full forcing relation is defined inductively, as

follows:

1. α ° t1 = t2 ≡ ∃z ∀ω ≥ z (α(ω) → t̂1 = t̂2).

2. α ° t1 < t2 ≡ ∃z ∀ω ≥ z (α(ω) → t̂1 < t̂2).

3. α ° st(t) ≡ ∃z ∀ω ≥ z (α(ω) → t̂ < z).

4. α ° ϕ ∧ ψ ≡ (α ° ϕ) ∧ α(° ψ).

5. α ° ϕ → ψ ≡ ∀β ¹ α (β ° ϕ → β ° ψ).

6. α ° ¬ϕ ≡ ∀β ¹ α β 6° ϕ

7. α ° ϕ ∨ ψ ≡ ∀α ¹ β ∃γ ¹ β ((γ ° ϕ) ∨ (γ ° ψ))

8. α ° ∀x ϕ ≡ ∀x̃ (α ° ϕ)

9. α ° ∃x ≡ ∀α ¹ β ∃γ ¹ β ∃x̃ (γ ° ϕ)

Theorem 1 If NPRAω proves ϕ, PRAω + (Σ1 -IND)

proves ° ϕ.

The conservation theorem follows from this.
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The forcing interpretation (variations)

To translate NPRAω to PRAω, take conditions to be

of the form 〈α, f〉 satisfying

∀z ∃ω (α(ω) ∧ f(ω) ≥ z).

The relation 〈β, g〉 ¹ 〈α, f〉 is defined by

〈β, g〉 ¹ 〈α, f〉 ≡ ∀ω (β(ω) → α(ω) ∧ g(ω) ≤ f(ω)),

Define, for example,

〈α, f〉 ° t1 = t2 ≡ ∃z ∀ω (α(ω) ∧ f(ω) ≥ z → t̂1 = t̂2)

To translate NPRAω to constructive PRAω,

something slightly more complicated works.
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Developing real analysis

Definitions in NPRAω:

• N∗: the nonstandard natural numbers (type
N)

• N: the standard numbers (i.e. satisfying
st(xN))

• Z∗,Z: the nonstandard / standard integers

• Q∗,Q: the nonstandard / standard rationals

• q ∈ Q∗ is bounded if pqq is standard

• q is infinitesimal if it is zero or 1/q is
unbounded

• q ∼ r if q − r is infinitesimal

• x ∈ R means that x ∈ Q∗ and x is bounded

• x =R y means x ∼ y

In other words, we are taking R to be (Q∗)bdd/ ∼,
and dispensing with R∗ entirely.

The advantage: reals are type 0 objects.
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A surprise

A function f : R→ R is a function Q∗ → Q∗ satisfying

∀r ∈ R (f(r) ∈ R)∧∀r, s ∈ R (r =R s → f(r) =R f(s)).

Theorem 2 (NERAω) Every function f : R→ R is

continuous.

The point: variables range over internal functions.

The function f ∈ Q∗ → Q∗ defined by

f(x) =





0 if x ≤Q∗ 0

1 otherwise,

is not a function from R to R: for example, 1/ω =R 0

but f(1/ω) 6=R f(0).

On the other hand, the function g ∈ Q∗ → Q∗ defined

by

g(x) =





0 if x ≤R 0

1 otherwise

is not represented by a term of NERAω, since x ≤R 0

is external.
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The intermediate value theorem

Theorem 3 Suppose f ∈ [0, 1] → R, f(0) = −1, and

f(1) = 1. Then there is an x ∈ [0, 1] such that

f(x) = 0.

Proof. Considering f as a function on Q∗, let

j = max{i < ω | f(i/ω) <Q∗ 0}
and let x = j/ω. Since j/ω ∼ (j + 1)/ω, we have

f((j + 1)/ω) =R f(j/ω) ≤R 0 ≤R f((j + 1)/ω)

and so f(x) =R 0.
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The extreme value theorem

Theorem 4 If f ∈ [0, 1] → R, then f attains a

maximum value.

Proof. Again considering f as a function on Q∗, let

y = max
0≤i≤ω

f(i/ω),

let x = j/ω satisfy f(x) =Q∗ y. That y is a maximum

is guaranteed by the fact that for any x′ ∈ [0, 1], there

is an i such that x′ ∼ i/ω.
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Lebesgue measure via Löb measure

Let ω be nonstandard, and let A ⊂ Q∗ be the set

{0, 1/ω, 2/ω, . . . , 1− 2/ω, 1− 1/ω, 1}

For any internal subset B ⊆ A, define

µ(B) = |B|/ω.

Say an external subset E is Löb measurable if

µ(E) = inf
B⊆E

µ(B) = sup
B⊇E

µ(B).

If X ⊆ [0, 1] (possibly external) let

X̂ = {q ∈ A | ∃x ∈ X (q ∼ x)}.

Then X is Lebesgue measurable iff X̂ is Löb

measurable, in which case λ(X) = µ(X̂).
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Lebesgue measure in our weak theories

Let ϕ(x) be any property of reals, i.e. satisfying

r =R r′ ∧ ϕ(r) → ϕ(r′).

Let A = {0, 1/ω, 2/ω, . . . , 1− 2/ω, 1− 1/ω, 1}.

Say λ(ϕ) = s iff for every standard ε > 0 there are

sets B and C such that

• ∀r ∈ A (r ∈ B → ϕ(r) ∧ ϕ(r) → r ∈ C)

• |B|/ω > s− ε

• |C|/ω < s + ε

So, for example, ϕ holds almost surely on [0, 1] if for

every standard ε > 0, there is a set B ⊆ A such that

|B|/ω > 1− ε and ∀r (r ∈ B → ϕ(r)).
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A theorem by Renling Jin

Define the (upper) Banach density of A ⊆ N:

BD(A) = lim
n→∞

sup
b−a=n

|A ∩ [a, b]|
n + 1

A set A is piecewise syndetic if for some k there
are arbitrarily long sequences a0, . . . , an in A with
ai+1 − ai ≤ k.

Theorem. If BD(A) > 0 and BD(B) > 0, A + B

is piecewise syndetic.
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