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Overview

Ordinal analysis typically proceeds by “unwinding proofs.”

Can we use ordinals, instead, to “build models”?

Motivation:

e Use ideas and methods from model theory, set theory,

recursion theory

e Constructions may suggest combinatorial independences



Semantic approaches

e Hilbert and Ackermann: epsilon substitution

e Friedman: models of ¥'/-AC and ATR,

Paris-Kirby, Sommer, Avigad: a-large intervals

Kripke, Quinsey: fulfillment

e Carlson: ranked partial structures

The a-large approach:
e Use ordinals to define large intervals in N

e Carve out models from those

This two-step process becomes difficult for stronger theories.



Another approach

To analyze a theory T

Use Skolem functions to embed T' in a universal theory

e Herbrand’s theorem: it suffices to assign values to

finitely many terms, consistent with axioms
e Use ordinals to do this

e Gradually eliminate nonconstructive principles

Advantage: seems to be as flexible as cut elimination

Disadvantage: starts to look less like model theory, and

more like cut elimination



Ordinal recursive functions

Fix a system of ordinal notations.

A <a-iterative algorithm is given by a notation § < « and

elementary functions
o start(¥)
o nert(q)
e norm(q)

o result(q)

These data define a function F'(Z):

clock — 3

state «— start(T)

while norm(state) < clock do
clock «— norm(state)

state «— next(state)

return result(state)



Ordinal recursive functionals

The previous definition relativizes well.

A relativized <a-iterative algorithm is given by a notation

8 < a and elementary functions
o start(¥)
o query(q)
o next(q,u)
e norm(q)

o result(q)

These data define a functional F(Z, f):

clock — (3
state «— start(x)
while norm(state) < clock do
clock «— norm(state)
state < next(state, f(query(state)))

return result(state)



The ordinal analysis of arithmetic

Theorem. Suppose PA(f) proves Vo Jy ¢(x,y, f) for some
A formula ¢. Then there is a <eg-recursive functional
F(x, f) such that PRA proves

Vo, y (F(z, f) l=y — o(z,9, f)).

This is essentially due to Gentzen, and implies all the usual
results of an ordinal analysis.

In the new approach, use “least element” functions to make

Peano arithmetic quantifier free:

f(a:,Z):O—>f(uf(5),5):()/\,uf(5) < .

Nesting corresponds to complexity of induction.

Goal: given a finite set of ;1 axioms, assign consistent values

to p terms.



The general idea

Suppose F(x, pig, 41, - - -, ln) 18 <a-recursive, and each pu;
has depth 1.
Replace this by a <w®-recursive function G(x, g, - - - fbn—1)

which simultaneously computes F' and a finite
approximation to u, that is consistent with the values used

in the computation.

Argument has the flavor of a finite injury priority argument.
Start with p,, = (). Then:

1. Carry out computation of F.

2. If you find a value inconsistent with axiom for the p.,,

correct this value, and repeat.

Assign ordinals to computations, so that the ordinal drops
with each step.



The Howard-Bachman ordinal

Let €2 denote the first uncountable cardinal, and let g4

denote the 2 + 1st e-number, i.e. the limit of the sequence

Q,0% Q@)

Any ordinal a < £g11 can be written in Cantor normal
form to the base (2,

a= QM3 4+ ...Q% 3,

where
e > > ...> 0

e cach ;. is an element of ().

The 3’s occuring in the expansion (as well as in those of the

a;) are called the components of a.



The Howard-Bachman ordinal (cont’d)

For a < eq.1q, define
e C,:Q— P(Q)
e 0,:0—Q
by transfinite recursion, as follows:
Co(B) = the closure of {0,1} U under + and
the functions 6., where v < o and the

components of v are in Cy ()

0, = the enumerating function of

(515¢&Coa(d) A € Co(8)}.

One has 0,(8) < 0,(9) if and only if one of the following
holds:

o o<, 3<6,(0), and all the components of a are less
than 6 (6)

e a=vand <9

e v < « but either § or some component of ~ is greater
than or equal to 6,(0).

The Howard-Bachmann ordinal is 6., (0).
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Admissible set theory

The axioms of KPw are as follows:

1.

Extensionality: x =y — (z € w — y € w)

. Pair: Jz (x = {y, z})
. Union: Jz (x = Jy)

. A separation: dx Vz (z € x <> z € y A p(z)) where ¢ is

Ag and x does not occur in ¢

. A collection:

Ve € z Jy p(x,y) — Jw Ve € z Jy € w p(z,y), where @
18 AO

. Foundation: Vz (Vy € = ¢(y) — ¢(x)) — Vz ¢(x), for

arbitrary ¢

Infinity: 3z (0 € x AVy € z (y U {y} € x))

In the absence of infinity, this is inter-interpretable with PA.

Theorem 0.1 Suppose KPw proves Vx Jy ¢(x,y), where ¢

15 1. Then there is an ordinal o < eqy1 such that for

every 3, we have Vx € Lg 3y € Ly, () ¢(x,y).
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Primitive recursive set functions

To (re)obtain this result, let us first lift the definition of

< a-recursion to functions on sets.

In analogy to the elementary functions on the natural
numbers, we need a collection of set functions that is

robust, but does not grow too fast.

Use the primitive recursive set functions arising from work

of Takeuti, Kino, Jensen, Karp, and Gandy.

Let ¢, (= 6,) be the wth Veblen function.

Lemma 0.2 For each o, L, (q) is closed under the

primitive recursive set functions.
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Recursion on notations

Now think of €2 as the order type of the universe. We can
define notations for €n41 in the class of sets, just as we can

define notations for ¢p in N:
a=Q%B +...0%p

where &4, ..., & are notations, and (31,...,... 0 are

ordinals.

A <eqyi-recursive functional F(Z, f) is given by a notation

B<€Q+1 and primitive recursive set functions
o start(¥)
o query(q)
o next(q,u)
o norm(q)

o result(q)
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Lifting Gentzen’s result

Let PRSw be an axiomatization of the primitive recursive

set functions (with w as a constant).

Theorem 0.3 Suppose

—

PRSw + (Foundation) - Vx Jy p(x,y, f),

where @ 1s quantifier-free. Then there is a <€q1-recursive

—

set function F(x, f) such that

— —

PRSw bV, y (F(z, f) l=y — o(2,y, f)).

Compare to Genzten’s result for PA:
e Foundation replaces induction

e cq1 replaces g

We have not said anything about collection yet.
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Skolemizing collection

Remember that an instance of Ag collection is of the form
Yo,z (Ve € v Jy O(x,y,2) — Jw Ve € v Iy € wb(x,y,2))
Rewrite this as

Yo,z (Fz (x € v AVy —0(x,y,2)) V
Jw Vr € w Iy € v 0(z,y, 2)).

Pair v and z, bring quantifiers to the front, and Skolemize:

Vu,y ((coll(u) € (u)o A —0(coll(u),y, (u)1)) V
Ve € udy € coll(u) 0(x,y, (u)1)).

In short, coll({v, z)) is supposed to return either

e a value z satisfying x € v A =0(x,y, z), or

e a value w satisfying Va € u 3z € w 0(x,y, 2).
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Skolemizing collection

Let Coll’(u,y,c) denote the primitive recursive relation
(C = (U)O A _'6((“)07 Y, (u)l)) VvV €u Ely cc Q(SL‘, Y, (u)l)

This says “c is a sound interpretation of coll(u) at y.”

Collection is then equivalent to the universal axiom

Y,y Coll (u,y, coll(u)) (Coll)

KPw is contained in PRSw + (Coll) + Foundation.

Lemma 0.4 Suppose PRSw + (Coll) + Foundation proves

Vo Jy p(x,y),

where ¢ is Ag. Then there is a <eqy1-recursive functional
F' such that PRSw proves

Va,y (F(z, coll) |=yAColl'((y)o, (v)1, coll((y)o)) — @(x,y)).

To finish it off, we only need to show that for some a<eq.1,
whenever x is in L., there is an approximation to the coll
function and a computation of F'in Lg_(,) robust enough to
answer the queries and satisfy the final test.
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A combinatorial lemma

Lemma 0.5 Suppose F(x, f) is &-recursive, and x € L.,.
Then there is a pair (s,m) € Lg_, .(y) such that

e m is a function,
e s is a computation sequence for F' at x, m, and

o if the result of s isy, then Coll'((y)o, (y)1,m((y)o))-

Proof: use transfinite induction on 6,1 4(7y) and a slightly

stronger induction hypothesis.

This is analogous to a proof-theoretic “collapsing” lemma.
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Conclusion

References:

e “Ordinal analysis without proofs”: from fragments of

arithmetic to predicative analysis

e “An ordinal analysis of admissible set theory using

recursion on ordinal notations”: admissible set theory

e “Update procedures and the 1-consistency of
arithmetic”: a more combinatorial packaging of the

ordinal analysis of arithmetic

Further work:

e Rewrite old results: Cut elimination arguments can
probably be translated to the new framework. Is there

any advantage to doing so?

e Polish the methods: Can one make them seem even
more combinatorial, more semantic, and easier to

understand?

e Prove new results: Can one use the methods to extract
interesting combinatorial principles for ordinals, sets,

and numbers?
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