Semantic approaches to ordinal analysis

Jeremy Avigad Carnegie Mellon University avigad@cmu.edu http://www.andrew.cmu.edu/~avigad

1

Overview

Ordinal analysis typically proceeds by "unwinding proofs."

Can we use ordinals, instead, to "build models"?

Motivation:

- Use ideas and methods from model theory, set theory, recursion theory
- Constructions may suggest combinatorial independences

Semantic approaches

- Hilbert and Ackermann: epsilon substitution
- Friedman: models of Σ_1^1 -AC and ATR_0
- Paris-Kirby, Sommer, Avigad: α -large intervals
- Kripke, Quinsey: fulfillment
- Carlson: ranked partial structures

The α -large approach:

- Use ordinals to define large intervals in $\mathbb N$
- Carve out models from those

This two-step process becomes difficult for stronger theories.

Another approach

To analyze a theory T:

- Use Skolem functions to embed T in a universal theory
- Herbrand's theorem: it suffices to assign values to finitely many terms, consistent with axioms
- Use ordinals to do this
- Gradually eliminate nonconstructive principles

Advantage: seems to be as flexible as cut elimination

Disadvantage: starts to look less like model theory, and more like cut elimination

4

Ordinal recursive functions

Fix a system of ordinal notations.

A $\prec \alpha\text{-}iterative\ algorithm$ is given by a notation $\beta \prec \alpha$ and elementary functions

- $start(\vec{x})$
- next(q)
- norm(q)
- result(q)

These data define a function $F(\vec{x})$:

 $\begin{array}{l} clock \leftarrow \beta \\ state \leftarrow start(\vec{x}) \\ \text{while } norm(state) \prec clock \ \text{do} \\ clock \leftarrow norm(state) \\ state \leftarrow next(state) \\ \text{return } result(state) \end{array}$

Ordinal recursive functionals

The previous definition relativizes well.

A relativized $\prec \alpha$ -iterative algorithm is given by a notation $\beta \prec \alpha$ and elementary functions

- $start(\vec{x})$
- query(q)
- next(q, u)
- norm(q)
- result(q)

These data define a functional $F(\vec{x}, f)$:

 $clock \leftarrow \beta$ $state \leftarrow start(\vec{x})$ while $norm(state) \prec clock$ do $clock \leftarrow norm(state)$ $state \leftarrow next(state, f(query(state)))$ return result(state)

The ordinal analysis of arithmetic

Theorem. Suppose PA(f) proves $\forall x \exists y \ \varphi(x, y, f)$ for some Δ_0 formula φ . Then there is a $\prec \varepsilon_0$ -recursive functional F(x, f) such that PRA proves

$$\forall x, y \ (F(x, f) \downarrow = y \to \varphi(x, y, f)).$$

This is essentially due to Gentzen, and implies all the usual results of an ordinal analysis.

In the new approach, use "least element" functions to make Peano arithmetic quantifier free:

$$f(x, \vec{z}) = 0 \to f(\mu_f(\vec{z}), \vec{z}) = 0 \land \mu_f(\vec{z}) \le x.$$

Nesting corresponds to complexity of induction.

Goal: given a finite set of μ axioms, assign consistent values to μ terms.

The general idea

Suppose $F(x, \mu_0, \mu_1, \dots, \mu_n)$ is $\prec \alpha$ -recursive, and each μ_i has depth *i*.

Replace this by a $\prec \omega^{\alpha}$ -recursive function $G(x, \mu_0, \ldots, \mu_{n-1})$ which simultaneously computes F and a finite approximation to μ_n that is consistent with the values used in the computation.

Argument has the flavor of a finite injury priority argument. Start with $\mu_n = \emptyset$. Then:

- 1. Carry out computation of F.
- 2. If you find a value inconsistent with axiom for the μ_n , correct this value, and repeat.

Assign ordinals to computations, so that the ordinal drops with each step.

The Howard-Bachman ordinal

Let Ω denote the first uncountable cardinal, and let $\varepsilon_{\Omega+1}$ denote the $\Omega + 1$ st ε -number, i.e. the limit of the sequence

$$\Omega, \Omega^{\Omega}, \Omega^{(\Omega^{\Omega})}, \ldots$$

Any ordinal $\alpha < \varepsilon_{\Omega+1}$ can be written in Cantor normal form to the base Ω ,

$$\alpha = \Omega^{\alpha_1} \beta_1 + \dots \Omega^{\alpha_k} \beta_k$$

where

- $\alpha > \alpha_1 > \ldots > \alpha_k$
- each β_k is an element of Ω .

The β 's occuring in the expansion (as well as in those of the α_i) are called the *components* of α .

The Howard-Bachman ordinal (cont'd)

For $\alpha \leq \varepsilon_{\Omega+1}$, define

- $C_{\alpha}: \Omega \to P(\Omega)$
- $\theta_{\alpha}: \Omega \to \Omega$

by transfinite recursion, as follows:

$$C_{\alpha}(\beta) = \text{ the closure of } \{0,1\} \cup \beta \text{ under } + \text{ and}$$

the functions θ_{γ} , where $\gamma < \alpha$ and the
components of γ are in $C_{\alpha}(\beta)$
 $\theta_{\alpha} = \text{ the enumerating function of}$

$$\{\delta \mid \delta \notin C_{\alpha}(\delta) \land \alpha \in C_{\alpha}(\delta)\}.$$

One has $\theta_{\alpha}(\beta) < \theta_{\gamma}(\delta)$ if and only if one of the following holds:

- $\alpha < \gamma, \beta < \theta_{\gamma}(\delta)$, and all the components of α are less than $\theta_{\gamma}(\delta)$
- $\alpha = \gamma$ and $\beta < \delta$
- $\gamma \leq \alpha$ but either δ or some component of γ is greater than or equal to $\theta_{\alpha}(\beta)$.

The Howard-Bachmann ordinal is $\theta_{\varepsilon_{\Omega+1}}(0)$.

Admissible set theory

The axioms of $KP\omega$ are as follows:

- 1. Extensionality: $x = y \rightarrow (x \in w \rightarrow y \in w)$
- 2. Pair: $\exists x \ (x = \{y, z\})$
- 3. Union: $\exists x \ (x = \bigcup y)$
- 4. Δ_0 separation: $\exists x \ \forall z \ (z \in x \leftrightarrow z \in y \land \varphi(z))$ where φ is Δ_0 and x does not occur in φ
- 5. Δ_0 collection: $\forall x \in z \exists y \ \varphi(x, y) \to \exists w \ \forall x \in z \ \exists y \in w \ \varphi(x, y), \text{ where } \varphi$ is Δ_0
- 6. Foundation: $\forall x \; (\forall y \in x \; \varphi(y) \to \varphi(x)) \to \forall x \; \varphi(x),$ for arbitrary φ
- 7. Infinity: $\exists x \ (\emptyset \in x \land \forall y \in x \ (y \cup \{y\} \in x))$

In the absence of infinity, this is inter-interpretable with PA.

Theorem 0.1 Suppose $KP\omega$ proves $\forall x \exists y \varphi(x, y)$, where φ is Σ_1 . Then there is an ordinal $\alpha < \varepsilon_{\Omega+1}$ such that for every β , we have $\forall x \in L_\beta \exists y \in L_{\theta_\alpha(\beta)} \varphi(x, y)$.

Primitive recursive set functions

To (re)obtain this result, let us first lift the definition of $\prec \alpha$ -recursion to functions on sets.

In analogy to the elementary functions on the natural numbers, we need a collection of set functions that is robust, but does not grow too fast.

Use the *primitive recursive set functions* arising from work of Takeuti, Kino, Jensen, Karp, and Gandy.

Let φ_{ω} (= θ_{ω}) be the ω th Veblen function.

Lemma 0.2 For each α , $L_{\varphi_{\omega}(\alpha)}$ is closed under the primitive recursive set functions.

Recursion on notations

Now think of Ω as the order type of the universe. We can define notations for $\varepsilon_{\Omega+1}$ in the class of sets, just as we can define notations for ε_0 in \mathbb{N} :

$$\hat{\alpha} = \Omega^{\hat{\alpha}_1} \beta_1 + \dots \Omega^{\hat{\alpha}_k} \beta_k$$

where $\hat{\alpha}_1, \ldots, \hat{\alpha}_k$ are notations, and $\beta_1, \ldots, \ldots, \beta_k$ are ordinals.

A $\prec \varepsilon_{\Omega+1}$ -recursive functional $F(\vec{x}, f)$ is given by a notation $\hat{\beta} \prec \varepsilon_{\Omega+1}$ and primitive recursive *set* functions

- $start(\vec{x})$
- query(q)
- next(q, u)
- norm(q)
- result(q)

Lifting Gentzen's result

Let $PRS\omega$ be an axiomatization of the primitive recursive set functions (with ω as a constant).

Theorem 0.3 Suppose

 $PRS\omega + (Foundation) \vdash \forall x \exists y \varphi(x, y, \vec{f}),$

where φ is quantifier-free. Then there is a $\prec \hat{\varepsilon}_{\Omega+1}$ -recursive set function $F(x, \vec{f})$ such that

 $PRS\omega \vdash \forall x, y \ (F(x, \vec{f}) \downarrow = y \rightarrow \varphi(x, y, \vec{f})).$

Compare to Genzten's result for PA:

- Foundation replaces induction
- $\varepsilon_{\Omega+1}$ replaces ε_0

We have not said anything about collection yet.

Skolemizing collection

Let Coll'(u, y, c) denote the primitive recursive relation $(c \in (u)_0 \land \neg \theta((u)_0, y, (u)_1)) \lor \forall x \in u \exists y \in c \ \theta(x, y, (u)_1).$ This says "c is a sound interpretation of coll(u) at y." Collection is then equivalent to the universal axiom $\forall u, y \ Coll'(u, y, coll(u))$ (Coll) $KP\omega$ is contained in $PRS\omega + (Coll) + Foundation.$ Lemma 0.4 Suppose $PRS\omega + (Coll) + Foundation$ proves

 $\forall x \exists y \varphi(x, y),$

where φ is Δ_0 . Then there is a $\prec \varepsilon_{\Omega+1}$ -recursive functional F such that $PRS\omega$ proves

 $\forall x, y \ (F(x, coll) \downarrow = y \land Coll'((y)_0, (y)_1, coll((y)_0)) \to \varphi(x, y)).$

To finish it off, we only need to show that for some $\alpha \prec \varepsilon_{\Omega+1}$, whenever x is in L_{γ} , there is an approximation to the *coll* function and a computation of F in $L_{\theta_{\alpha}(\gamma)}$ robust enough to answer the queries and satisfy the final test.

Skolemizing collection

Remember that an instance of Δ_0 collection is of the form

$$\forall v, z \; (\forall x \in v \; \exists y \; \theta(x, y, z) \to \exists w \; \forall x \in v \; \exists y \in w \; \theta(x, y, z))$$

Rewrite this as

 $\begin{aligned} \forall v, z \; (\exists x \; (x \in v \land \forall y \; \neg \theta(x, y, z)) \lor \\ \exists w \; \forall x \in w \; \exists y \in v \; \theta(x, y, z)). \end{aligned}$

Pair v and z, bring quantifiers to the front, and Skolemize:

$$\forall u, y ((coll(u) \in (u)_0 \land \neg \theta(coll(u), y, (u)_1)) \lor$$
$$\forall x \in u \; \exists y \in coll(u) \; \theta(x, y, (u)_1)).$$

In short, $coll(\langle v, z \rangle)$ is supposed to return either

- a value x satisfying $x \in v \land \neg \theta(x, y, z)$, or
- a value w satisfying $\forall x \in u \ \exists x \in w \ \theta(x, y, z)$.

Conclusion

References:

- "Ordinal analysis without proofs": from fragments of arithmetic to predicative analysis
- "An ordinal analysis of admissible set theory using recursion on ordinal notations": admissible set theory
- "Update procedures and the 1-consistency of arithmetic": a more combinatorial packaging of the ordinal analysis of arithmetic

Further work:

- *Rewrite old results:* Cut elimination arguments can probably be translated to the new framework. Is there any advantage to doing so?
- *Polish the methods:* Can one make them seem even more combinatorial, more semantic, and easier to understand?
- *Prove new results:* Can one use the methods to extract interesting combinatorial principles for ordinals, sets, and numbers?

A combinatorial lemma

Lemma 0.5 Suppose F(x, f) is $\hat{\alpha}$ -recursive, and $x \in L_{\gamma}$. Then there is a pair $\langle s, m \rangle \in L_{\theta_{\omega+\hat{\alpha}}(\gamma)}$ such that

- *m* is a function,
- s is a computation sequence for F at x, m, and
- if the result of s is y, then $Coll'((y)_0, (y)_1, m((y)_0))$.

Proof: use transfinite induction on $\theta_{\omega+\hat{\alpha}}(\gamma)$ and a slightly stronger induction hypothesis.

This is analogous to a proof-theoretic "collapsing" lemma.