
Philosophy of Mathematics as a Design Science

Jeremy Avigad

Department of Philosophy and
Department of Mathematical Sciences

Carnegie Mellon University

March 2018

Epistemological questions

Since Plato, the philosophy of mathematics has been concerned
with:
• the nature of mathematical objects, and
• the appropriate justification for mathematical knowledge.

But we employ other normative judgments as well:
• some theorems are interesting
• some questions are natural
• some concepts are fruitful, or powerful
• some proofs provide better explanations than others
• some historical developments are important
• some observations are insightful

. . . and so on.

The problem of multiple proofs

On the standard account, the value of a mathematical proof is that
it warrants the truth of the resulting theorem.

Why, then, do we often value a new proof of a previous established
theorem?

For example, Gauss published six proofs of the law of quadratic
reciprocity in his lifetime, and left us two unpublished versions as
well.

Franz Lemmermeyer has documented 233 proofs (available online,
with references).

The problem of multiple proofs

This question not new. For example:

It might be said: “—that every proof, even of a proposi-
tion which has already been proved, is a contribution to
mathematics”. But why is it a contribution if its only point
was to prove the proposition? Well, one can say: “the new
proof shews (or makes) a new connexion”. —Wittgenstein,
Remarks on the Foundations of Mathematics, III–60

Indeed, it is not a great mystery. There is a lot we can say about
what we learn from different proofs.

But the philosophy of mathematics has had relatively little to say
about the matter.

The problem of conceptual possibility

It is often said that some mathematical advance was “made
possible” by a prior conceptual development.

For example, Riemann’s introduction of the complex zeta function
and the use of complex analysis made it possible for Hadamard and
de la Vallée Poussin to prove the prime number theorem in 1896.

What is the sense of “possibility” here?

Intuition: a certain understanding guides us.

Epistemological questions

What the questions have in commmon:
• They have a generally epistemological flavor, involving

“knowledge” or “understanding.”
• They invoke normative assessments.

This is a starting point for philosophical inquiry.

Outline

Overview:
• General epistemological questions
• Mathematics from a design perspective
• Towards a theory of mathematical understanding
• Strategies

• Look to mathematical practice
• Look to interactive theorem proving
• Look to the history of mathematics

• Modularity in mathematics

I learned empirically that this came out
this time, that it usually does come
out; but does the proposition of
mathematics say that? . . . The
mathematical proposition has the
dignity of a rule.

So much is true when it’s said that
mathematics is logic: its moves are
from rules of our language to other
rules of our language. And this gives it
its peculiar solidity, its unassailable
position, set apart.

— Ludwig Wittgenstein

. . . it seemed to me one of the most
important tasks of philosophers to investigate
the various possible language forms and
discover their characteristic properties. While
working on problems of this kind, I gradually
realized that such an investigation, if it is to
go beyond common-sense generalities and to
aim at more exact results, must be applied to
artificially constructed symbolic languages.. . .
Only after a thorough investigation of the
various language forms has been carried
through, can a well-founded choice of one of
these languages be made, be it as the total
language of science or as a partial language
for specific purposes.

— Rudolf Carnap

Physical objects, small and large, are
not the only posits.. . . the abstract
entities which are the substance of
mathematics. . . are another posit in
the same spirit. Epistemologically
these are myths on the same footing
with physical objects and gods, neither
better nor worse except for differences
in the degree to which they expedite
our dealings with sense experiences.

— W. V. O. Quine

“When I use a word,” Humpty Dumpty
said in rather a scornful tone, “it means
just what I choose it to mean —
neither more nor less.”

“The question is,” said Alice, “whether
you can make words mean so many
different things.”

“The question is,” said Humpty
Dumpty, “which is to be master —
that’s all.”

— Lewis Carroll

Philosophical puzzles

• Mathematics tells us about the world, but not vice-versa.
• Mathematical objects are not located in space or time.
• Mathematics delivers (near?) certainty.

Lowbrow answers

• Mathematics is governed by mathematical norms.
• We learn these norms from parents, teachers, . . .
• We come to have mathematical knowledge by following these

norms correctly.

But why are the norms the way they are, and why do they tell us
anything about the world?

The linguistic turn

Mathematics is part of our language.
• Linguistic norms govern the way we describe the world.
• We have adopted these norms because they are useful.

These themes (with variations) occur throughout Wittgenstein,
Carnap and the Logical Positivists, and Quine.

Only empirical explanation is possible
for why we have come to accept the
basic principles that we do and why we
apply them as we do—for why we have
mathematics and why it is at it is. But
it is only within the framework of
mathematics as determined by this
practice that we can speak of
mathematical necessity. In this sense,
which I believe Wittgenstein was first
to fully grasp, mathematical necessity
rides on the back of empirical
contingency.

— William Tait

Outline

Overview:
• General epistemological questions
• Mathematics from a design perspective
• Towards a theory of mathematical understanding
• Strategies

• Look to mathematical practice
• Look to interactive theorem proving
• Look to the history of mathematics

• Modularity in mathematics

Towards a theory of mathematical understanding

General picture:
• Beyond knowledge, we look to mathematics for modes of

understanding.
• Understanding involves not just factual knowledge, but

something more dynamic: ways of proceeding, modes of
analysis, capacities for thought.
• We value mathematical resources for conferring understanding.
• Some mathematical resources are overtly syntactic: definitions,

theorems, proofs, questions.
• These give rise to resources that are harder to characterize

precisely: concepts, methods, heuristics, intuitions, . . .

A methodological stance

To make progress, we have to pick a methodological framework:
• a way of thinking about mathematics
• a language for talking about the objects of mathematical

understanding
• a way of posing questions precisely (or at least trying to)
• precise, disciplined ways of answering them

We just have to do it, and see what happens.

A methodological stance

We want a philosophical theory of mathematical understanding that

• is coherent
• is satisfying
• can inform (and is informed by) other pursuits:

• history of mathematics
• interactive theorem proving and automated reasoning
• psychology and cognitive science
• mathematics education
• mathematics itself

I will make some recommendations here.

Recommendations

First recommendation: stay grounded in syntax.

What characterizes mathematics with respect to other scholarly
disciplines is its level of rigor: there are precise norms that dictate
how to make meaningful mathematical claims, and how to establish
their truth.

We can (and have) studied these norms in syntactic terms, with
great success.

Definitions, theorems, proofs, conjectures, questions, and the like
— the “literature” — constitute the starting data.

The more nebulous objects of understanding — concepts, methods,
intuitions, etc. — are manifested in the linguistic artifacts.

Recommendations

Second recommendation: think of the philosophy of mathematics
as a design science, like automative engineering.

A closer look at the syntactic components of mathematics —
definitions, theorems, proofs, theories, and so on — shows them to
be highly structured objects.

When one studies the history of mathematics, or tries to model real
mathematical proofs formally, one has the sense that mathematical
language is beautifully designed to extend our cognitive reach,
make it possible for us to solve increasingly more difficult problems,
construct more elaborate proofs.

What are the general principles?

Recommendations

Third recommendation: start with more specific, focused projects.

I will discuss three strategies for making progress:
• look to the everyday practice of mathematics
• look to the history of mathematics
• look to interactive theorem proving

Strategies

First strategy: look at ordinary mathematical proofs.

• What are the (inferential and communicative) norms that are
in play?
• What cognitive capacities that are presupposed by their

comprehensibility?

Compare alternative proofs, or textbook presentations, of the same
theorem. Explain

• the structuring of information, and
• the understanding or expertise that is conveyed.

We need to rely on what mathematicians do rather than their self
assessments.

Strategies

Second strategy: look to the history of mathematics.

Find an important historical development (what Ken Manders calls
a “big deal difference”).

This suggests that we were in
• a certain epistemological state beforehand, and
• a certain epistemological state after,

and that they are different in some important way.

Explain the difference.

Strategies

Third strategy: look to interactive theorem proving and automated
reasoning.

Formal verification involves the use of formal methods to verify
correctness, for example:
• verifying that a circuit description, an algorithm, or a network

or security protocol meets its specification; or
• verifying that a proof of a mathematical theorem is correct.

“Interactive theorem proving” is one important approach.

Strategies

Working with a proof assistant involves conveying enough
information to the system to confirm that there is a formal
axiomatic proof.

In fact, most proof systems actually construct a formal proof
object, a complex piece of data that can be verified independently.

“Proof languages” provide expressive models of ordinary
mathematical language, designed to convey knowledge (and
expertise) efficiently.

Understanding what is needed to develop mathematics formally
provides insight into how the informal languages work as well.

Interactive theorem proving

theorem PrimeNumberTheorem:
"(%n. pi n * ln (real n) / (real n)) ----> 1"

!C. simple_closed_curve top2 C ==>
(?A B. top2 A /\ top2 B /\

connected top2 A /\ connected top2 B /\
~(A = EMPTY) /\ ~(B = EMPTY) /\
(A INTER B = EMPTY) /\ (A INTER C = EMPTY) /\

(B INTER C = EMPTY) /\
(A UNION B UNION C = euclid 2)

!d k. 1 <= d /\ coprime(k,d)
==> INFINITE { p | prime p /\ (p == k) (mod d) }

Interactive theorem proving

Theorem Sylow's_theorem :
[/\ forall P,

[max P | p.-subgroup(G) P] = p.-Sylow(G) P,
[transitive G, on 'Syl_p(G) | 'JG],
forall P, p.-Sylow(G) P ->

#|'Syl_p(G)| = #|G : 'N_G(P)|
& prime p -> #|'Syl_p(G)| %% p = 1%N].

Theorem Feit_Thompson (gT : finGroupType)
(G : {group gT}) :

odd #|G| → solvable G.

Theorem simple_odd_group_prime (gT : finGroupType)
(G : {group gT}) :

odd #|G| → simple G → prime #|G|.

Interactive theorem proving

theorem (in prob_space) central_limit_theorem:
fixes X :: "nat ⇒ ’a ⇒ real"
and µ :: "real measure"
and σ c :: real
and S :: "nat ⇒ ’a ⇒ real"

assumes X_indep: "indep_vars (λi. borel) X UNIV"
and X_integrable: "

∧
n. integrable M (X n)"

and X_mean: "
∧
n. expectation (X n) = c"

and σ_pos: "σ > 0"
and X_square_integrable:

"
∧
n. integrable M (λx. (X n x)2)"

and X_variance: "
∧
n. variance (X n) = σ2"

and X_distrib: "
∧
n. distr M borel (X n) = µ"

defines "S n x ≡
∑

i<n. X i x"
shows "weak_conv_m (λn. distr M borel

(λx. (S n x - n * c) / sqrt (n*σ2)))
std_normal_distribution"

Interactive theorem proving

Challenges:
• Modeling mathematical assertions in a natural way.
• Modeling mathematical proof in a natural way.
• Modeling mathematical expertise, and filling in

“straightforward” inferences automatically.
• Managing large libraries of information.
• Verifying long computations.

Lessons

Some of the things we have learned:

• Language is important.
• Notation is important.
• Definitions are important.
• Organization is important.
• Structure is important.
• Infrastructure is important.
• Matching and unification are important.
• Indexing and retrieval are important.
• Methods of reasoning are important.
• Heuristics are important.

The philosophy of mathematics should help us better understand
how, and why.

Lessons

Designing a theorem prover involves designing a language (in a
broad sense):
• axioms, rules
• syntax, notation
• semantics
• idioms
• concepts
• theories

A theorem prover and its libraries can be well designed, or poorly
designed.

The same is true of a piece mathematics.

Outline

Overview:
• General epistemological questions
• Mathematics from a design perspective
• Towards a theory of mathematical understanding
• Strategies

• Look to mathematical practice
• Look to interactive theorem proving
• Look to the history of mathematics

• Modularity in mathematics

Modularity in mathematics

Many important philosophical gains are focused: understanding a
historical development, or recognizing an important inferential
pattern.

In the time remaining, however, I will discuss one general theme:
the value of modularity.

Modularity in mathematics

The term “modular” is a term of art in biology, computer science,
business administration, architecture, neuroscience, cognitive
science, philosophy of mind, . . .

Thesis: Mathematical knowledge tends to be structured in modular
ways.

(And we can be precise about how, and why.)

Modular systems

Herbert Simon, “The Architecture of Complexity,” 1962, spoke of
“nearly decomposible” systems rather than modular ones.

Modularity has been studied with respect to:
• biology
• social organizations (like a business)
• hardware design
• software design
• architecture
• the mind

Modular systems

Roughly, a complex system is said to be modular to the extent it
has the following features:
• The system is divided into components, or modules, with

dependencies between them.
• The division supports abstraction: the function of the

components can be described with respect to the behavior of
the entire system, without reference to the particular
implementation.
• Dependencies between modules are kept small, and mediated

by precise specifications, or interfaces.
• Dependencies within a module may be complex, but, due to

encapsulation or information hiding, these are not visible
outside the module.

Modular systems

A modular design is often claimed to bring certain benefits:
• Comprehensibility: makes it easier to understand, explain, and

predict.
• Independence: allows the components of a system to be built

and tested independently.
• Reliability and robustness: makes it easier to find and correct

errors.
• Flexibility: makes it easier to change and adapt.
• Reuse: components that prove successful in one system can be

used in others.

These are features we want our mathematics to have.

Modularity in computer science

Since the 1970’s, modularity has been a central goal in software
design:
• Large programs should be divided into independent modules.
• A module is a body of code with a well-defined interface. The

interface specifies what procedures the user can call from the
outside, what data these procedures expect, what data these
procedures return, what state information the module keeps
track of, and how procedural calls change the state.
• The internal workings of the code can otherwise largely be

ignored; in particular, code that interacts through the interface
is guaranteed to work even if the implementation changes.

From programs to proofs

The dialectic:
• The language of a proof assistant models informal

mathematics.
• Text in such a language is a form of code.
• We know (more or less) how to talk about modularity in code.
• So it makes sense to talk about modularity in formal libraries.
• Insofar as these model informal mathematics, we can speak of

modularity in mathematics.

Modularity in the wild

In everyday mathematics, modularity is everywhere:
• Books are divided into chapters.
• Proofs are broken down to lemmas.
• Subjects and bodies of knowledge are broken down into

smaller disciplines.

Concrete examples can help us think about how the notions play
out.

Congruence

Definition. If x and y are integers, say x divides y , written x | y , if
there is an integer z such that y = xz .

Definition. If m is another integer, say x is congruent to y modulo
m, written x ≡ y (mod m), if m | x − y .

Let us consider a toy, but illustrative, example:

Proposition. If x ≡ y (mod m), then x3 + 3x + 7 ≡ y3 + 3y + 7
(mod m).

Congruence

Proof. Unpacking definitions, we have x ≡ y (mod m) if and only
if x = y +mz for some z . Then

x3 + 3x + 7 = (y +mz)3 + 3(y +mz) + 7

= y3 + 3y2mz + 3ym2z2 +m3z3 + 3y + 3mz + 7

= y3 + 3y + 7+m(3y2z + 3ymz2 +m2z3 + 3z)

which shows that x3 + 3x + 7 ≡ y3 + 3y + 7 (mod m). �

Of course, this doesn’t scale.

More significantly, it breaks abstraction.

Congruence

Proposition. Let x , y , and z be integers.
1. x | x .
2. If x | y and y | z then x | z
3. If x | y and x | z , then x | y + z .
4. If x | y , then x | zy .
5. x | 0.

Proof. For 1, we have x = x · 1. For 2, if y = xu and z = yv , then
z = x(uv). For 3, if y = xu and z = xv , then y + z = x(u + v).
For 4, if y = xu, then zy = x(zu). For 5, take y = x and z = 0 in
3. �

This is the only place where we need to unfold the definition of |.

Congruence

Proposition.
1. ≡ is an equivalence relation.
2. If x1 ≡ y1 (mod m) and x2 ≡ y2 (mod m) then

x1 + x2 ≡ y1 + y2 (mod m).
3. If x1 ≡ y1 (mod m) and x2 ≡ y2 (mod m) then x1x2 ≡ y1y2

(mod m).
4. If x ≡ y (mod m), then xn ≡ yn (mod m) for every natural

number n.

It follows that if p(x) is any polynomial with integer coefficients
and x ≡ y (mod m), then p(x) ≡ p(y) (mod m).

Congruence

In the refactored version:
• the existential quantifier in “divides” encapsulates data.
• the proofs about congruence respect that interface.

Benefits of the refactoring:
• The proof is easier to understand.
• The properties of divisibility and congruence are reusable.
• The result is more general.

Think about what is encapsulated with limx→a f (x) = b.

Algebraic abstraction and other strategies support modularity on
the larger scale.

Modularity in mathematics summarized

It is generally understood that modularity brings benefits to
software design:
• understandability
• reliability and robustness
• independence
• flexibility and adaptability
• generalizability and reuse

The notions carry over to mathematics.

For more detail, see “Modularity in mathematics,” to appear in the
Review of Symbolic Logic.

Outline

Overview:
• General epistemological questions
• Mathematics from a design perspective
• Towards a theory of mathematical understanding
• Strategies

• Look to mathematical practice
• Look to interactive theorem proving
• Look to the history of mathematics

• Modularity in mathematics

Concluding remarks

We care about mathematics.
• We subject our children to countless hours of mathematical

training.
• We put a lot of faith in mathematical results.
• We applaud mathematical achievements.

The subject deserves philosophical study that helps us understand
what it means to do mathematics, and helps us do it better.

