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Formal methods

Formal methods are a body of logic-based methods used in
computer science to

• write specifications for hardware, software, protocols, and so
on, and

• verify that artifacts meet their specifications.

The same technology is useful for mathematics.



Formal methods in mathematics

Since the early twentieth century, we have known that
mathematics can be represented in formal axiomatic systems.

Computational proof assistants allow us to write mathematical
definitions, theorems, and proofs in such a way that they can be

• processed,

• verified,

• shared, and

• searched

by mechanical means.



Formal methods in mathematics

The technology is useful:

• for verifying mathematics

• for building communal libaries

• for searching for mathematical results

• for collaborating

• as a gateway to AI

• as a gateway to automated reasoning tools

• for verifying mathematical and scientific software

I will focus on the last two.



Formal methods in mathematics



Where the money is

Formal verification is hard and time consuming.

As the story goes, when William Sutton was asked why he robbed
banks, he replied, “because that’s where the money is.”

The only reason to verify certain pieces of mathematical software
and certain mathematical results is because that’s where the
problems are.



Where the money is

We don’t always need to verify everything down to axiomatic
primitives.

Sometimes even just having a formal specification can be useful:

• It makes claims and models precise.

• It enables us to combine results from different sources.

We can then pick and choose which parts need to be verified.



Where the money is

I will discuss some examples where verification can make a
difference.

• convex optimization

• applications of SAT solvers

• blockchain applications

• computational chemistry



Convex optimization

Numerical and symbolic methods for optimization are used
extensively in engineering, industry, and finance.

Various methods are used to reduce problems to convex
optimization problems.

1. Start with a problem you want to solve.

2. Reduce it to a convex optimization problem.

3. Transform it to the format required by a solver.

4. Solve it.

5. Check a certificate of correctness.

6. Report the results.
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Convex optimization

Sometimes sophisticated mathematical arguments are needed to
reduce a problem. There are a variety of tricks and techniques to
make problems convex.

Alexander Bentkamp, Ramon Fernández Mir, and I developed a
prototype system in Lean:

• It provides a framework for defining problems and carrying out
reductions.

• It has an extensible library of convex functions and their
properties.

• It is situated within Lean’s mathematical framework.

• It carries out “DCP transformations” automatically, and
verifies them.

For now, we trust the floating point computations.



Applications of SAT solvers

Propositional satisfiability solvers are used in a variety of
applications, including:

• hardware and software verification

• planning problems and AI

• cryptography

• proving combinatorial theorems.

Method:

• Start with the problem you want to solve.

• Reduce it to a SAT problem (or similar).

• Call the solver.

• Check the result (often an UNSAT proof).

• Report the result.
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Applications of SAT solvers

Clever encodings and tricks are used to represent problems so that
they can be solved efficiently.

Cayden Codel, James Gallicchio, Wojceich Nawrocki, Marijn Heule,
and I are developing a Lean library to:

• carry out reductions and verify their correctness; and

• verify the results of SAT solvers and related tools.



Blockchain applications

Despite turmoil in decentralized finance, blockchain technology is
here to stay. Billions of dollars are lost each year due to bugs in
smart contracts.

StarkWare Industries provides a “layer two” solution:

• Write programs in a programming language, Cairo, such that
successful termination guarantees a claim.

• Compile it to machine code.

• Encode the claim that the machine code runs to completion
as the existence of solutions to a parametric family of
polynomials.

• Publish on blockchain a short cryptographic certificate that
guarantees the existence of the solutions.



Blockchain applications

Despite turmoil in decentralized finance, blockchain technology is
here to stay. Billions of dollars are lost each year due to bugs in
smart contracts.

StarkWare Industries provides a “layer two” solution:

• Write programs in a programming language, Cairo, such that
successful termination guarantees a claim.

• Compile it to machine code.

• Encode the claim that the machine code runs to completion
as the existence of solutions to a parametric family of
polynomials.

• Publish on blockchain a short cryptographic certificate that
guarantees the existence of the solutions.



Blockchain applications

With colleagues at StarkWare, we have:

• verified the encoding of termination claims as polynomials;

• written a proof-producing compiler from Cairo to machine
code;

• verified components of the library, such as elliptic curve
signature validation, down to the cryptographic certificates.

At this stage, we trust the cryptographic protocol, though others
have worked on verifying those too.



Computational chemistry

I have learned from Tyler Josephson that Monte Carlo methods are
fundamental to computational chemistry. Thousands of papers on
simulations are published each year.

Method:

• Start with a model of a physical system and a quantity you
want to compute.

• Design a Monte Carlo algorithm to compute it.

• Implement it, and run it.

• Report the results.
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Computational chemistry

Researchers use tricks and heuristics to make a Markov chain
Monte Carlo (MCMC) algorithm converge quickly.

A detailed balance condition ensures that the samples converge to
the correct distribution. Violations lead to discrepancies in the
literature.

Tyler and I proposed to:

• Verify detailed balance conditions in Lean.

• Implement and verify probabilistic programs to sample from
the relevant distributions.



Conclusions

Morals:

• Talk to people outside formal methods. There are important
verification problems everywhere.

• Be flexible. Choose your battles.

• Be creative.

• Be proud. Verification matters.


