The promise of formal mathematics

Jeremy Avigad

Department of Philosophy
Department of Mathematical Sciences
Hoskinson Center for Formal Mathematics

Carnegie Mellon University

January 7, 2023

Formal methods in mathematics

Formal methods are a body of logic-based methods used in
computer science to

® write specifications (for hardware, software, protocols, and so
on), and
® verify that artifacts meet their specifications.

They rely on:

e formal languages
e formal semantics

e formal rules of inference.

Formal methods in mathematics

There are:

® tools for automated reasoning

® tools that support robust user interaction.

Most domains require a combination of the two.
Formal methods can also be used for mathematics.

| will try to explain how, and why they are useful.

Outline

® Formal methods in mathematics

Interactive theorem provers

Lean and mathlib

Why formal methods are useful

Why logicians should care

What logicians can contribute

Interactive theorem provers

We have known since the early twentieth century that mathematics
can be formalized:

® Mathematical statements can be expressed in formal
languages, with precise grammar.

® Theorems can be proved from formal axioms, using prescribed
rules of inference.

With the help of computational proof assistants, this can be
carried out in practice.

In many systems, the formal proof can be extracted and verified
independently.

1

X

File Edit

= whitney.lean X

§° main*

Selection View Go Run Terminal Help

= whitney.lean

}

i es {M : Type uM}
[topological space M] [charted_space H M]
[smooth manifold with corners I M]

a exists_embedding euclidean_of compact
[t2 space M] [compact space M]

3 (n : N) (e : M > euclidean_space R (fin n)),
smooth I (R n) e A closed _embedding e A
V x : M, injective (mfderiv I (R n) e x) :=

rcases smooth_bump_covering.
exists is subordinate I is closed univ (
: M) _, univ_mem)

(x

ith (v, £, -),

:= f.fintype,

rcases f.exists_immersion_euclidean

e, hsmooth, hinj, hlnjimfderiv),|

exact (n, e, hsmooth, hsmooth.continuous.
closed_embedding hinj, hinj_mfderiv)

(n,

%o ®0AO0 Lean: v (checking visible files)

<

SurEd--

_ANSL_J : Lumpdel_Spdie @
1 : Type uM
f : (smooth bump covering v I M)
_inst : fintype 1
n: N
e : M - euclidean_space R (fin n)
hsmooth :
smooth I
Z(R, euclidean space R (fin n))
e
hinj
hinj_mfderiv :
, injective
2 (mfderiv I
(R,
euclidean_space R (fin n))
e
X

: injective e
vV (x : M)

: N)
: M > euclidean_space R (fin n))

smooth I
D iaon oo o

L, Leio o0,
Ln34,Col80 Spaces:2 UTF-8 LF Lean $@Spell & Q)

Interactive theorem provers

“It is not in heaven, that thou shouldest say: ‘Who shall go up for
us to heaven, and bring it unto us, and make us to hear it, that we
may do it?' " (Deuteronomy 30:12)

You

can download these systems and get started right away.

Isabelle: https://isabelle.in.tum.de/

Coq with Mathematical Components:
https://math-comp.github.io/

HOL Light:
https://www.cl.cam.ac.uk/~jrh13/hol-1light/
Metamath: http://us.metamath.org/

Lean: https://leanprover-community.github.io

There are online documentation, tutorials, user mailing lists, online
chat groups, and more.

https://isabelle.in.tum.de/
https://math-comp.github.io/
https://www.cl.cam.ac.uk/~jrh13/hol-light/
http://us.metamath.org/
https://leanprover-community.github.io

Interactive theorem provers

There are a number of systems with substantial mathematical
libraries, including Mizar, HOL, Isabelle, Coq, ACL2, PVS, Agda,
HOL Light, Metamath, and Lean.

| will focus on Lean because:

® |t has received a lot of attention from mathematicians lately.

® |t is a system | know particularly well.

This is a snapshot, not a survey.

L Lean community

Lean and mathlib

<« C & leanprover-community githubio

Lean Community

Community
Zullp chat
GitHub
Community information
Papers about Lean
Projects using Lean

Installation
Get started
Debian/Ubuntu installation
Generic Linux installation
MacOs Installation
Windows Installation
Online version (no Installation)

Community

Lean and its Mathematical Library

The Lean theorem prover is a proof assistant developed principally by Leonardo de Moura at Microsoft Research

The Lean mathematical library, mathlib, is a community-driven effort to build a unified library of mathematics formalized in
the Lean proof assistant. The library also contains definitions useful for programming. This project is very active, with many
regular contributors and daily activity.

Using leanproject
The Lean toolchaln

Documentation
Learning resources (start here)
APl documentation
Calc mode
Conv mode
Simplifier
Tactic writing tutorial
Well-founded recursion
About MWEs

Library overviews
Library overview
Undergraduate maths
Wiedijk's 100 theorems

Theory docs
Category theory
Linear algebra
Natural numbers
Sets and set-ike objects
Topology

The contents, design, and community organization of mathlib are described In the paper The Lean mathematical library,
which appeared at CPP 2020. You can get a bird's eye view of what s In the library by reading the library overview. You can
also have a look at our repository statistics to see how it grows and who contributes to It

Try it!

You can try Lean in your web
browser, Install it In an Isolated
folder, or go for the full install.
Lean is free, open source
software. It works on Linux,
Windows, and MacOs.

Try the online version of Lean
Installation Instructions

Working on Lean projects

Learn to Lean!

You can learn by playing a game,
following tutorials, or reading

Learning resources

Theorem Proving In Lean (an
Introduction)

API documentation of mathlib

Meet the
community!

Lean has very diverse and active
community. It gathers mostly on
azullp chat and on GitHub. You
can get involved and join the
fun!

Meet us
How to contribute

Papers Involving Lean

Lean and mathlib

Lean has been getting good press:

® Quanta: “Building the mathematical library of the future”

® Quanta: "At the Math Olympiad, computers prepare to go for
the gold”

® Nature: "Mathematicians welcome computer-assisted proof in
‘grand unification’ theory”

® Quanta: “Proof Assistant Makes Jump to Big-League Math”

Kevin Buzzard gave a talk titled “The Rise of Formalism in
Mathematics” at the 2022 International Congress of
Mathematicians.

https://www.quantamagazine.org/building-the-mathematical-library-of-the-future-20201001/
https://www.quantamagazine.org/at-the-international-mathematical-olympiad-artificial-intelligence-prepares-to-go-for-the-gold-20200921/
https://www.quantamagazine.org/at-the-international-mathematical-olympiad-artificial-intelligence-prepares-to-go-for-the-gold-20200921/
https://www.nature.com/articles/d41586-021-01627-2
https://www.nature.com/articles/d41586-021-01627-2
https://www.quantamagazine.org/lean-computer-program-confirms-peter-scholze-proof-20210728/
https://www.youtube.com/watch?v=SEID4XYFN7o&ab_channel=InternationalMathematicalUnion
https://www.youtube.com/watch?v=SEID4XYFN7o&ab_channel=InternationalMathematicalUnion

Lean and mathlib

Some achievements:
® 3 formalization of Ellenberg-Gijswijt cap set theorem
(Dahmen, Holzl, Lewis)

a formalization of the independence of the continuum
hypothesis (Han and van Doorn)

¢ a formalization of perfectoid spaces (Buzzard, Commelin, and
Massot)

e the liquid tensor experiment (Commelin, Topaz, and many
others)

® a formalization of Bloom's theorem on unit fractions (Bloom,
Mehta)

® a formalization of the sphere eversion theorem (Massot, Nash,
and van Doorn)

https://drops.dagstuhl.de/opus/volltexte/2019/11070/
https://flypitch.github.io/
https://flypitch.github.io/
https://leanprover-community.github.io/lean-perfectoid-spaces/
https://github.com/leanprover-community/lean-liquid
https://b-mehta.github.io/unit-fractions/
https://leanprover-community.github.io/sphere-eversion/

Lean and mathlib

On December 5, 2020, Peter Scholze challenged anyone to
formally verify some of his recent work with Dustin Clausen.

Johan Commelin led the response from the Lean community. On
June 5, 2021, Scholze acknowledged the achievement.

“Exactly half a year ago | wrote the Liquid Tensor Experiment blog
post, challenging the formalization of a difficult foundational
theorem from my Analytic Geometry lecture notes on joint work
with Dustin Clausen. While this challenge has not been completed
yet, | am excited to announce that the Experiment has verified the
entire part of the argument that | was unsure about. | find it
absolutely insane that interactive proof assistants are now at the
level that within a very reasonable time span they can formally
verify difficult original research.”

https://github.com/leanprover-community/lean-liquid

Lean and mathlib

There have been a number of Lean-related meetings, including:

¢ Lean Together (2019, 2020, 2021)

¢ Lean for the Curious Mathematician (2020, 2021)
¢ Learning Mathematics with Lean (2022)

e LeaN in LyoN (2022)

Coming up:

® Machine Assisted Proofs (IPAM)

¢ Formalization of Cohomology Theories (BIRS)

¢ Formalization of Mathematics (MSRI summer school)
¢ Formalization of Mathematics (Copenhagen)
Machine-Checked Mathematics (Lorentz Center)
Lean for the Curious Mathematician (CIRM, 2024)

https://lean-forward.github.io/lean-together/2019/
https://www.andrew.cmu.edu/user/avigad/meetings/fomm2020
https://leanprover-community.github.io/lt2021/
https://leanprover-community.github.io/lftcm2020/
https://icerm.brown.edu/topical_workshops/tw-22-lean/
https://www.lboro.ac.uk/departments/maths-education/events/2022/learningmathematicswithlean/
https://www.univ-st-etienne.fr/fr/icj/actualites-icj/actualites-2021-2022/lean-in-lyon.html
https://www.ipam.ucla.edu/programs/workshops/machine-assisted-proofs/
https://www.birs.ca/events/2023/5-day-workshops/23w5124
https://www.msri.org/summer_schools/1021
https://www.math.ku.dk/english/calendar/events/formalisation-of-mathematics/
https://www.lorentzcenter.nl/machine-checked-mathematics.html

Outline

® Formal methods in mathematics

Interactive theorem provers

Lean and mathlib

Why formal methods are useful

Why logicians should care

What logicians can contribute

Why formal methods: verifying correctness

In early 2022, Thomas Bloom solved a problem posed by Paul
Erd6s and Ronald Graham.

The headline in Quanta read “Math’s ‘Oldest Problem Ever’ Gets
a New Answer."

Within in a few months, Bloom and Bhavik Mehta verified the
correctness of the proof in Lean.

https://www.quantamagazine.org/maths-oldest-problem-ever-gets-a-new-answer-20220309/
https://www.quantamagazine.org/maths-oldest-problem-ever-gets-a-new-answer-20220309/

Why formal methods: verifying correctness

Timothy Gowers

@wtgowers - Jun 13

Very excited that Thomas Bloom and Bhavik Mehta have done this. | think
it's the first time that a serious contemporary result in "mainstream”
mathematics doesn't have to be checked by a referee, because it has been
checked formally. Maybe the sign of things to come ... 1/

X Kevin Buzzard @XenaProject - Jun 12
Happy to report that Bloom went on to learn Lean this year and,
together with Bhavik Mehta, has now formalised his proof in Lean b-
mehta.github.io/unit-fractions/ (including formalising the Hardy-
Littlewood circle method), finishing before he got a referee's report for
the paper ;-)
Show this thread

Q 2 1 26 (WERFS

=

Why formal methods: exploring mathematics

Similarly, at the halfway point in the Liquid Tensor experiment,
Peter Scholze wrote:

“l am excited to announce that the Experiment has verified the
entire part of the argument that | was unsure about.”

He went on:

“[H]alf a year ago, | did not understand why the argument
worked. ..."

“But during the formalization, a significant amount of convex
geometry had to be formalized ... and this made me realize that
... the key thing happening is a reduction from a non-convex
problem over the reals to a convex problem over the integers.”

Why formal methods: collaboration

The liquid tensor experiment is also a model for digital
collaboration.

The formalization was in kept in a shared online repository.

Participants followed an informal blueprint with links to the
repository.

® Participants were in constant contact on Zulip.

Lean made sure the pieces fit together.

Why formal methods: collaboration

@ Blueprint for the Liq

& > C @ leanprovercommunitygithubio/liquid/sec-normed_groupshtml

<% O»0@
@ J A) » | M Other bookmarks
Blueprint for the Liquid Tensor Experiment

W Google M CMU Mu Research M Teaching M Service B Reference B News M Popular M

Introduction

1 First part v 1.2 Variants of normed groups
Normed groups are well-studied objects. In this text it will be helpful to work with the more
1.1 Breen— : N
Deligne data ‘general notion of semi-normed group. This drops the separation axiom
Jz| =0 <= z = 0butis otherwise the same as a normed group.
1.2 Variants of
normed groups ‘The main difference is that this includes “uglier” objects, but creates a “nicer” category:
semi-normed groups need not be Hausdorff, but quotints by arbitrary (possibly non-closed)
1.3 Spaces of subgroups are naturally semi-normed groups.
convergent power
series Nevertheless, there is the occasional use for the more restrictive notion of normed group,
1.4 Some normed ‘when we come to polyhedral lattices below (see Section L6).
homological In this text, a morphism of (semi)-normed groups will always be bouned. If the morphism is
algebra

supposed o be norm-nonincreasing, this will be mentioned explicily.
1.5 Completions

cally Definition 121
et Let >0 be a real number. An r-normed Z(T'*!|-module is a semi-normed group V-
endoved with an automorphism T: V —» V' such thatfor all v € V' we have

1.6 Polyhedral IT @) = o]
lattices . .
‘The remainder of this subsection sets up some algebraic variants of semi-normed groups.

1.7 Key technical
result

Definition 1.2.2 +

2 Second part > A pseudo-normed group is an abelian group (M, +), together with an increasing

3 Bibliograh filtation M, M of subsets M, indexed by R, such that each M, contains 0, is
ibliography closed under negation, and M, + Mz, € Me, .. An example would be M = R or

Section 1 graph < : Jo <o}

Section 2 graph A pseudo-normed group M is exhausive if U, M, = M.

Al pseudo-normed groups that we consider will have a topology on the filtation sets M..
The most general variant is the following notion.

Definition 12.3 /

A pseudo-normed group M is CH-filtered if each of the sets Me s endowed with a
topological space structure making it a compact Hausdorff space, such that following.
maps are al continuous
« theinclusion M, — M, (for ¢, < c2);
-t =
«_the negation M, — M;

Why formal methods: teaching

An interactive proof assistant is a powerful tool for teaching
mathematics.

It empowers students to explore mathematical reasoning on their
own.

We are starting to see the rise of online communities of people
helping each other learn.

We are just beginning to learn how to use the technology
effectively.

There have been workshops and conference sessions dedicated to
formal methods for teaching.

Why formal methods: teaching

Learning Mathematics v

<« C @ lboroacuk/ < % O* 0@
W Google M CMU M Research B Teaching M Service M Reference M News M Popular M Entertainment @ JeremyAviga.. @ DeepLearning » | m Other bookmarks

learnin

Loughborough
W University

Department of Mathematics Education About Resear Teaching Staff MENU

Learning Mathematics with LEAN
Department of

£ 6Apri 2022 (T) 10:30-16:15 ©) Loughborough University campus - room to be confirmed Mathematics Education

About the Department

NDON R h
£ W Loughborough MATHEMATICAL eseare
NP University : ‘CTETY Teaching

ST. 186
Staff

Postgraduate study

News

Events

B_.nﬁ = Contact us
(7 E

Contact us
This workshop is funded by the London Mathematical Society (LMS)

 +44 (0)1509 222681

in us at Loughborough University for a workshop about using the automated theorem prover Lean 2 Send email

(nttps:/fleanprover github o) to teach first year pure mathematics. Speakers willtalk about their experiences of

Department of Mathematics

using Lean for teaching and the resources they created. There will also be the opportunity for hands-on sessions Education
1o try some of resources desiqned for students. You can ioin the workshop here at Loughborough or online - but

Why formal methods: mathematical computation

A proof assistant can also be used as a platform for numerical and
symbolic computation.

A mathematical library in the background provides a precise
semantics and a touchstone for interpreting the results.

Tomas Skrivan has been working on a Lean 4 library for scientific
computation.

Alexander Bentkamp, Ramon Ferndndez Mir, and | have been
working on using Lean 4 as a platform for verifying reductions for
optimization problems.

https://github.com/lecopivo/SciLean
https://github.com/lecopivo/SciLean
https://abentkamp.github.io/pubs/verified_optimization.pdf
https://abentkamp.github.io/pubs/verified_optimization.pdf

Why formal methods: automated reasoning

Automated reasoning tools hold promise for solving combinatorial
problems in mathematics.

For example, Joshua Brakensiek, Marijn Heule, John Mackey, and
David Narvéaez used a SAT solver to resolve Keller's conjecture:

Quanta, “Computer Search Settles 90-Year-Old Math Problem”

The SAT solver output a proof that was checked with a verified
proof checker.

Josh Clune verified the key mathematical reduction in Lean.

https://www.quantamagazine.org/computer-search-settles-90-year-old-math-problem-20200819
https://github.com/JOSHCLUNE/Keller_reduction

Why formal methods: automated reasoning

‘The Resolution of Keller'

€ > C & cscmuedy/-mheule/Keller/ @< % O»0Q
W Google M CMU M Research B Teaching M Service M Reference B News M Popular M @ JeremyA @ Deept

® Other bookmarks

Figure 1: a gap-free tling of the two-dimensional space
with equal-sized square tles. The bold blue edges denote
that two tiles are fully connected.

Figure 2: a partial ting of the three-dimensional space
with equal-sized cubes. The only way to tile the entire
‘space would result in a fully face-sharing square at the
position of the blue squares.

Figure 1: Two-dimensional tling Figure 2: Three-dimensional tiing

Keller graphs

Acrucial step in proving Keller's conjecture in the seventh dimension is a reformulation of
the problem as a property of Keller graphs, an invention by Corradi and Szabo in 1950.
The Keller graphs are constructed using two parameters: the dimension n and the shifts.
Each vertex in a Keller graph can be considered a dice with n dots such that each dotis
colored using a palette of 25 colors. The colors come in s pairs of opposite colors. For
‘example, black and white are opposite colors. Red and green are opposite colors as well.
Two vertices (dice) are connected if 1) they have at least two dots that differ in color and
2) they have at least one dot with opposite colors.

Let's consider the graph with n=2 an s=2. For the two pairs of opposite colors we will use
blackiwhite and red/green. Figure 3 shows this graph. Al 16 different dice are shown. The
top dice (black + white) is connected to the left-most dice (red + black) because both dots
are different (requirement 1) and the color of their second dot is opposite (white versus
black, thus requirement 2). The top dice is not connected to the dice with two red dots:
The colors of both dots differ, but they don't have a dot with opposite colors.

Corradi and Szabo showed that Keller's conjecture s false for dimension n if there exists
aKeller graph with dimension n and some shift s such that 2°n dice are fully connected,
Keller's conjecture would have been faise if there were 4 dice that were fully connected in
the shown graph. However, observe that there are not even 3 dice that are fully
connected.

Figure 3: a Keller graph

Automated reasoning

In recent years Kisielewicz and Lysakowska made significant progress regarding Keller's conjecture. In short, they

Why formal methods: machine learning

Applications of machine learning to mathematics are a new
frontier.

There have been important machine-learning projects using Mizar,
HOL Light, Metamath, Isabelle, Coq, Lean, and others.

OpenAl got a neural theorem prover for Lean to solve problems
from the International Mathematics Olympiad.

Searching for formally checkable contact provides a clear signal.

https://openai.com/blog/formal-math/

Why formal methods: machine learning

® Solving (Some) Form:

<% O»0@

€ C @ openaicom/blog/formal-math/
W Google W CMU M Research W Teaching WM Service M Reference WM News [Popular W D Je A @ Deepl
Solving (Some) Formal Math Olympiad Problems
Februar We built a neural theorem prover for Lean that learned to solve a

8 minut

variety of challenging high-school olympiad problems, including
problems from the AMC12 and AIME competitions, as well as two
problems adapted from the IMO.1 The prover uses a language model
tofind proofs of formal statements. Each time we find a new proof, we
use it as new training data, which improves the neural network and
enables it to iteratively find solutions to harder and harder statements.

D READ PAPER

We achieved a new state-of-the-art (41.2% vs 29.3%) on the miniF2F
benchmark, a challenging collection of high-school olympiad problems. Our
approach, which we call statement curriculum learning, consists of manually
collecting a set of statements of varying difficulty levels (without proof)
where the hardest statements are similar to the benchmark we target.
Initially our neural prover is weak and can only prove a few of them. We
iteratively search for new proofs and re-train our neural network on the
newly discovered proofs, and after § iterations, our prover ends up being
vastly superior when tested on miniF2F.

Formal mathematics is an exciting domain to study because of (i) its
richness, letting you prove arbitrary theorems which require reasoning,
creativity and insight and (i) its similarity to games—where Al has been
spectacularly successful—in that it has an automated way of determining
whether a proof is successful (i.e., verified by the formal system). As
demonstrated in the trivial example below, proving a formal statement
requires generating a sequence of proof steps, each proof step consisting in
acall to a tactic.?l These tactics take mathematical terms as arguments and.

The acic

. accented by the farmal

sato

» | m Otherbookmarks

Why formal methods: machine learning

File Edit Selection View Go Run Terminal Help Lean Chat - Visual Studio C... [0 B (I | 08

= LeanChat X

Welcome avigad to Lean chat!

Type a natural language theorem in LaTeX and click 'Send" to produce a formal theorem statement. IF the formal
statement is wrong, you can respond with instructions about what to correct.

Any nontrivial p-group has a nontrivial center.

theorem nontrivial p group has nontrivial center (G : Type*) [group G]
[fintype G] [decidable eq G]
(p : N) (hp : prime p) (hG nontriv : 1 # G.card)
(3x:6, x#1) » (3 x:6, x#1AVy:6, y*x=x*y):=
LI
Add the hypothesis that the order of every element of G is a power of p.

theorem nontrivial p group has nontrivial center (G : Type*) [group G]
[fintype G] [decidable eq G]

(p : N) (hp : prime p) (hG nontriv : 1 # G.card)

(hG p order : ¥ x : G, 3 n : N, x *n=1) :

(3x:6, x#1) » (3 x:6, x#1AVy:G, y*x=x*y):=

& ¢

Replace . by p'.

theorem nontrivial p group has nontrivial center (G : Type*) [group G]
[fintype G] [decidable eq G]

(p : N) (hp : prime p) (hG nontriv : 1 # G.card)

(hG_p order : ¥ x : G, 3 n : N, x~ (p*n) =1) :

(3x:6, x#1) » (3 x:6, x#1AVy:G, y*x=x*y):=

LI

Why formal methods

Formal technology can help us:

o verify results,

® build mathematical libraries,

® explore new concepts,

e collaborate,

® teach mathematics,

® carry out mathematical computation more rigorously, and

® discover new mathematics.

Outline

® Formal methods in mathematics

Interactive theorem provers

Lean and mathlib

Why formal methods are useful

Why logicians should care

What logicians can contribute

Why logicians should care

Formal methods are built on mathematical logic:

Deductive systems: natural deduction, sequent calculi,
axiomatic systems

Foundations: set theory, simple type theory, dependent type
theory

Representations: formalization, coding, truth, reflection
Models of computation: primitive recursion, type theory,
recursion, the lambda calculus

Decision procedures: linear real arithmetic, Presburger
arithmetic, real closed fields

Proof search: normal forms, resolution, completeness,
Skolemization

Why logicians should care

Mathematics and computer science need each other. Mathematics
needs the relevance, and computer science needs the soul.

Formal mathematics is one of the few places where the two
communities come together.

The ASL should be there.

What logicians can contribute

From the 1920s to the 1940s, logic developed conceptual
foundations for thinking about language and reasoning:

® Formal languages, expressions, and semantics.

® Formal models of computation.

I will discuss five respects in which formal methods today can
benefit from a better theoretical understanding.

Mathematical language

Formal logic was designed to model mathematical language.

Vf:R = RVab:R
(continuous(f) ANa < bAf(a) <

OAf(b)>0—
Ix (a < xAx < bAf(x)=0)).

Here is what it looks like in Lean:

VEf:R— R, Vab:R,
continuous f »a<b—>fa<0—>fb>0—
dx,a<xAx<bAfx=0

Mathematical language

V (f : real — real) (a b : real),
@continuous.{0 0} real real
(Guniform_space.to_topological_space.{0} real
(@pseudo_metric_space.to_uniform_space.{0} real
real.pseudo_metric_space))
(Guniform_space.to_topological_space.{0} real
(@pseudo_metric_space.to_uniform_space.{0} real
real.pseudo_metric_space))
f -
Ghas_le.le.{0} real real.has_le (f a) (Ghas_zero.zero.{0} real
real. has_zero) —
@ge.{0} real real.has_le (f b) (Ghas_zero.zero.{0} real
real.has_zero) —
@Exists.{1} real
(A (x : real),
and (Ghas_le.le.{0} real real.has_le a x)
(and (Ghas_le.le.{0} real real.has_le x b) (eq.{1} real
(f x) (Ghas_zero.zero.{0} real real.has_zero))))

Mathematical language

In Lean’s library mathlib, the algebraic hierarchy has hundreds of
classes and thousands of instances.

normed_field
normed_ring discrete_field
normed_group decidable-eq < field euclidean.domain local_ring

principal ideal_domain has_mod
+

has_norm metric_space division_ring

integral_domain

has_dist : . . . h . : :
emetric.space uniform_add_group has_inv has_div domain nonzero_comm.ring is_noetherian_ring

has_edist

separated topological ring no_zero_divisors nonzeroXomm _semiring comm_ring

first_countable_topology

regular_space uniform_space

topological semiring ring comm _semiring

S

semiring has_dvd comm_monoid

7ero_ne_one_class
t2space topological 4dd_group

topological monoid add_comm_group

tlspace topological add_monoid add_group _add_comm_monoid mul_zero_class distrib monoid comm_semigroup

sequential space t0_space hasneg /add_monoid —add_comm_semigroup semigroup
has_sub has_one
topological_space has zero add_semigroup has_mul

measurable_space has_add

Mathematical language

Type classes are used for notation, bookkeeping (decidable types,
inhabited types, coercions), order structures, linear algebra,
topological spaces, category theory, function spaces (inner product
spaces, normed spaces), measure theory, manifolds, computability,
and more.

There are tons of dependencies between them.

The real numbers are simultaneously an instance of a field, an
ordered field, a normed field, a metric space, a topological space, a
uniform space, a vector space (over the reals), a manifold, a
measure space, . ..

Mathematical language

Conceptual question: is there room for a theory of mathematical
language that tells us how mathematical language really works?

Challenges:

Understanding how we leave information implicit.
Understanding how we overload notation.

Understanding how we resolve ambiguities.

Understanding how we establish canonical interpretations.
Understanding how we avoid conflicts.

Understanding how we identify objects that are really different.

Understanding how we do all this so quickly.

Mathematical representations

Consider two different ways to represent a morphism that preserves
multiplication.

structure mul_hom (M : Type*) (N : Type*)
[has_mul M| [has_mul N] :=
(to_fun: M — N)
(map_mul : V x y, to_fun (x * y) = to_fun x * to_fun y)

structure is_mul_hom {« {3 : Type*} [has_mul «] [has_mul]
(f: ¢ — P): Prop:=
(map_mul :Vxy f(x*y)=£fx*fy)

Mathlib initially favored unbundled morphisms, but then, in 2019,
switched to bundled morphisms.

Anne Baanen has proposed a method of getting the best of both
worlds.

https://github.com/leanprover-community/mathlib/pull/9888

Mathematical representations

Another example: consider field extensions E C F C K.

Working formally, it is often better to use independent data types
rather than subsets.

A better idea: reason about embeddings E — F — K.

An even better idea: reason about F as an E-algebra, K as an
F-algebra, and K as an E-algebra, with a coherence condition on
scalar multiplication.

The class field theory library is built on these insights.

https://link.springer.com/article/10.1007/s10817-022-09644-0

Mathematical representations

There is a sense in which all this is trivial. Mathematicians know
that a structural viewpoint is important.

But there is a value to making implicit knowledge explicit and
engineering representations so that they fit together nicely and
support a much larger edifice.

Conceptual question: is there a mathematical theory that can help
us understand how we choose representations and organize
knowledge so that:

® communication is efficient
® reasoning is efficient

® reasoning is reliable.

Mathematical inference

Automated reasoning is a vast industry.

There are decision procedures, constraint solvers, SAT solvers,
SMT solvers, model checkers, equational theorem provers, term
rewriters, first-order theorem provers, model finders, higher-order
theorem provers, relevance filters, sledgehammers, and more.

Automated procedures are good at large, homogeneous inferences,
but not so good at using ordinary mathematical expertise.

Filling in straightforward textbook inferences is often inordinately
painful.

Mathematical inference

Jiannis Limperg and Asta Halkyzer have developed automation for
Lean called AESOP, which stands for “Automated Extensible
Search for Obvious Proofs.”

We need a theory of the obvious.

Conceptual question: is there a theory of mathematical reasoning
that can explain what makes a straightforward inference
straightforward?

It needs to account for mathematical expertise, domain-general
and domain-specific cues and heuristics to find the relevant facts
and inferences.

https://github.com/JLimperg/aesop

Reliable knowledge

Formal proof is an ideal. Real mathematical knowledge is messy.

What is the relationship between ordinary mathematical practice
and the formal ideal?

Conceptual question: why is mathematics formalizable? How does
our informal mathematics manage to track the formal ideal?

(See my paper, “The reliability of mathematical inference.”)

https://link.springer.com/article/10.1007/s11229-019-02524-y

Reliable knowledge

People working in formal methods are very sensitive to what is
being verified and what is being trusted (the “trust story”). It's a
form of recreational paranoia raised to a high art.

We place trust in axiomatic foundations, specifications,
implementations, and hardware. There are ways to minimize
likelihood of error.

What do we trust when we use formal methods to verify complex
systems like self driving cars, airline control systems, operating
systems, and so on?

What ensures the reliability of mathematical arguments, and what
ensures the reliability of the application of mathematical results?

Symbolic methods

There is a tension between symbolic methods (“good old fashioned
Al") and machine learning.

With all the impressive successes of neural networks, do symbolic
methods still have a role to play?

There is interest in explainable Al: getting ML systems to explain
and justify their conclusions.

Putting it that way makes the explanations sound like an
afterthought.

Symbolic methods

Searching for mathematical proofs involves searching for something
formal and precise.

Conceptual questions: Is there an intrinsic value to symbolic
expressions and representations? Are there problems we want to
solve for which symbolic methods are ineliminable?

Mathematics has a strong aesthetic value, but can we say more?

In light of modern Al, what role should mathematical reasoning
play in the way we conceptualize the world?

What logicians can contribute

In short, we need to understand:

® the nature of mathematical language

® the nature of mathematical representations

® the nature of mathematical inference

® the nature of mathematical knowledge

® the proper and reliable warrants for mathematical knowledge
(and other types of knowledge that depend on it)

® the relationship between mathematical knowledge and other
types of knowledge.

Conclusions

Formal methods have a lot to offer mathematics.
The field is young, and we have a lot to learn.
We need theory as well as experimentation.

Mathematical logic can play a role.

Challenge question: who wrote this?

“It has long been recognized that mathematics and logic are
virtually the same and that they may be expected to merge
imperceptibly into one another. Actually this merging process has
not gone at all far, and mathematics has profited very little from
researches in symbolic logic. The chief reasons for this seem to be
a lack of liaison between the logician and the
mathematician-in-the-street. Symbolic logic is a very alarming
mouthful for most mathematicians, and the logicians are not very
much interested in making it more palatable. It seems however
that symbolic logic has a number of small lessons for the
mathematician which may be taught without it being necessary for
him to learn very much of symbolic logic.”

