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Symbolic methods and neural methods

Symbolic methods (good old fashioned Al):
® |ogic-based representations
® precise, exact

® explicit rules of inference

Neural methods (machine learning)
® distributed representations
® probabilistic, approximate

® based on lots of data

Mathematics needs both:
® neural methods can discover patterns and connections

® symbolic methods can help us get the answers right



Symbolic methods and neural methods

Mathematical knowledge:
® The sum of the positive integers up to 100 is 5,050.

® For n > 2, there are no integer solutions to x" + y" = z" with
all of x, y, and z nonzero.

Empirical knowledge:
® |t is likely to rain tomorrow.
® Raising interest rates is likely to lead to a recession.

® Jones is not likely to default a loan.

These are all things we might want to know.



Symbolic methods and neural methods

Mathematics often gives us ways of being precise about imprecise
knowledge.

For example, we may extract a model from empirical data and
reason about the model.

® The model may be only probably approximately correct.

® But we can reason precisely about the evidence for it and the
implications.

We need this type of reasoning to think through the consequences
of our actions, deliberate, and plan.



Formal methods in mathematics

Formal methods are a body of logic-based methods used in
computer science to

® write specifications for hardware, software, protocols, and so
on, and

® verify that artifacts meet their specifications.

The same technology is useful for mathematics.

| use “formal methods in mathematics” and “symbolic Al for
mathematics” roughly interchangeably.



Formal methods in mathematics

Since the early twentieth century, we have known that
mathematics can be represented in formal axiomatic systems.

Computational “proof assistants” allow us to write mathematical
definitions, theorems, and proofs in such a way that they can be

® processed,
® verified,

® shared, and
® searched

by mechanical means.



Formal methods in mathematics
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Formal methods in mathematics

Some talks (with links):

Thomas Hales, Big Conjectures

Sébastien Gouézel, On a Mathematician's Attempts to
Formalize his Own Research in Proof Assistants

Patrick Massot, Why Explain Mathematics to Computers?
Kevin Buzzard, The Rise of Formalism in Mathematics
Johan Commelin, Abstract Formalities

Adam Topaz, The Liquid Tensor Experiment

Heather Macbeth, Algorithm and Abstraction in Formal
Mathematics


https://www.newton.ac.uk/seminar/21474/
https://www.youtube.com/watch?v=sVRC1kuAR7Q
https://www.youtube.com/watch?v=sVRC1kuAR7Q
https://www.youtube.com/watch?v=1iqlhJ1-T3A
https://www.youtube.com/watch?v=SEID4XYFN7o
http://www.fields.utoronto.ca/talks/Abstract-Formalities
http://www.ipam.ucla.edu/abstract/?tid=19428
https://www.ipam.ucla.edu/abstract/?tid=17900
https://www.ipam.ucla.edu/abstract/?tid=17900

Formal methods in mathematics

MATHEMATICS AND THE FORMAL TURN

JEREMY AVIGAD

ABSTRACT. Since the early twentieth century, it has been understood that
mathematical definitions and proofs can be represented in formal systems sys-
tems with precise grammars and rules of use. Building on such foundations,
computational proof assistants now make it possible to encode mathematical
knowledge in digital form. This article enumerates some of the ways that these
and related technologies can help us do mathematics.

INTRODUCTION

One of the most striking contributions of modern logic is its demonstration
that mathematical definitions and proofs can be represented in formal axiomatic
systems. Among the earliest were Zermelo’s axiomatization of set theory, which was
introduced in 1908, and the system of ramified type theory, which was presented
by Russell and Whitehead in the first volume of Principia Mathematica in 1911.
These were so successful that Kurt Gédel began his famous 1931 paper on the
incompleteness theorems with the observation that “in them all methods of proof
used today in mathematics are formalized, that is, reduced to a few axioms and
rules of inference.” Cast in this light, Godel’s results are unnerving: no matter what
mathematical methods we subseribe to now or at any point in the future, there will
always be mathematical questions, even ones about the integers, that cannot be
settled on that basis—unless the methods are in fact inconsistent. But the positive



Formal methods in mathematics

Executive summary: formal methods can be useful for

The technology holds a lot of promise.

verifying theorems
correcting mistakes
gaining insight
building libraries

searching for definitions
and theorems

refactoring proofs
refactoring libraries
engineering concepts

communicating

collaborating

managing complexity
managing the literature
teaching

improving access

using mathematical
computation

using automated reasoning

using Al



Formal methods and Al
Applications of machine learning to mathematics are a new
frontier.

There have been important machine-learning projects using Mizar,
HOL Light, Metamath, Isabelle, Coq, Lean, and others.

“Draft, sketch, and prove” combines neural and symbolic methods:

® First, a large language model drafts an informal proof.
® Then it sketches a formal proof.

e Automated reasoners fill in the details and verify that they are
correct.

Searching for formally checkable content provides a clear signal.



Formal methods and Al
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Mathematics and computer science

Mathematicians and computer scientists have different skill sets
and outlooks.

Mathematicians enjoy:
® solving hard problems

® finding patterns

finding deep connections

developing powerful abstractions.

Computer scientists enjoy:
® implementing complex systems
¢ finding clever optimizations

® making systems more reliable and robust.

Mathematics and computer science need each other.



Cooperation and collaboration

Digital technology provides new platforms for cooperation and
collaboration.

Communities of practitioners use social media to:
® ask questions and get help
® pose challenges to one another

® make plans and coordinate efforts.

The Liquid Tensor Experiment is a good model:
® The formalization was in kept in a shared online repository.

® Participants followed an informal blueprint with links to the
repository.

Participants were in constant contact on Zulip.

A proof assistant made sure the pieces fit together.



Cooperation and collaboration
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Cooperation and collaboration

The port of Mathlib, a large formal mathematical library, is
another example.

Since 2016, the community has been using Lean 3. We are now
just beginning to use Lean 4, which is not backward compatible.

The Lean 3 library has over a million lines of formal proof.



Cooperation and collaboration

How do you port a million lines of formal proof?

® Mario Carneiro wrote an automatic translator that comes
close, but needs user intervention.

® About 40,000 lines of tactics — small scale automation —
had to be rewritten entirely.

® Carneiro and Scott Morrison are leading a team of volunteers.
® There were months of planning and discussion.

® The effort requires repairing translations manually and
adapting to changes in automation.

e Contributions to the old library have continued.

® There has been an endless stream of problems to address.



Cooperation and collaboration




Cooperation and collaboration
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Eamples
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Type Classes
© Non-trival changes documented via --porting note: <note> Categories
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automated via scripts/fix-comments.py ) Consequences for porting
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Cooperation and collaboration

B Mathiib porting status
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See also the open mathlib-port PRs on GitHub.
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Cooperation and collaboration
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Institutional challenges

Main challenges:
® |ndustrial research has to answer to corporate interests.

® Academic environments encourage specialization.

Neither is aligned with developing technology for mathematical
research.

Academia is governed by traditional means of assessment:
® Mathematicians are evaluated by the judgments of experts
and publication in top journals.
® Computer scientists are judged by citation counts, which are a
proxy for impact.



Institutional challenges

There's a chicken and egg problem:

Computer scientists can get credit for developing useful technology
for mathematics by showing that mathematicians are using it.

Mathematician's can't get credit for using technology unless they
use it to make progress on traditional problems.

Both communities need to make substantial investments of time
and energy before either will have anything to show for it.



Institutional challenges

Some of the contributors to the mathlib port:

Yury Kudryashov
Gabriel Ebner
Jason Yuen
Jeremy Tan Jie Rui
Moritz Doll

David Renshaw
Johan Commelin
Jon Eugster
Riccardo Brasca
Adam Topaz
Yakov Pechersky
Jakob von Raumer
Henrik Boving
Maxwell Thum
Richard Osborn

Scott Morrison
Mario Carneiro
Joél Riou

Eric Wieser

Jireh Loreaux
Arien Malec
Lukas Miaskiwskyi
Kevin Buzzard
Kyle Miller

Jujian Zhang
Alex Best

Reid Barton
Siddhartha Gadgil
Zachary Battleman

Ruben Van de Velde
Chris Hughes
Moritz Firsching
Matthew Ballard
Floris van Doorn
Yaél Dillies
Xavier Roblot
Heather Macbeth
Arthur Paulino
Frédéric Dupuis
Violeta Hernandez
Anatole Dedecker
Winston Yin

Eric Rodriguez



Institutional challenges

We need to understand how to incentivize and reward:

® ongoing system development and maintenance

ongoing library development and maintenance

development and maintenance of web pages and collaboration
platforms

® answering questions and training new users.
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Summary

Progress on Al for mathematics requires input from three distinct
communities:

® computer scientists working in formal methods (proof
assistants, automated reasoning)

® computer scientists working in machine learning (large
language models, reinforcement learning, and so on)

® mathematicians figuring out how to use the technology to do
mathematics

These communities are for the most part disjoint and have disjoint
expertise.



Summary

Progress in Al-assisted mathematics is going to require working
together:
® Symbolic methods are good at computation, verification, and
search, but struggles with combinatorial explosion and
heterogeneous reasoning.

® Neural methods can gather, process, and synthesize huge
amounts of data, but struggle to get the details right.

® Mathematicians understand the mathematics, and computer
scientists won't get anywhere without that.



Summary

® Progress in Al for mathematics needs a combination of neural
and symbolic methods.

® [t also requires mathematicians and computer scientists
working together.

® Advances in technology for mathematics require new forms of
collaboration and interaction, and, at the same time, provide
new means and platforms for that.

® We need better institutional support for collaborative,
cross-disciplinary work and we need ways of assessing new
kinds of mathematical contributions.



