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Ergodic theory

A discrete dynamical system consists of a structure, X , and an map T
from X to X .

In ergodic theory, X is assumed to be a finite measure space
(X,B, µ), and T is assumed to be a measure preserving
transformation, i.e. µ(T −1 A) = µ(A) for every A ∈ B.

Call (X,B, µ, T ) a measure preserving system.

• These can model physical systems (e.g. Hamilton’s equations
preserve Lebesgue measure).

• They can model probabilistic processes.
• They have applications to number theory and combinatorics.



The metamathematics of ergodic theory

Ergodic theory emerged from seventeenth century dynamics and
nineteenth century statistical mechanics.

Since Poincaré, the emphasis has been on characterizing structural
properties of dynamical systems, especially with respect to long term
behavior (stability, recurrence).

Today, the field uses structural, infinitary, and nonconstructive
methods that are characteristic of modern mathematics.

These are often at odds with computational concerns.



The metamathematics of ergodic theory

Central questions:

• To what extent can the methods and objects of ergodic theory be
given a direct computational interpretation?

• How can we locate the “constructive content” of the
nonconstructive methods?

I will focus on two case studies:

• the von Neumann and Birkhoff ergodic theorems; and
• the Furstenberg structure theorem.



The ergodic theorems

Consider the orbit x, T x, T 2x, . . ., and let f : X → R be some
measurement. Consider the averages

1
n
( f (x)+ f (T x)+ . . .+ f (T n−1x)).

For each n ≥ 1, define An f to be the function 1
n

∑
i<n f ◦ T i .

Theorem (von Neumann). For every f in L2(X ), (An f ) converges
in the L2 norm.

Theorem (Birkhoff). For every f in L1(X ), (An f ) converges
pointwise almost everywhere, and in the L1 norm.

If X is ergodic, then (An f ) converges to the constant function∫
f dµ.



Bounding the rate of convergence

Can we compute a bound the rate of convergence of a (An f )?

In other words: can we compute a function r : Q → N such that for
every rational ε > 0,

‖Am f − Ar(ε) f ‖ < ε

whenever m ≥ r(ε)?

Krengel (et al.): convergence can be arbitrarily slow.

But computability is a different question.



Observations

If (an)n∈N is a sequence of reals that decreases to 0, no matter how
slowly, one can compute a bound on the rate of convergence from
(an).

But there are bounded, computable, decreasing sequences (bn) of
rationals that do not have a computable limit.

There are also computable sequences (cn) of rationals that converge to
0, with no computable bound on the rate of convergence.

Conclusion: at issue is not the rate of convergence, but its
predictability.



A negative result

Theorem (A-Simic). There are a computable measure-preserving
transformation of [0, 1] under Lebesgue measure and a computable
characteristic function f = χA, such that if f ∗

= limn An f , then
‖ f ∗

‖2 is not a computable real number.

In particular, f ∗ is not a computable element of L2(X ), and there is
no computable bound on the rate of convergence of (An f ) in either
the L2 or L1 norm.



A positive result

An measure-preserving transformation T gives rise to an isometry T̂
on L2(X ),

T̂ f = f ◦ T .

Riesz showed that the von Neumann ergodic theorem holds, more
generally, for any nonexpansive operator T̂ on a Hilbert space
(i.e. satisfying ‖T f ‖ ≤ ‖ f ‖ for every f in H.)

Theorem (A-G-T). Let T̂ be a nonexpansive operator on a separable
Hilbert space and let f be an element of that space. Let
f ∗

= limn An f . Then f ∗, and a bound on the rate of convergence of
(An f ) in the Hilbert space norm, can be computed from f , T̂ , and
‖ f ∗

‖.

In particular, if T̂ arises from an ergodic transformation T , then f ∗ is
computable from T and f .



A constructive mean ergodic theorem

When there is no computable bound on the rate of convergence, is
there anything more we can say?

The assertion that the sequence (An f ) converges can be represented
as follows:

∀ε > 0 ∃n ∀m ≥ n (‖Am f − An f ‖ < ε).

This is classically equivalent to the assertion that for any function K ,

∀ε > 0 ∃n ∀m ∈ [n, K (n)] (‖Am f − An f ‖ < ε).



A constructive mean ergodic theorem

Theorem (A-G-T). Let T̂ be any nonexpansive operator on a Hilbert
space, let f be any element of that space, and let ε > 0, and let K be
any function. Then there is an n ≥ 1 such that for every m in
[n, K (n)], ‖Am f − An f ‖ < ε.

In fact, we provide a bound on n expressed solely in terms of K and
ρ = ‖ f ‖/ε (and independent of T̂ ).

As special cases, we have the following:

• If K = nO(1), then n( f, ε) = 22O(ρ2 log log ρ)
.

• If K = 2O(n), then n( f, ε) = 21
O(ρ2)

.

• If K = O(n) and T̂ is an isometry, then n( f, ε) = 2O(ρ2 log ρ).



A constructive pointwise ergodic theorem

The following is classically equivalent to the pointwise ergodic
theorem:

Theorem (A-G-T). For every f in L2(X ), λ1 > 0, λ2 > 0, and K
there is an n ≥ 1 satisfying

µ({x | max
n≤m≤K (n)

|An f (x)− Am f (x)| > λ1}) ≤ λ2.

We provide explicit bounds on n in terms of f , λ1, λ2, and K .



Hard and soft analysis

On his blog, Terence Tao recently emphasized the distinction between
“hard” and “soft” analysis.

“Hard” (or “quantitative,” or “finitary”) analysis deals with the
cardinality of finite sets, the measure of bounded sets, the value of
convergent integrals, the norm of finite-dimensional vectors, etc.

“Soft” analysis deals with infinitary objects, like sequences,
measurable sets and functions, σ -algebras, Banach spaces, etc.

“To put it more symbolically, hard analysis is the mathematics of ε,
N , O(), and ≤; soft analysis is the mathematics of 0, ∞, ∈, and →.”

Tao independently observed that the methods described here provide
“hard” analogues of “soft” results.



Hard and soft analysis

Theorem (Tao). Let T1, . . . , Tl be commuting measure preserving
transformations of X , and f1, . . . , fl ∈ L∞(X ). Then the sequence of
“diagonal averages”

1
N

N−1∑
n=0

f1(T n
1 x) · · · fl(T n

l x)

converges in the L2 norm.

When l = 1, this is essentially the mean ergodic theorem.

Tao’s method: run the “Furstenberg correspondence” in reverse, and
prove a finitary combinatorial statement by induction on l.

When l = 1, this statement is an instance of our constructive MET.



Mixing properties

Ergodicity is equivalent to

lim
n→∞

1
n

n∑
i=1

µ(T −i A ∩ B) = µ(A)µ(B).

for every A and B.

A system is mixing if we have

lim
n→∞

µ(T −n A ∩ B) = µ(A)µ(B).

A system is weak mixing if we have

lim
n→∞

1
n

n∑
i=1

|µ(T −i A ∩ B)− µ(A)µ(B)| = 0.



Compactness

A system is said to be compact if it has the property that for every f
in L2(X,B, µ), the orbit

{ f, T̂ f, T̂ 2 f, . . .}

is totally bounded, i.e. has compact closure.

A compact system exhibits a high degree or regularity.

A weak mixing system exhibits a high degree of randomness.

Can we decompose an arbitrary system into a combination of the two?



The Furstenberg structure theorem

Let X = (X,B, µ, T ) be a measure preserving system. (Henceforth,
assume T is invertible.)

Lemma (Koopman-von Neumann). If X is not weak mixing, it has
a nontrivial compact T -invariant factor.

Three ways of thinking of a factor:
• (X,B′, µ, T ), for a T -invariant sub-σ -algebra B′

⊆ B
• A homomorphic image, or quotient, of X .
• A (suitable) T̂ -invariant subspace of L2(X ).



The Furstenberg structure theorem

The notions of compactness and weak mixing relativize to factors.

Lemma (Furstenberg). If a system (X,B, µ, T ) is not weak mixing
relative to a factor B′, there there is an intermediate factor B′′ such
that (X,B′′, µ, T ) is compact relative to (X,B′, µ, T ).

We can iterate this, taking unions at limit stages. If the system is
separable, the process comes to an end at a countable ordinal.



The Furstenberg structure theorem

The Furstenberg Structure Theorem. Let (X,B, µ, T ) be any
measure preserving system. Then there is a transfinite increasing
sequence of factors (Bα)α≤γ such that:

• B0 is the trivial factor.
• For each α < γ , (X, Bα+1, µ, T ) is compact relative to
(X, Bα, µ, T ).

• For each limit λ ≤ γ , Bλ = ∪α<λBα.
• Either Bγ = B, or (X,B, µ, T ) is weakly mixing relative to
(X,Bγ , µ, T ).



Szemerédi’s theorem

A sturcture theorem has a direct application to combinatorics:

Szemerédi’s Theorem. Every set S of natural numbers with positive
upper Banach density has arbitrarily long arithmetic progressions.

Equivalently:

Theorem. For every k and δ > 0, there is an n large enough, such that
if S is any subset of {1, . . . , n} with density at least δ, then S has an
arithmetic progression of length k.

Szemerédi proved the theorem in 1975. Two years later, Furstenberg
provided a new proof, by translating the theorem into
measure-theoretic terms.



Furstenberg correspondence

Suppose we are given a sequence of subsets Sn of {1, . . . , n} of
density δ > 0.

Let T be the shift map on 2Z. We can thin out the sequence and define
a T -invariant measure µ on 2Z such that for any finite pattern σ ,
µ([σ ]) is the limit of the density of that pattern in the Sn’s.

Szemerédi’s theorem becomes equivalent to the following:

Theorem. For any measure preserving system (X,B, µ, T ), any set
A of positive measure, and any k, there is an n such that

µ(A ∩ T −n A ∩ T −2n A ∩ . . . ∩ T −(k−1)n A) > 0.



Furstenberg’s proof

If the space is weak mixing, the theorem holds, because the events are
close to uncorrelated.

If the space is compact, the theorem holds, because events come close
to recurring.

More generally, define a stronger inductive hypotheses, that
• holds of the trivial factor;
• is maintained under compact extensions;
• is maintained under limits; and
• is maintained under weak mixing extensions.



Analysis of the structure theorem

Tao writes:

This ergodic theory argument is the shortest and most
flexible of all the known proofs, and has been the most
successful at leading to further generalizations of
Szemerédi’s theorem. . . On the other hand, the infinitary
nature of the argument means that it does not obviously
provide any effective bounds for the quantity NSZ (k, δ).

But what makes the argument nonconstructive?



Analysis of the structure theorem

Kra writes:

Furstenberg’s proof relies on a compactness argument,
making it difficult to extract any explicit bounds in the finite
version of Szemerédi’s theorem.

She seems to be referring to the combinatorial compactness argument
implicit in the correspondence principle. Furstenberg writes:

However, the ergodic-theoretic approach depends
essentially on passing to a limit whereby a set
{1, 2, 3, . . . , N } is replaced by a measure space, and the
translations n → n + a are replaced by measure preserving
transformations of this space. In passing to this limit one
loses sight of the size N of the interval {1, 2, 3, . . . , N }. As
a result this approach is incapable of giving any
information regarding [NSZ (k, δ)] beyond the fact that it is
finite.



Analysis of the structure theorem

The correspondence principle can be reduced to the task of picking a
path through an infinite binary tree computable from S′.

In general, such a path is not computable from S′. But, by the
Jockusch-Soare low-basis theorem, there is a path that is low in S′.

There are proof-theoretic techniques for eliminating “weak König’s
lemma,” and other techniques for handling mild uses of arithmetic
comprehension.

If this were the only use of nonconstructivity, the argument would be
pretty tame.



Analysis of the structure theorem

The transfinite iteration should seem suspect. But there is nothing
inherently wrong with transfinite recursion.

Define the set of (full) well-founded trees on N inductively:
• e (one node only) is a well-founded tree;
• If f (n) is a well-founded tree for every n, then one can make

these the subtrees of a new root.

Then definition by recursion is constructively valid:

F(e) = a

F(T ) = G(λnF(T(n))) if T is not e



Analysis of the structure theorem

So where’s the problem?

Answer: taking limits, or projections, at each stage. The transfinite
iteration then amplifies the problem.

Theorem (Beleznay and Foreman). The Furstenberg structure
theorem exhausts the countable ordinals.

Observation (A-T). If X codes a measure-preserving system, the
height of the tower is less than or equal to ωC K ,X

1 . The αth level is
computable in H X

2·α.

We suspect that this is sharp, at least for limit α. This means that the
Furstenberg tower is a wildly noncomputable object.



Analysis of the structure theorem

And yet, the structure theorem can be used to prove an explicit
combinatorial result. How does this work?

Our explanation:
• The argument can be carried out in Kreisel’s theory ID1 of

arithmetic inductive definitions.
• Proofs in ID1 have constructive interpretations.



The theory ID1

Let ψ(P, x) be an arithmetic formula with a new predicate symbol P
that occurs only positively.

This determines a monotone operator

0ψ(S) = {x | ψ(S, x)},

which thus has a least fixed point.

The theory ID1 adds these axioms:
• ∀x (ψ(P, x) → P(x))
• ∀x (ψ(θ/P, x) → θ(x)) → ∀x (P(x) → θ(x)), for each

formula θ .

These express that P is the least fixed point of 0ψ .



The constructive theory IDi,acc
1

For a constructive version, restrict to intuitionistic logic, and insist
that the inductive definitions be accessibility definitions:

∀y (y ≺ x → P(y))

These pick out the well-founded part of a primitive recursive relation,
≺.



Locating the constructive content of a theory

A 52 sentence is one of the form ∀x̄ ∃ȳ R(x̄, ȳ).

Szemerédi’s theorem has this form.

Two ways of characterizing the 52 consequences of a theory:

1. Every 52 sentence provable in T is also provable in a
constructive theory, T ′.

2. Every 52 sentence provable in T is witnessed by an element of a
particular class of computable functions, C .



The constructive content of PA

Define the set of finite types:
• N is a finite type; and
• assuming σ and τ are finite types, so are σ × τ and σ → τ .

The set of primitive recursive functionals of finite type is a set of
computable functionals obtained from the use of explicit definition (λ
abstraction), application, pairing, and projections, and a scheme of
primitive recursion:

F(0) = a

F(n + 1) = G(n, F(n))

where the range of F may be any finite type.



The constructive content of PA

Theorem. Every 52 theorem of PA is provable in HA.

Theorem. Every 52 theorem of PA is witnessed by a primitive
recursive functional of type N → N .



The constructive content of PA

To prove this, first use apply double-negation interpretation to P A.
The sentence ∀x̄ ∃ȳ R(x̄, ȳ) becomes ∀x̄ ¬¬∃ȳ R(x̄, ȳ)

From here, there are two ways of proceeding. One option:
• Use the Friedman-Dragalin A-translation to “repair” the

interpretation of 52 sentences.
• Apply modified realizability.

Another option:
• Use the Dialectica interpretation to extract a primitive recursive

functional.
• Interpret the result in HA.

Experience has shown that the second is better for proof mining.



The constructive content of ID1

Extend the finite types by adding a new base type, �, which is
intended to denote the set of well-founded (full) trees on N.

Add two new operations:
• Sup, of type (N → �) → �, forms a new tree from a sequence

of subtrees;
• Sup−1, of type � → (N → �), which returns the immediate

subtrees of a nontrivial tree.

Add the principle of recursive definition:

F(e) = a

F(Sup(h)) = G(λn F(h(n))

Call these the primitive recursive tree functionals.



The constructive content of ID1

Theorem. Every 52 theorem of ID1 is provable in IDi,acc
1 .

Theorem. Every 52 theorem of ID1 is witnessed by a primitive
recursive tree functional of type N → N .



The constructive content of ID1

Once again, there are two ways of obtaining this result. In both cases,
start with a double-negation translation.

From there, one can apply a method by Buchholz:
• Use a complex forcing translation.
• Apply modified realizability.

Towsner and I have recently developed an alternative route:
• Use a Dialectica interpretation.
• Interpret the result in IDi,acc

1 .



Conclusions

This provides a strategy for interpreting the Furstenberg proof:
formalize in ID1, and apply the Dialetica translation.

Towsner and I are working on turning this into a readable proof.

Goals:
• A perspicuous new proof of Szemerédi’s theorem.
• A better understanding of the combinatorial content of the

structure theorem.
• New combinatorial methods, which may generalize.
• Possibly combinatorial independences, à la Friedman.
• A better understanding of the use of infinitary methods in

combinatorics.


