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5.2 Gröbner Bases in Boolean Rings . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Conclusions and Future Work 39

1



1 INTRODUCTION 2

1 Introduction

Given an arbitrary finite field Fq of size q (q a prime power) and a system of multivariate
polynomials f1, ..., fm in Fq[x1, ..., xn], we consider the problem of counting affine zeros of
the ideal 〈f1, ..., fm〉 over Fq (in other words, the number of common solutions of f1, ..., fm

in F n
q ). We will call this the counting problem throughout.
The counting problem established its importance in number theory since the work of

Gauss on the law of reciprocity. The celebrated Riemann Hypothesis for curves over finite
fields, formulated by Emil Artin and finally proved by Andre Weil, is concerned with an
explicit bound of the number of rational points on curves (i.e., varieties of dimension one)
over finite fields [39].

Methods for the counting problem have computational applications both theoretically
and practically. In coding theory, for the design of algebraic-geometric codes such as Goppa
codes, curves with a large number of rational points are needed, hence methods solving the
counting problem are desirable [38]. In several primality testing algorithms, counting the
number of points on elliptic curves [17] and hyperelliptic curves [1] over finite fields is a
crucial step.

The special case of counting for polynomial systems over F2, which corresponds to the so
called model counting problem, has even wider applications. Model counting (#SAT) is the
problem of computing the number of satisfying assignments to propositional formulas [19].
It is a natural generalization of SAT – many AI and combinatorial problems, lying beyond
the capacity of SAT solvers, can be effectively coded as #SAT problems, such as various
probabilistic reasoning problems [2, 30, 32]. While solving SAT is only concerned with
whether the number of assignments is nonzero, solving the #SAT problem requires keeping
information of all the solutions and is significantly harder. In fact, #SAT is #P-complete,
where #P is a complexity class known to contain the Polynomial Hierarchy [37].

The counting problem has attracted considerable algorithmic investigation from two dif-
ferent communities:

On the coding theory and algorithmic algebra side, several exact algorithms for certain
special polynomials, as well as theoretical approximation algorithms for more general cases,
have been proposed. Schoof [33] gave the first deterministic polynomial-time algorithm for
counting rational points on elliptic curves over finite fields. Generalized methods for hyper-
elliptic curves were devised in [29, 15]. Approximation algorithms have been theoretically
successful for single sparse polynomials [20, 25]. However, the general problem for poly-
nomial systems has been less amenable to approximation methods. The best algorithm so
far [23, 22], which applies only to prime fields, has time complexity O(dnO(n)

(m log p)O(1)) (for
prime fields of size p, n the number of variables, d the maximum degree of the polynomials
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and m the number of polynomials).
On the AI and Boolean modeling side, various practical solvers have been developed for

#SAT. Currently, approaches for solving #SAT [3, 31, 36] are mostly based on the DPLL
algorithm [13] (with the exception of the method of knowledge compilation [12]). The basic
idea is to extend the DPLL algorithm with procedures for book-keeping the distribution of
solutions in the search space.

There does not exist an algorithm for the counting problem that is both general and
practical. The approaches taken by the algorithmic algebra community usually involve so-
phisticated algebraic-geometric operations and remain only of theoretical interest so far –
yet still, the most general theoretical (approximate) algorithm devised for the for polynomial
systems [23, 22] is restricted to prime fields, and the worst-case runtime is doubly exponential
in the number of variables. On the other hand, although practical solvers have been imple-
mented in the AI community for the #SAT problem, the methods are specifically devised
for Boolean variables and do not extend to other fields. Furthermore, the practical solvers
are far less successful than DPLL approaches in tackling the SAT problem. In fact, effective
heuristics for SAT usually aim at quick zooming-in on a particular satisfying assignment,
while for counting the total number of satisfying assignments, the solver needs to take the
full solution space into account. For this reason, current DPLL-based #SAT solvers scale
orders of magnitude lower than SAT solvers [19].

The main contribution of this thesis is a new method for solving the counting problem
which is both general and practical: It can be applied to any polynomial systems over
arbitrary finite fields, and has been implemented to solve #SAT, outperforming existing
solvers on various benchmarks.

The mathematical correctness of our method relies on a modified Nullstellensatz for finite
field. Nullstellensatz is a celebrated theorem in classical algebraic geometry by David Hilbert,
initially established for algebraically closed fields (such as the field of complex numbers) [27].
We will show that in the case of finite fields, any ideal I ⊆ F [x1, ..., xn] can be easily made
into a radical zero-dimensional ideal I ′ that preserves variety over the finite field F . It follows
that the Nullstellensatz can be modified to a nice form specifically applicable to finite fields.
Then we prove that, the monomials that do not appear in the set of leading monomials of
I ′ (called “standard monomials”) generates a vector space over F that is isomorphic to the
quotient ring of F [x1, ..., xn]/I ′. As a consequence, the number of zeros of any system of
polynomials can be obtained by counting the number of corresponding standard monomials.

On the algorithmic side, our method is based on the powerful method from computational
commutative algebra called Gröbner bases [7, 6, 4]. A Gröbner basis G for a system of
polynomials S is an equivalent system that possesses useful properties, for example, that a
polynomial f is a combination of those in S if and only if the remainder of f with respect to
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G is 0. (Here, the division algorithm requires an order of a certain type on the monomials.)
We will show that Gröbner basis computations provide an algorithmic method for counting
the standard monomials, which is hence a way of counting the zeros of the corresponding
polynomial systems.

However, a conceivable problem with our method can be the notoriously high computa-
tional complexity of Gröbner basis computations. It is known that Gröbner basis computa-
tions are at least EXPSAPCE-hard [26], which translates to worst-case running time doubly
exponential in the number of variables. But in fact, for the problem that we are solving,
a careful analysis of the Buchberger’s Algorithm for Gröbner basis construction shows that
it stays in single exponential time. Furthermore, we have evaluated the practical Gröbner
of our algorithm in tackling practical problems. Experimental results show that our solver
outperforms existing search-based solvers significantly on a number of benchmarks, and is
competitive in general in terms of the size of problems (number of variables and clauses)
that can be handled.

The thesis is organized as follows. In Section 2, we review basic mathematical back-
ground, the theory of Gröbner bases and Hilbert’s Nullstellensatz. The materials are stan-
dard and can be found in [4, 9, 27]. In Section 3, we prove the modified Nullstellensatz for
finite fields, and how Gröbner bases can be used in the counting problem. In section 4, we
analyze the theoretical worst-case complexity of our algorithm. In Section 5, we focus on
our practical solver for the #SAT problem and show experimental results compared with
existing solvers. Section 6 contains conclusions and discussion of future work.
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2 Finite Fields, Nullstellensatz and Gröbner Bases

2.1 Ideals, Varieties and Finite Fields

Definition 2.1. A monoid is a set M with an associative binary operation “ · ” and an
element e ∈ G, such that, for all a ∈ G, e · a = a.

We use (M, ·, e) to denote a monoid defined as such, and often use M only when no
ambiguity arises. This tuple notation also applies for groups, rings and fields.

Definition 2.2. A group is a set G with an associative binary operation “ · ”, such that
(1) (G, ·, e) forms a monoid;
(2) For all a ∈ G, there exists some b ∈ G satisfying b · a = e.

Definition 2.3. A monoid/group G is called commutative if for all a, b ∈ G, a · b = b · a.
Definition 2.4. A commutative ring with unity is a set R with two binary operations
“ + ” and “ · ”, as well as two distinct elements 0, 1 ∈ R, such that
(1) (R, +, 0) forms a commutative group;
(2) (R, ·, 1) forms a commutative monoid;
(3) For all a, b, c ∈ R, a · (b + c) = a · b + a · c.

Since in this paper we do not need to consider any non-commutative rings or rings without
unity, we henceforth use “ring” to mean commutative ring with unity as defined above.

Definition 2.5. An element a in a ring R is called a zero divisor, if a 6= 0 and ab = 0 for
some b 6= 0. An element is called a unit, or invertible, if a · c = 1 for some c ∈ R.

Definition 2.6. A polynomial ring R[x1, ..., xk] over a ring R, is the set of polynomi-
als with variables in x1, ..., xk and coefficients in R, together with ordinary addition and
multiplication defined over polynomials. 0, 1 ∈ R[x1, ..., xk] are the same as in R.

Definition 2.7. A field is a set F with two binary operations + and · and two distinct
elements 0, 1 ∈ F such that (F, +, ·, 0, 1) forms a ring and every nonzero element a ∈ F (i.e.
a 6= 0) is invertible. A field is called a finite field or Galois field when |F | is finite.

Definition 2.8. Let R be a ring. A nonempty set I ⊂ R is called an ideal of R if:
(1) For all a, b ∈ I, a + b ∈ I;
(2) For all a ∈ I, for all r ∈ R, a · r ∈ I.
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For any element r in R, we define addition and multiplication of r with an ideal I to be

r + I = {r + a : a ∈ I},
and

r · I = {r · a : a ∈ I}.
Then we are able to define:

Definition 2.9. Let R be a ring and I an ideal in R. The quotient ring R/I is defined on
the set:

R/J = {r + J : r ∈ R}
together with addition

(r1 + J) + (r2 + J) = (r1 + r2) + J,

and
(r1 + J) · (r2 + J) = (r1 · r2) + J.

Zero is naturally defined as 0 + J and unity as 1 + J .

Definition 2.10. An ideal I ⊂ R is a prime ideal if it is proper and a · b ∈ I implies a ∈ I
or b ∈ I.

Definition 2.11. An ideal I ⊆ R is a maximal ideal, if for any other ideal J ⊆ R,
whenever I ∈ J , either J = I or J = R.

Theorem 2.12. Let I be an ideal of R. Then the quotient ring R/M is a field if and only
if I is a maximal ideal of R.

Proof. Left to right:
Suppose that R/I is a field and let J be an ideal of R properly containing I. Let a ∈ J

and a 6∈ I. Then a + I is not the zero element of R/I, and so there exists b + I ∈ R/I such
that (a+ I)(b+ I) = 1+ I. Then ab− 1 ∈ I ⊆. But since a ∈ J , ab ∈ J . Thus 1 ∈ J . Hence
I is a maximal ideal.

Right to left:
Suppose that I is a maximal ideal of R and let a + I be a non-zero element of R/I. We

need to show the existence of b + I ∈ R/I with (a + I)(b + I) = 1 + I, namely, ab− 1 ∈ I.
Let I ′ denote the set of elements of R of the form

ar + s for some r ∈ R, s ∈ I

. Then I ′ is an ideal of R and properly contains I since a ∈ I ′ but a 6∈ I. Then I ′ = R
because of the maximality of I. In particular, then 1 ∈ M ′ and by definition, 1 = ab + c for
some b ∈ R and c ∈ I. Then ab− 1 ∈ I and a + I has an inverse in R/I as required.
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Definition 2.13 (Field Extension). Let k be a field. If k′ is a subset of k which is closed
with respect to the field operations of addition and multiplication in k and the additive and
multiplicative inverses of every element in k′ are in k′, then we say that k′ is a subfield of k,
that k is an extension field of k′, and that k/k′ (“k over k′”) is a field extension.

Definition 2.14. Let k be is a field extension of k′, then an element a ∈ k is called algebraic
over k′, if there exists some non-zero polynomial p(x) with coefficients in k′ such that p(a) =
0. Elements of k which are not algebraic over k′ are called transcendental over k′.

Definition 2.15 (Algebraic Extension). A field extension k/k′ is called algebraic if every
element of k is algebraic over k′.

Definition 2.16 (Algebraically Closed Field). A field k is said to be algebraically closed if
every polynomial in one variable of degree at least 1, with coefficients in k, has a root in k.
An algebraic closure of a field k is an algebraic extension of k that is algebraically closed.

Theorem 2.17. Let k be a field. There exists an algebraic closure ka of k.

The theme of our study will be the relation between ideals in the polynomial ring
k[x1, ..., xn] over some field k and the points in the kn. The correspondence between the
two sets can be captured by two functions: one function takes some set of points in kn

and returns the ideal of polynomials in k[x1, ..., xn] that can vanish (i.e., be made zero) at
these points; the other takes an arbitrary ideal of polynomials, and returns the points in kn

that can make these polynomials be zero. Formally speaking, (for simplicity we write R for
k[x1, ..., xn])

Definition 2.18. V : ℘(R) → kn is defined as

V (J) = {ā ∈ kn : ∀f(x̄) ∈ J, f(ā) = 0}

Definition 2.19. I : ℘(kn) → R, s.t.

I(A) = {f ∈ R : ∀ā ∈ A, f(ā) = 0}

Proposition 2.20. For any A ⊂ kn, I(A) forms an ideal in R.

Proof. For any A, 0 ∈ I(A), hence it’s not empty. For any f, g ∈ I(A), f and g vanish on A,
hence f + g also vanishes on A. For any f ∈ I(A) and h ∈ R, fh also vanishes on A, hence
fg ∈ I(A).

In all, I(A) forms an ideal in R.
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Definition 2.21. For any field k and any ideal J ⊂ k[x1, ..., xn], the variety of J over
the algebraic closure of k, written as V a(J), is defined as

V a(J) = {ā ∈ ka[x1, ..., xn] : ∀f ∈ J, f(ā) = 0}

Definition 2.22. For any field k and a set of points A ⊂ (ka)n,

I(A) = {f ∈ k[x1, ..., xn] : ∀ā ∈ A, f(ā) = 0}

I(A) is easily verifiable as an ideal in k[x1, ..., xn], called the vanishing ideal of V.

Definition 2.23. The radical of an ideal J , written as
√

J , is defined as

√
J = {f ∈ R : ∃r > 0, f r ∈ J}

. J is called a radical ideal if J =
√

J .

Proposition 2.24. The radical
√

J of an ideal J (in a ring R) is an ideal.

Proof. Let a, b ∈ √J be arbitrary. By definition there exists n, m ∈ N such that an, bm ∈ J .
Obviously J ⊆ √

J , hence we only need to prove that
√

J is closed under addition.
Since (a + b)m+n =

∑n+m
i=0

(
n+m

i

)
aibm+n−i, each term contains either an or bm. Thus we

have (a + b)m+n ∈ J . By definition, a + b ∈ √J .

Lemma 2.25. Let Ji be ideals in k[x1, ..., xn] and Ai be a subset of kn, then:

(1)V (J1 + J2) = V (J1) ∩ V (J2)

(2)V (
⋂
i

Ji) =
⋃
i

V (Ji)

(3)I(
⋃
i

Ai) =
⋂
i

I(Ai)

Proof. (1) Consider any point P ∈ V (J1 + J2) ⊆ kn, then all f ∈ J1 + J2 vanishes on P , in
particular, J1 and J2 vanish on P . Thus P ∈ V (J1) ∩ V (J2). Hence

V (J1 + J2) ⊆ V (J1) ∩ V (J2)

.
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On the other hand, consider any point P ∈ V (J1) ∩ V (J2). For any f + g ∈ J1 + J2,
f ∈ J1 and g ∈ J2 both vanish on P . Hence

V (J1) ∩ V (J2) ⊆ V (J1 + J2).

(2) Consider any point P in V (
⋂

i Ji). Suppose P 6∈ V (Ji) for all Ji, then for each Ji

there’s some fi ∈ Ji such that fi does not vanish on P . By definition of ideals,
∏

i fi ∈
⋂

i Ji,
which means P 6∈ V (

⋂
i Ji), leading to contradiction. Hence

V (
⋂
i

Ji) ⊆
⋃
i

V (Ji).

On the other hand, for each Ji we have V (Ji) ⊂ V (
⋂

i Ji), for the reason that at any point
P ∈ V (Ji), all f ∈ Ji must vanish, in particular, all f ∈ ⋂

i Ji must vanish on P . Hence

⋃
i

V (Ji) ⊆ V (
⋂
i

Ji)

(3) For any f ∈ I(
⋃

i Ai), f vanishes on all the points in
⋃

i Ai, thus f ∈ I(Ai) for each
Ai. Hence

I(
⋃
i

Ai) ⊂
⋂
i

I(Ai).

On the other hand, for any f ∈ ⋂
i I(Ai), then f vanishes on all the points in each Ai,

which means fi ∈ I(
⋃

i Ai).

The size of a finite field can only be pn, where p is a prime number and n is a positive
integer. When n = 1, finite fields of size p (written as GF (p)) are isomorphic to natural
numbers modulo p, i.e., {0, 1, ..., (p − 1)}; when n > 1, finite fields of size pn (written as
GF (pn)) are isomorphic to the field of equivalence classes of polynomials whose coefficients
belong to GF (p).

Proposition 2.26 (Generalized Fermat’s Little Theorem). For any finite field of size q,
every element a ∈ F satisfies:

aq ≡ a.

Proof. If a is zero, then 0q = 0.
If a is not zero, then a is in the cyclic multiplicative group (F/{0}, ·, 1)[27], by Lagrange’s

theorem, aq−1 = 1.
In both cases aq = a.
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2.2 Gröbner Bases

Definition 2.27 (Well-ordering). An order relation > on Nn is a well-ordering if every
strictly decreasing sequence

α(1) > α(2) > · · ·
eventually terminates.

Definition 2.28 (Monomial Order). Define the set of monomials in k[x1, ..., xn] to be: T =
{xα1

1 · · · xαn
n : αi ∈ N} ⊆ k[x1, ..., xn]. A monomial order on T is a total well-ordering on T

satisfying
(1) For any t ∈ T , 1 ≤ t
(2) For all t1, t2, s ∈ T , t1 ≤ t2 then t1 · s ≤ t2 · s.

We give two examples of monomial order:

Definition 2.29 (Lexicographic Order). Let α = (α1, ..., αn) and β = (β1, ..., βn). α >lex β
if in the vector difference α− β ∈ Zn, the leftmost nonzero entry is positive.

Definition 2.30 (Graded Lexicographic Order). Let α, β ∈ Nn. α >grlex β if

n∑
i=1

αi >

n∑
i=1

βi, or
n∑

i=1

αi =
n∑

i=1

βi and α >lex β.

Definition 2.31. Let f =
∑

α aαxα be a nonzero polynomial in k[x1, ..., xn] and > a mono-
mial order. The multidegree of f is defined as

multideg(f) = max
>

(α ∈ Nn : aα 6= 0)

The leading coefficient of f is LC(f) = amultideg(f) and the leading monomial is LM(f) =
xmultideg(f). The leading term of f is LT (f) = LC(f) · LM(f).

Proposition 2.32. Let f, g ∈ k[x1, ..., xn] be nonzero polynomials and < a monomial order,
then:

(1) multideg(fg) = multideg(f) + multideg(g).
(2) If f + g 6= 0 then multideg(f + g) ≤ max<(multideg(f),multideg(g)).

Theorem 2.33 (Multivariate Polynomial Division). Fix a monomial order > on Zn
≥0 and

let F = (f1, ..., fs) be an ordered s-tuple of polynomials in k[x1, ..., xn] Then every f ∈
k[x1, ..., xn] can be written as

f = a1f1 + ... + asfs + r
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where ai, r ∈ k[x1, ..., xn] and either r = 0 or r is a linear combination of monomials not
divisible by any of LT (f1), ..., LT (fs) (with coefficients in k). r is called the remainder of f
on division by F .

Proof. The existence of a1, ..., as and r can be shown by an algorithm as follows:

Algorithm Multivariate Polynomial Division
Input: f1, ..., fs, f
Output: a1, ..., as, r
1. a1 ← 0, ...as ← 0, r ← 0
2. p ← f
3. while p 6= 0
4. do
5. i ← 1
6. division occured←false
7. while i ≤ s AND division occured = false
8. do
9. if LT (fi) divides p
10. then
11. ai ← ai + LT (p)/LT (fi)
12. p ← p− (LT (p)/LT (fi))fi

13. division occured ← true
14. else
15. i ← i + 1 if division occured=false
16. then
17. r ← r + LT (p)
18. p ← p− LT (p)

To prove that the algorithm works, we first show that

(?) f = a1f1 + ... + asfs + p + r

holds as every stage. This is clearly true for the initial values.
Now suppose it holds at one step of the algorithm. If next step is a division step, then

some LT (fi) divides LT (p) and the equality

aifi + p = (ai + LT (p)/LT (fi))fi + (p− (LT (p)/LT (fi))fi)

shows that aifi + p is unchanged. Since all other variables are unaffected, (?) remains true
in this case.
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On the other hand, if the next step is a remainder step, then p and r will be changed,
but the sum p + r is unchanged since

p + r = (p− LT (p)) + (r + LT (p)).

Hence the equality (?) is still preserved.
Next, notice that the algorithm comes to a halt when p = 0. In this situation, (?)

becomes
f = a1f1 + ... + asfs + r.

Since terms are added to r only when they are divisible by none of the LT (fi), it follows
that a1, ..., as, r have the properties when the algorithm terminates.

Now we need to show that the algorithm indeed terminates. Each time we redefine the
p, either its degree drops with respect to the term ordering or it becomes 0. To see this, first
suppose that during a division step, p is redefined to be

p′ = p− LT (p)

LT (fi)
fi.

But we know

LT (
LT (p)

LT (fi)
fi) =

LT (p)

LT (fi)
LT (fi) = LT (p),

so that p and (LT (p)/LT (fi))fi have the same leading term. Hence, their different p′ must
have strictly smaller degree when p′ 6= 0. Next suppose that during a remainder step, p is
redefined to be

p′ = p− LT (p).

Then obviously deg(p′) < deg(p) when p′ 6= 0. Thus in either case the degree of p must
decrease. But the well-ordering of >, the algorithm has to terminate.

Definition 2.34. Let I be an ideal in F [x1, ..., xn]. Fix any monomial order on T . The
ideal of leading monomials of I, 〈LM(I)〉, is the ideal generated by the leading monomials
of all polynomials in I. The ideal of leading terms of I, 〈LT (I)〉, is the ideal generated by
the leading terms of all polynomials in I.

Lemma 2.35 (Dickson’s Lemma). Let I = 〈xα : α ∈ A〉 ⊆ k[x1, ..., xn] be a monomial ideal.
Then I can be written in the form I = 〈xα(1), ..., xα(s) where α(1), ..., α(s) ∈ A. That is, I
has a finite basis.
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Proof. Do induction on the number of variables. If n = 1 then I is generated by the
univariate monomials, and the smallest β ∈ A satisfies the requirement.

If n > 1, assume that the theorem is true for n − 1. Suppose I ⊆ k[x1, ..., xn] is a
monomial ideal. To find generators for I, let J be the ideal in k[x1, ..., xn−1] generated by
the monomials xa1

1 · · · xan−1

n−1 for which xa1
1 · · · xan−1

n−1 xan
n ∈ I for some an ∈ N. By inductive

hypothesis J has a finite base, i.e., J = 〈xα(1), ..., xα(s)〉 where α(s) ∈ Nn−1.
For each i ∈ {1, ..., s}, the definition of J says that xα

i xmi
n ∈ I for some mi ∈ N. Let m be

the largest of mi. Then for each k ∈ {0, ..., m − 1}, consider the ideal Jk ⊆ k[x1, ..., xn − 1]
generated by the monomial xβ such that xβxk

n ∈ I. Again by inductive hypothesis we have
Jk = 〈xαk(1), ..., xαk(sk)〉.

We claim that I is generated by Jxm
n , J0, ..., Jm−1x

m−1
n .

Consider any xαxp
n ∈ I. If p ≥ m then xαxp

n is divisible by some xα(i)xm
n by the construc-

tion of J . On the other hand, if p ≤ m − 1 then xαxp
n is divisible by some xαp(j)xp

n by the
construction of Jp. It follows that the above monomials generate an ideal having the same
monomials as I.

Theorem 2.36 (Hilbert’s Basis Theorem). Every ideal I ⊆ k[x1, ..., xn] has a finite gener-
ating set.

Proof. If I = {0} then the generating set is just {0}. Otherwise, I contains some nonzero
polynomial. By Lemma 2.35, there are g1, ..., gt ∈ I such that 〈LT (I)〉 = 〈LT (g1), ..., LT (gt)〉.

We claim that I = 〈g1, ..., gt〉.
Let f ∈ I be any polynomial. If we apply the multivariate division algorithm to divide

f by 〈g1, ..., gt〉, then we get
f = a1g1 + ... + atgt + r

where r contains no terms divisible by LT (g1), ..., LT (gt). Note that

r = f − a1g1 − ...− atgt ∈ I

i.e., if r 6= 0 then LT (r) ∈ 〈LT (I)〉 = 〈LT (g1), ..., LT (gt)〉. Hence LT (r) should be divisible
by some LT (gi) and contradicts the definition of a remainder. Hence f ∈ 〈g1, ..., gt〉. Since
trivially 〈g1, ..., gt〉 ⊆ I, we have I = 〈g1, ..., gt〉.

An immediate application of the Hilbert basis theorem is the Ascending Chain Condition
theorem.

Theorem 2.37 (The Ascending Chain Condition). Let I1 ⊆ I2 ⊆ I3 ⊆ ... be a chain of
ideals in k[x1, ..., xn]. Then there exists some N such that IN = IN ′ for any N ′ > N .
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Proof. Consider the set I =
⋃∞

i=1 Ii. I is an ideal: (1) 0 ∈ I (2) For any f, g ∈ I we have
f, g ∈ Ij for some j because of the inclusion chain, then f + g ∈ Ij and fh ∈ Ii for any
h ∈ k[x1, ..., xn].

By Hilbert’s basis Theorem, the ideal I has a finite generating set I = 〈f1, ..., fs〉. Let N
be the maximum index j such that fj ∈ Ij, then we have

I = 〈f1, ..., fs〉 ⊆ IN = IN+1 = · · · = I.

Definition 2.38 (Gröbner bases). Let I be an ideal in F [x1, ..., xn]. A Gröbner basis for J
is defined as a finite set GB(I) = {g1, ..., gs}, gi ∈ I, such that

〈LT (g1), ..., LT (gt)〉 = 〈LT (I)〉.

Corollary 2.39. Every ideal I ⊆ k[x1, ..., xn] has a Gröbner basis.

Proof. It follows directly from the proof of Hilbert’s basis theorem.

Now we discuss some properties of Gröbner basis.

Theorem 2.40. Let G = {g1, ..., gt} be a Gröbner basis for an ideal I ⊆ k[x1, ..., xn]. Then
any f ∈ k[x1, ..., xn] has a unique remainder on division by G.

Proof. Suppose

f =
t∑

i=1

aigi + r =
t∑

i=1

a′igi + r′

Then r − r′ =
∑t

i=1(a
′
i − ai)gi ∈ I. Hence if r 6= r′, LT (r − r′) ∈ 〈LT (g1), ..., LT (gt)〉, i.e.,

LT (r−r′) is divisible by some LT (gi). But this is impossible since no term of r, r′ is divisible
by any of LT (g1), ..., LT (gt). Thus r − r′ = 0 and uniqueness is proved.

The remainder r in the previous theorem is also called the normal form of f . We write
this normal form as f̄G.

Corollary 2.41. Let G = {g1, ..., gt} be a Gröbner basis for an ideal I ⊆ k[x1, ..., xn] and
let f ∈ k[x1, ..., xn]. Then f ∈ I iff the remainder of f on division by G is zero.

Proof. If f ∈ I, then f = f + 0 and by uniqueness of the remainder, 0 is the remainder of f
on division by G. If the remainder is zero, then trivially f ∈ I.
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Definition 2.42. Let f, g ∈ k[x1, ..., xn] be nonzero polynomials.
(1) If deg(f) = α and deg(g) = β, then let γ = (γ1, ..., γn) where γi = max(αi, βi). We

call xγ the least common multiple of LM(f) and LM(g), written as xγ = LCM(LM(f), LM(g)).
(2) The S-polynomial of f and g is defined as:

S(f, g) =
xγ

LT (f)
· f − xγ

LT (g)
· g,

where γ is defined as in (1).

Lemma 2.43. Suppose
∑s

i=1 cifi satisfies ci ∈ k and multideg(f) = δ ∈ Nn for all i. If
multideg(

∑s
i=1 cifi) < δ then

∑s
i=1 cifi is a linear combination of S-polynomials S(fj, fk)

for 1 ≤ j, k ≤ s. Furthermore, each S(fj, fk) has multidegree < δ.

Proof. Let di be the leading coefficient of fi. Since multideg(
∑s

i=1 cifi) < δ, we must have∑s
i=1 cidi = 0.
Define pi = fi/di and note that pi has leading coefficient 1. Consider

s∑
i=1

cifi =
s∑

i=1

cidipi = c1d1(p1 − p2) + (c1d1 + c2d2)(p2 − p3) + ... + (c1d1 + ... + csds)ps.

By assumption, LT (fi) = dix
δ, which implies that the least common multiple of LT (fj) and

LM(fk) is xδ. Thus

S(fj, fk) =
xδ

LT (fj)
fj − xδ

LT (fk)
fk =

xδ

djxδ
fj − xδ

dkxδ
fk = pj − pk.

It follows that

s∑
i=1

cifi = c1d1S(f1, f2) + ... + (c1d1 + ... + cs−1ds−1)S(fs−1, fs),

which is a sum of the desired form. Since pj and pk have multidegree δ and leading coefficient
1, the difference pj−pk has multidegree less than δ. Thus the same is true for each S(fj, fk).

Now we are ready to understand Buchberger’s algorithm.

Theorem 2.44 (Buchberger’s Criterion). Let I be a polynomial ideal. Then a basis G =
g1, ..., gt is a Gröbner basis for I if and only if for all pairs i 6= j, the remainder of S(gi, gj)
on division by G is zero.
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Proof. Left to right is easy, since S-polynomials are in the ideal, and the remainder on
division by the Gröbner basis has to be zero.

Right to left:
Let f ∈ I be a nonzero polynomial. Then since {g1, ..., gt} is a basis,

(?) f =
t∑

i=1

higi.

Let m(i) = multideg(higi), and define δ = max(m(1), ..., m(t)), then we have multideg(f) ≤
δ. Consider all the possible expressions of f in the (?) form and let fix δ to be the minimal
degree with respect to the monomial order.

Now we show that multideg(f) = δ. Assume multideg(f) < δ. Write f as:

f =
∑

m(i)=δ

higi +
∑

m(i)<δ

higi

=
∑

m(i)=δ

LT (hi)gi +
∑

m(i)=δ

(hi − LT (hi))gi +
∑

m(i)<δ

higj

Thus the assumption implies that multideg(
∑

m(i)=δ LT (hi)gi) < δ.

Let LT (hi) = cix
α(i). Then the first sum

∑
m(i)=δ LT (hi)gi =

∑
m(i)=δ cix

α(i) has the form

described in Lemma 2.43. Thus we have (let t be the number of i such that m(i) = δ)

∑

m(i)=δ

LT (hi)gi =
∑

1≤j,k≤l

S(xα(j)gj, x
α(k)gk).

Yet we also have

S(xα(j)gj, x
α(k)gk) =

xδ

xα(j)LT (gj)
xα(g)gj − xδ

xα(k)LT (gk)
xα(k)gk = xδ−γjkS(gj, gk).

where xγjk = LCM(LM(gj), LM(gk)). Thus, there exist constant cjk ∈ k satisfying that

(1)
∑

m(i)=δ

LT (hi)gi =
∑

1≤j,k≤l

cjkx
δ−γjkS(gj, gk).

By assumption, the remainder of S(gj, gk) on division by g1, ..., gt is zero, i.e.,

S(gj, gk) =
t∑

i=1

aijkgi,
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where aijk ∈ k[x1, ..., xn]. Furthermore, note that multideg(aijkgi) ≤ multideg(S(gj, gk)).
Now we multiply the expression for S(gj, gk) by xδ−γjk to obtain

(2) xδ−γjkS(gj, gk) =
t∑

i=1

bijkgi,

where bijk = xδ−γijkaijk. Applying Lemma 2.43 again, we have

multideg(bijkgi) ≤ multideg(xδ−γjkS(gj, gk)) < δ.

Now, plugging (2) into (1) we can write

∑

m(i)=δ

LT (hi)gi =
∑

i,k

cjkx
δ−γjkS(gj, gk) =

∑

j,k

cjk(
∑

i

bijkgj)

Hence we have multideg(
∑

m(i)=δ LT (hi)gi) < δ. But this means multideg(f) < δ, which
contradicts our assumption of the minimality of δ.

Now we are ready to show Buchberger’s Algorithm for constructing Gröbner bases.

Theorem 2.45 (Buchberger’s Algorithm). Let I = 〈f1, ..., fs〉 6= {0} be a polynomial ideal.
Then a Gröbner basis for I can be constructed in a finite number of steps by the following
algorithm:

Algorithm
Input: f1, ..., fs

Output: A Gröbner basis G = {g1, ..., gt}for I
1. G ← f1, ..., fs

2. repeat
3. G′ ← G
4. for Each pair {p, q}, p 6= q in G′

5. do
6. S ← S(p, q)

G′

7. if S 6= 0
8. then G ← G ∪ {S}
9. until G = G′

Proof. We first show that G ⊆ I holds true at every stage of the algorithm. This is true

initially. Whenever we enlarge G, it is done by adding remainder S = S(p, q)
G′

for p, q ∈ G.
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Since by inductive hypothesis G ⊆ I, G ∪ S ⊆ I holds. We also note that G contains the
given polynomials f1, ..., fs, so G is still a basis for I.

The algorithm terminates when G = G′, i.e., when S = S(p, q)
G′

= 0 for all p, q ∈ G.
Hence G is a Gröbner basis following from Theorem 2.44.

It remains to prove that the algorithm terminates. In each round of the main loop, we
have 〈LT (G′)〉 ⊆ 〈LT (G)〉 since G′ ⊆ G. Furthermore, if G′ 6= G then 〈LT (G′)〉 is strictly
smaller than 〈LT (G)〉, since any nonzero remainder r of an S-polynomial on division by G′

would satisfy LT (r) 6∈ LT (G′).
Hence, the ideals 〈LT (G′)〉 from the successive iterations of the main loop form an as-

cending chain of ideals in k[x1, ..., xn]. Thus by the ascending chain condition in Theorem
2.37 implies that after a finite number of iterations the chain has to stabilize. Hence the
algorithm terminates.

Lemma 2.46. Let G be a Gröbner basis for the polynomial ideal I. Let p ∈ G be a polynomial
such that LT (p) ∈ 〈G− {p}〉. Then G− {p} is still a Gröbner basis for I.

Proof. Note that
〈LT (G− {p})〉 = 〈LT (G)〉 = 〈LT (I)〉.

Hence G− {p} is still a Gröbner basis for I.

Definition 2.47. A minimal Gröbner basis for an ideal I is a Gröbner basis G for I satis-
fying that:

(1) LC(p) = 1 for all p ∈ G.
(2) For all p ∈ G, LT (p) 6∈ 〈LT (G− {p})〉.
It is easy to obtain a minimal Gröbner basis by deleting all the polynomials whose

leading term is subsumed by leading terms of other polynomials. But if we want a canonical
representation of the Gröbner bases, we need further require that a basis is “reduced”.

Definition 2.48. A reduced Gröbner basis for a polynomial ideal I is a Gröbner basis G
for I such that:

(1) LC(p) = 1 for all p ∈ G;
(2) For all p ∈ G, no monomial of p is contained in 〈LT (G− {p})〉.

Theorem 2.49. Let I 6= {0} be a polynomial ideal. Then I has a unique reduced Gröbner
basis under a fixed monomial order.

Proof. Let G be a minimal Gröbner basis for I. We say that g ∈ G is reduced for G if no
monomials in g is contained in 〈LT (G− {g})〉.
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Given g ∈ G, let g′ = gG−{g} and set G′ = (G− {g}) ∪ {g′}. By minimality of G, LT (g)
is not divisible by LT (G − {g}). Hence LT (g′) = LT (g) and G′ is still a minimal Gröbner
basis. Also, g′ is reduced for G′ by construction. Hence we can just apply the procedure and
obtain a reduced Gröbner basis.

To prove uniqueness, suppose that G and G′ are reduced Gröbner bases for I. Suppose
there exists xα ∈ LT (G)/LT (G′). xα has to be contained in 〈LT (G′)〉, which means there
exists xα′ ∈ 〈LT (G′)〉 that divides xα. Fix α0 to be the minimal such α′ then xα0 has to
be contained in LT (G), too. Thus xα is subsumed by LT (G) − xα which contradicts the
minimality of G′. Hence

LT (G) = LT (G′).

Thus given g ∈ G, there always exists g′ ∈ G′ such that LT (g) = LT (g′). We only need to
show that g = g′.

Consider g − g′, which is contained in I and we must have g − g′
G

= 0. Since LT (g) =
LT (g′), LT (g−g′) 6= LT (g). But we know that both G and G′ are reduced, hence LT (g−g′)
can not be reduced by LT (G) or LT (G′). This shows that g − g′ = g − g′

G
= 0. Hence

G = G′.

2.3 Hilbert’s Nullstellensatz

In this section we state the proof of Hilbert’s original Nullstellensatz.

Definition 2.50. Let B be a subring of A. A is finitely generated over B, if there are finitely
many a1, ..., an ∈ A such that A = B[a1, ..., an]. A is called a finite B-algebra if there are
a1, ..., an satisfying A =

∑
i Bai.

Lemma 2.51. Let C ⊆ B ⊆ A be rings, then
(1) If B is a finite C-algebra and A is a finite B-algebra then A is also a finite C-algebra.
(2) If A is a finite B-algebra then A is integral over B, i.e., every element x ∈ A satisfies

an equation of the form
xn + bn−1x

n−1 + ... + b1x + b0.

(3) If x ∈ A satisfies an equation of the above form then B[x] is a finite B-algebra.

Proof. (1) Since B =
∑

i Cbi and A =
∑

i Bai, we have A =
∑

i,j Caibj.
(2) Suppose A =

∑
i Bai, then for any x ∈ A we have xai ∈ A for i = 1, ..., n. Thus there

are elements bij ∈ B such that

xai =
n∑

j=1

bijaj.
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To obtain a single polynomial equation for x from these n linear equations, we express this
in matrix notation, and take the determinant of the matix. Define a matrix M , given by

M = (xδij − bij)i,j

(where δi,j = 1 when i = j, and 0 otherwise). Then we have Ma = 0 where aT = (a1, ..., an).
Let Madj be the adjoint matrix of M , we have det Ma = MadjMa = 0 and thus det Mai = 0
for i = 1, ..., n. Since A is generated by ai from B, we have det M = 0. But expanding the
determinant we have

det M = xn + bn−1x
n−1 + ... + b0, bi ∈ B.

Thus x satisfies a polynomial equation with coefficients in B.
(3) We have B[x] = B + Bx + ... + Bxn−1, hence B[x] is a finite B-algebra.

Lemma 2.52. let A be a field and B ⊆ A its subring such that A is a finite B-algebra, then
B is also a field.

Proof. Let b ∈ B be a nonzero element. Since A is a field, there exists b−1 ∈ A. Lemma
2.51(2) shows that

b−n + bn−1b
−(n−1) + ... + b1b

−1 + b0 = 0

where bi ∈ B. Hence we have

b−1 = −(bn−1 + bn−2b + ... + b0b
n−1) ∈ B.

Lemma 2.53. Let f ∈ k[x1, ..., xn] be a nonzero element with deg f = d. Then there exists
a change of variables x′i = xi − αixn for 1 ≤ i ≤ n − 1 where α1, ..., αn−1 ∈ k such that the
polynomial f(x′1 + α1xn, ...., x

′
n−1 + αnxn, xn) ∈ k[x′1, ..., x

′
n−1, xn] has a term cxd

n for some
nonzero c ∈ k.

Proof. Suppose we have chosen some α1, ..., αn−1. We can write f = Fd + G where Fd is a
homogeneous polynomial and deg G ≤ d− 1. Then

f(x′1 + α1xn, ..., x′n−1 + αn−1xn, xn) = Fd(α1, ..., αn−1, 1)xd
n + G′.

Since k is infinite, Fd(α1, ..., αn−1, 1) can not vanish on all the points in kn−1. Hence we can
always pick α1, ..., αn−1 ∈ k such that Fd(α1, ..., αn−1, 1) 6= 0.

Theorem 2.54 (Noether Normalization). Let k be an infinite field and A = k[a1, ..., an] be a
finitely generated k-algebra. Then there exists y1, ..., ym ∈ A with m ≤ n such that y1, ..., ym

are algebraically independent over k and A is a finite k[y1, ..., ym]-algebra.
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Proof. We do induction on n. Let k[x1, ..., xn] be the polynomial ring over k in n variables.
Let ϕ : k[x1, ..., xn] → k[a1, ..., an] be the homomorphism induced by xi → ai.

If ker(ϕ) = {0} then we take m = n and y1 = a1, ..., yn = an and the conclusion is
immediately true.

Otherwise, there exists some nonzero f ∈ I. When n = 1, we have f(a1) = 0 and
following Lemma 2.51(3), m = 0 and the conclusion follows.

When n > 1, assume that the result is true for n − 1. From Lemma 2.53 we know that
there exist α1, ..., αn−1 ∈ k such that setting α′i = ai − αian and A′ = k[a′1, ..., a

′
n−1] ⊆ A, we

have that for some nonzero constant c ∈ k the polynomial

F (xn) =
1

c
f(a′1 + α1xn, ..., a′n−1 + αn−1xn, xn)

is a monic polynomial in A′[xn] and F (an) = 0. By Lemma 2.51(3) this implies that an is
integral over A′. By inductive hypothesis, there exist y1, ..., ym ∈ A′ such that y1, ..., ym are
algebraically independent over k and A′ is a finite k[y1, ..., ym]−algebra. Now by Lemma
2.51(3) we have that A = A′[an] is a finite A′-algebra and by 2.51(1) we have that A is also
a finite k[y1, ..., ym]-algebra.

Theorem 2.55. Let k be an infinite field and A = k[a1, ..., an] a finitely generated k-algebra.
If A is a field then A is algebraic over k.

Proof. By Noether Normalization, we have y1, ..., ym ∈ A for some m ≤ n such that B =
k[y1, ..., ym] ⊆ A and A is a finite B-algebra. By Lemma 2.52, we know B is a field. But this
can only be true when m = 0. Hence A is a finite extension of k, which means it is algebraic
over k.

Theorem 2.56. Let k be an algebraically closed field and A = k[x1, ..., xn]. Every maximal
ideal m ⊆ A is of the form m = 〈x1 − a1, ..., xn − an〉 where (a1, ..., an) ∈ An

k .

Proof. Any ideal of the form 〈x1 − a1, ..., xn − an〉 is maximal: Consider the evaluation
homomorphism ϕ : k[x1, ..., xn] → k, ϕ(f) = f(a1, ..., an). By linear transformation we may
assume ai are all zero. Then ϕ just maps each polynomial to its constant term, and the
kernel is the set of polynomials with zero constant, which are precisely contained in the ideal
m. Hence k[x1, ..., xn]/m ∼= k.

Conversely, let m ⊆ k[x1, ..., xn] be any maximal ideal. Then k[x1, ..., xn]/m is a field as
well as a finitely generated k-algebra. Following Theorem 2.55, k[x1, ..., xn]/m is algebraic
over k. But since k is algebraically closed, k[x1, ..., xn]/m is isomorphic to k. let ϕ be the



2 FINITE FIELDS, NULLSTELLENSATZ AND GRÖBNER BASES 22

isomorphism between them. Let bi = xi mod m ∈ k[x1, ..., xn]/m and ai = ϕ−1, then we
have

xi − ai ∈ kerϕ = m,

hence
〈x1 − a1, ..., xn − an〉 ⊆ m.

But we already know that 〈x1−a1, ..., xn−an〉 is maximal. Thus 〈x1−a1, ..., xn−an〉 = m.

Theorem 2.57 (Weak Nullstellensatz). Let k be any algebraically closed field. A system of
polynomials f1, ..., fm ∈ k[x1, ..., xn] have no common zero over k if and only if 1 ∈ J .

Proof. Left to right:
Suppose 1 6∈ J , which means J is a proper ideal of k[x1, ..., xn] and is contained in some

maximal ideal J ′. By Theorem 2.56, J ′ must be of the form (x1 − a1, ..., xn − an) for some
ā ∈ kn. Thus V (J) ⊆ V (J ′) = {ā}. That is, f1, ..., fm has a common zero ā. Contradiction.

Right to left:
1 ∈ J then there exists g1, ..., gm ∈ k[x1, ..., xn] such that

1 = f1g1 + ... + fmgm.

If f1, ..., fm have a common zero then evaluating the equation on ā we have the contradiction
1 = 0.

We now prove the generalized version of the weak Nullstellensatz, with a view from
Gröbner bases.

Theorem 2.58 (Generalized Weak Nullstellensatz). Let k be any field. A system of poly-
nomials f1, ..., fm ∈ k[x1, ..., xn] has no common zero over the algebraic closure of k, if and
only if, 1 ∈ 〈f1, ..., fm〉.
Proof. Right to left:

Easy. If 1 ∈ 〈f1, ..., fm〉 then 1 =
∑

figi which implies fi can’t have common zeros to
make 1 = 0.

Left to right:
Suppose f1, ..., fm have no common zero over ka. Consider f1, ..., fm as polynomials in

ka[x1, ..., xn], and directly apply Hilbert’s weak Nullstellensatz. We have 1 ∈ 〈f1, ..., fm〉.
Now consider the ideal 〈f1, ..., fm〉 as a subset of ka[x1, ..., xn], then it has a finite Gröbner

basis G satisfying that 1 ∈ G. Consider the algorithm of Gröbner basis. Since f1, ..., fm

contain only coefficients in k, all the arithmetic operations involved in the Gröbner basis
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computation can only generate coefficients from k. In other words, the Gröbner basis of
〈f1, ..., fm〉 remains the same over any field extension of k. Thus 1 ∈ 〈f1, ..., fm〉, which is
now considered as a subset of k[x1, ..., xn].

Now it’s not hard to prove the generalized strong Nullstellensatz using the Robinowitsch
trick.

Theorem 2.59 (Generalized Strong Nullstellensatz). Let J be any ideal in k[x1, ..., xn]. Let
f be a polynomial in k[x1, ..., xn] such that f(ā) = 0 for every zero ā of J over ka. Then
there exists an integer m > 0 such that fm ∈ J .

Proof. We introduce a new variable y and consider the ideal J ′ = J+〈fy−1〉 ⊂ k[x1, ..., xn, y].
Notice that since f vanishes on all the zeros of J , yf − 1 does not vanish any of these

zeros. Hence the new ideal J ′ can not vanish on any points. Now we call the generalized
weak Nullstellensatz which we just proved, then:

1 = g0(fy − 1) +
∑

i

gihi (?)

where hi ∈ J and gi ∈ k[x1, ..., xn, y]. Since the new indeterminant only appears in gi, we
multiply a sufficient power of f , say fm, to both sides of the equation, such that every y
appearing in gi is paired with an f , and get:

fm = g0(1− fy) +
∑

i

(gif
m) · hi

Now consider the equation modulo the principle ideal 〈fy − 1〉, we have

fm =
∑

i

g′i · hi mod 〈fy − 1〉

where each appearance of yf in gi is substituted by 1; hence on both sides of the equation,
only polynomials in k[x1, ..., xn] can appear. But that means both sides can’t be reduced by
fy − 1 (since they are “coefficients” for y), and we get

fm =
∑

i

g′i · hi.

Hence f ∈ √J .
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3 Counting with Gröbner Bases

In this section, we will prove the following theorems to show how Gröbner basis computation
can be used to solve #SAT. We write Fq for a finite field of size q, and Fq[x1, ..., xn] for the
n-variate polynomial ring over Fq. First, we show that any ideal J ⊆ Fq[x1, ..., xn] can
be easily turned into a radical ideal J ′ by adding polynomials of the form xq

i − xi, without
changing the zero set V (J) over Fq (Lemma 4.1). This implies the strong Nullstellensatz over
finite fields (Theorem 4.1), which generalizes a result in [16]. Next, we show that the strong
Nullstellensatz guarantees that computing the Gröbner basis of J ′ suffices for determining
the size of V (J). In fact, the number of monomials that are not reducible by the leading
monomials in the Gröbner basis of J ′ (Definition 4.1) is exactly the number of zeros of J
(Lemma 4.2, Lemma 4.3 and Theorem 4.3).

3.1 Nullstellensatz in Finite Fields

Lemma 3.1. For any ideal J ⊆ Fq[x1, ..., xn], J + 〈xq
1 − x1, ..., x

q
n − xn〉 is radical.

Proof. We need to show
√

J + 〈xq
1 − x1, ..., x

q
n − xn〉 = J + 〈xq

1 − x1, ..., x
q
n − xn〉.

Since by definition, any ideal is contained in its radical, we only need to prove
√

J + 〈xq
1 − x1, ..., x

q
n − xn〉 ⊆ J + 〈xq

1 − x1, ..., x
q
n − xn〉.

For brevity we write R = Fq[x1, ..., xn] and S = 〈xq
1 − x1, ..., x

q
n − xn〉.

Consider an arbitrary polynomial f ∈
√

J + 〈xq
1 − x1, ..., x

q
n − xn〉. By definition, for

some integer s, f s ∈ J + 〈xq
1−x1, ..., x

q
n−xn〉. Let [f ] and [J ] be the images of, respectively,

f and J , in R/〈xq
1− x1, ..., x

q
n − xn〉 under the canonical homomorphism from R to R/〈xq

1−
x1, ..., x

q
n − xn〉. Now we have [f ]s ∈ [J ], and we only need to have [f ] ∈ [J ]. We prove, by

induction on the structure of polynomials, that for any [g] ∈ R/S, [g]q = [g].
If [g] = cxa1

1 · · · xan
n + S (c ∈ Fq, ai ∈ N), then

[g]q = (cxa1
1 · · · xan

n + S)q = (cxa1
1 · · · xan

n )q + S = cxa1
1 · · ·xan

n + S = [g].

If [g] = [h1] + [h2], by inductive hypothesis, [h1]
q = [h1], [h2]

q = [h2], and, since any
element divisible by p is zero in Fq (q = pr), then

[g]q = ([h1] + [h2])
q =

q∑
i=0

(
q

i

)
[h1]

i[h2]
q−i = [h1]

q + [h2]
q = [h1] + [h2] = [g]
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Hence [g]q = [g] for any [g] ∈ R/S, without loss of generality we can assume s < q in
[f ]s. Then, since [f ]s ∈ [J ],

[f ]s · [f ]q−s = [f ]q = [f ] ∈ [J ].

A nice form of the strong Nullstellensatz for finite fields, which generalizes the result
in [16] from prime fields to arbitrary finite fields, follows from this observation.

Theorem 3.2 (Strong Nullstellensatz in Finite Fields). For an arbitrary finite field Fq, let
J ⊆ Fq[x1, ..., xn] be an ideal, then

I(V (J)) = J + 〈xq
1 − x1, ..., x

q
n − xn〉.

Proof. For an arbitrary ideal J ⊆ Fq[x1, ..., xn], applying Hilbert’s Nullstellensatz to J +
〈xq

1 − x1, ..., x
q
n − xn〉 and using the previous lemma, we have:

I(V a(J + 〈xq
1 − x1, ..., x

q
n − xn〉)) = J + 〈xq

1 − x1, ..., x
q
n − xn〉

But since V a(〈xq
1 − x1, ..., x

q
n − xn〉) = F n

q ,

V a(J + 〈xq
1 − x1, ..., x

q
n − xn〉) = V a(J) ∩ F n

q = V (J)

and we reach the clean form,

I(V (J)) = J + 〈xq
1 − x1, ..., x

q
n − xn〉.

As an easy corollary we have:

Theorem 3.3 (Weak Nullstellensatz in Finite Fields). For an arbitrary finite field Fq, given
m polynomials f1, ..., fm ∈ Fq[x1, ..., xn], f1, ..., fm have no common zero in F n

q if and only if
1 ∈ 〈f1, ..., fm, xq

1 − x1, ..., x
q
n − xn〉 ⊆ Fq[x1, ..., xn].

Proof. Right to left is easy. Left to right: If f1, ..., fm have no common zero then

V (〈f1, ..., fm〉) = ∅.
Hence

〈f1, ..., fm, xq
1 − x1, ..., x

q
n − xn〉 = I(∅) = 〈1〉.
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3.2 |SM(J + 〈x̄q − x̄〉)| = |V (J)|
Next we prove that the size of the variety over Fq of any ideal can be obtained from its
Gröbner basis. Write Span({f1, ..., fm}) to denote the vector space formed by linear com-
binations of f1, ..., fm with scalars from the base field Fq. We will keep using the notation
R = Fq[x1, ..., xn]. The method is standard for algebraically closed fields [10, 9], we will
make sure that it works for finite fields.

Definition 3.4 (Standard Monomials). The set of standard monomials of any ideal J is
defined as:

SM(J) = {xα : xα 6∈ 〈LM(J)〉}.
When an ideal J has a Gröbner basis G, we also write the standard monomial set of J

as SM(G), and call it the standard monomial set of G.

Lemma 3.5. Let J be any ideal in R, we have Span(SM(J)) ∼= R/J.

Proof. Let [f ] denote the image of f under the canonical homomorphism R → R/J . Since
Span(SM(J)) ⊆ R, we restrict the canonical homomorphism to Span(SM(J)) and get
φ : Span(SM(J)) → R/J , such that φ(f) = [f ].

Since φ is already a homomorphism, we only need to show that it is bijective.

1. φ is injective: Take f, g ∈ Span(SM(J)), f 6= g. Then f − g ∈ Span(SM(J)). Since,
by the definition of standard monomials, none of the monomials appearing in f−g can
be divided by any monomial in LM(J), f−g cannot be reduced by J . Thus, f−g = 0
if and only if [f − g] = [0]. Hence φ(f)− φ(g) 6= [0].

2. φ is surjective: For any [f ] ∈ R/J , suppose [f ] = f ′ + J where f ′ cannot be reduced
by J , then f ′ ∈ Span(SM(J)) and φ(f ′) = [f ].

In all, Span(SM(J)) ∼= R/J .

Lemma 3.6. Let J = I(V ) ⊆ R for some V = {P1, ..., Pm} ⊆ F n
q . Consider R/J as a finite

dimensional vector space over Fq, then we have dim R/J = m.

Proof. For any point P ∈ F n
q , we write its i-th coordinate as (P )i.

1. When m = 1: It is easy to see that J vanishes on a single point P if and only if it is
of the form 〈x1 − (P )1, ..., xn − (P )n〉:
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Any polynomial f ∈ 〈x1 − (P )1, ..., xn − (P )n〉 naturally vanishes on P. On the other
hand, for any polynomial f ∈ J , divided by xi − (P )i for all i ∈ {1, ..., n}, we have

f =
n∑

i=1

hi · (xi − (P )i) + r,

where hi ∈ R and r ∈ Fq. Since f(P ) = 0, r = 0. That is,

f ∈ 〈x1 − (P )1, ..., xn − (P )n〉.

Hence dim R/J = 1.

2. When m > 1: Consider P1 ∈ V . Suppose, for any Pj, j ∈ 2, ..., m, P1 and Pj differ at
the i-th coordinate. We construct

gj(~x) = ((P1)i − (Pj)i)
−1(xi − (Pj)i)

and let

f1(~x) =
n∏

j=2

gj(~x).

Then we have
f1(P1) = 1, f1(P2) = ... = f1(Pm) = 0.

Let {f1, ..., fm} be the set of such functions defined for each point in V .

We show that {[f1], ..., [fm]} is a basis of R/J :

(a) Independence:

Suppose for some ai ∈ Fq, i ∈ {1, ...,m},
a1[f1] + ... + am[fm] = [0].

It follows that
a1f1 + ... + amfm ∈ J.

That is, for j ∈ {1, ..., m},
a1f1(Pj) + ... + amfm(Pj) = 0.

Since fj(Pj) = 1, and fj(Pi) = 0 when i 6= j, we have

a1f1(Pj) + ... + amfm(Pj) = ajfj(Pj) = aj.

Hence aj = 0 for all j ∈ {1, ..., m}.
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(b) Spanning:

Consider any [h] ∈ R/J . Let qi = h(Pi) ∈ Fq, then we have

h− (q1f1 + ... + qmfm) ∈ J.

Hence
[h]− (q1[f1] + ... + qm[fm]) = [0].

That is,
R/J = Span(f1, ..., fm).

In all, dim R/J = m.

Theorem 3.7 (Counting with Gröbner bases). Let J ⊆ R be any ideal and G = {g1, ..., gs}
be the Gröbner basis of J + 〈xq

1 − x1, ..., x
q
n − xn〉. Suppose |SM(G)| = m, then J vanishes

on exactly m distinct points in F n
q .

Proof. By the strong Nullstellensatz in Theorem 4.1, we have

I(V (J)) = 〈g1, ..., gs〉.

Then, using Lemma 4.2,
|SM(G)| = dim(R/〈g1, ..., gs〉).

Finally, Lemma 4.3 ensures that

dim(R/I(V (J))) = dim(R/〈g1, ..., gs〉) = |V (J)|.

Hence
|V (J)| = |SM(G)| = m.
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4 Algorithm Analysis

4.1 Analysis of Buchberger’s Algorithm

Gröbner bases are well-known to be very expensive to compute. It was shown to be at least
EXPSPACE-hard in general [26], requiring time doubly exponential in the number of vari-
ables. Nevertheless, given the special structure of our problem, we show that Buchberger’s
Algorithm halts in single exponential time, and is hence reasonable to be used for solving
#SAT.

Algorithm Counting Zeros with Buchberger’s Algorithm
Input: f1, ..., fm, xq

1 − x1, ..., x
q
n − xn ∈ Fq[x1, ..., xn] and a monomial ordering <M

Output: N - the number of satisfying assignments of ϕ
1. G ← {f1 − 1, ..., fm − 1, x2

1 − x1, ..., x
2
n − xn}

2. Preprocess G so that f1, ..., fm are reduced with respect to xq
i−xi and have no duplicated

leading monomials.
3. repeat
4. S ← ∅
5. Order the polynomials in G as (g1, ..., gt) in lexicographic order
6. for 1 ≤ i < j ≤ t
7. h ← LCM(LT (gi),LT (gj))

LT (gj)
gi − LCM(LT (gi),LT (gj))

LT (gi)
gj

8. r ←the remainder after reducing h with respect to g1, ..., gt

9. if r 6= 0
10. then S←S ∪ {r}
11. G←G ∪ S
12. until S = ∅
13. M1, ..., Mt←leading monomials of the polynomials in G
14. N←the number of monomials that are not divisible by M1, ...,Mt

15. return N

Proposition 4.1. For ideals of the form 〈f1, ..., fm, xq
1 − x1, ..., x

q
n − xn〉 ⊆ Fq[x1, ..., xn],

where f1, ..., fm are given in sparse form and have longest length of l, the basic Buchberger
Algorithm halts in time qO(n) + O(m2l).

Proof. At the beginning, we need to calculate the steps needed for preprocessing (Line 2).
Preprocessing is not always necessary, and the reason for doing this is to avoid having some
fi with degree higher than q on some variable, as well as duplicated leading monomials in
LM(f1), ..., LM(fm). First, we divide each fi by the field polynomials, which can be easily
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done by replacing each occurence of xq
i by xi, if there are any. This requires at most O(ml)

steps. Then we need to make sure all the duplicated leading monomials in f1, ..., fm are
deleted, as follows. After ordering the polynomials with respect to their leading monomials
and <M , we search for duplicated leading monomials. Suppose fi and fj have the same
leading monomial, then we let f ′j to be the result of subtracting (LT (fj)/LT (fi))fi from fj,
so that the leading monomial of fj is canceled. Now f ′j is a new polynomial whose leading
monomial is strictly smaller than that of fj. We delete fj and put f ′j back into the polynomial
list. If f ′j still has duplicated leading monomial with other polynomials down the list, we
repeat the subtraction and inserting operations. Completing this process requires O(ml) at
most for each polynomial, and at most O(m2l) for all the polynomials. In all, completing
preprocessing requires Tpreprocessing = O(m2l).

Now we analyze the main loop (Line 3 to 18). Consider round k + 1 of the main loop.
Let Tk+1 be the time taken by this round and Lk+1 the size of G after this round. We
immediately have the following relation between Tk+1 and Lk:

Tk+1 ≤
(

Lk

2

)
· TSpoly · Treduce,

where TSpoly is the time taken by computing the S-polynomial from a pair of polynomials in
G (Line 7) and Treduce is the maximum time taken by reducing an S-polynomial with respect
to polynomials in G (Line 8).

The standard reduction process uses multivariate polynomial division [9, 14]. Since dur-
ing the division process, after each division round, the leading monomial of the dividend
polynomial strictly decreases with respect to the monomial ordering, the number of division
rounds is bounded by the longest downward monomial chain leading from LM(h) (h as de-
fined on Line 7) that can appear in the division. Now, the existence of the field polynomials
xq

i − xi in the divisor pool ensures two properties of the division process (Line 8):
First, after division, any variable appearing in the remainder must have degrees lower

than q, otherwise the division should not halt. Hence the longest possible remainder is shorter
than qn, which is the maximum number of different monomials with degree on each variable
lower than q. Notice that we have preprocessed the input polynomials to have no duplicated
leading monomials, and the multivariate division procedure ensures that the remainder can
only have a strictly smaller leading monomial compared to the dividend, which is different
from all the leading monomials of the divisors. Hence, after each round the length of the
basis (the number of polynomials in G) is always smaller than qn + n, since we can at most
have qn different monomials with degree on each variable smaller than q, plus n extra field
polynomials with degree q.

Second, when an S-polynomial or intermediate polynomial appearing during the division
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as dividend has a degree higher than q on variable xi, the degree is reduced to lower than
q, through division by xq

i − xi. Since the length of any downward chain from the leading
monomial of the dividend is at most qn, and at each division round the reduction by xq

i − xi

may take up another step, we have the maximum number of division rounds bounded by
2qn.

Further, notice that when operating over a finite field, the positive characteristic ensures
that the coefficients never grow exponentially as in the case for rationals or complex numbers.
We can assume arithmetic among coefficients takes unit time. Each division round, say
dividing f by g, consists of multiplying LT (f)/LT (g) to g, and subtracting (LT (f)/LT (g))·g
from f . Thus each round during the division process takes time at most 2qn, since qn is the
longest possible length of f and g.

Finally, S-polynomials are defined as (cf. [9]):

S(gi, gj) =
LCM(LT (gi), LT (gj))

LT (gi)
· gi − LCM(LT (gi), LT (gj))

LT (gj)
· gj

Hence the number of arithmetic steps taken by computing S-polynomial, TS−polynomial, is less
than the sum of lengths of the two polynomials, which is also bounded by 2qn.

In all, we have Treduce ≤ 2qn · 2qn, Lk ≤ qn + n and TSpoly ≤ 2qn. Hence

Tk+1 ≤
(

Lk

2

)
· TSpoly · Treduce ≤ (qn + n)2 · 2qn · 2qn · 2qn

Now observe that the final length of the Gröbner basis is bounded by qn + n (again,
because we can have at most qn different leading monomials appearing in G, and n extra
field polynomials). At each round at least one polynomial with a new leading monomial
needs to be generated, otherwise the process halts. Hence the maximum number of rounds
is bounded by (qn + n)− (m + n). (We preprocessed the input polynomials f1, ..., fm to be
mutually irreducible and already reduced by xq

i − xi, hence m < qn.)
In all, the overall worst-case complexity of the Buchberger Algorithm is

T ≤ (qn + n− (m + n)) · Tk + Tpreprocessing

≤ qn · (qn + n)2 · 2qn · 2qn · 2qn + O(m2l) = qO(n) + O(m2l).

At last, since there are only qn possible different standard monomials, the worst-case
complexity of the counting step is O(qn), subsumed by the complexity of Buchberger’s Al-
gorithm. We’ll discuss practical heuristics for the counting step in the next section. Here we
settle for the overall worst-case complexity, which is qO(n) + O(m2l).
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4.2 Counting Standard Monomials

Proposition 4.2. For each xi there exists di ∈ {0, ..., q} such that xdi
i ∈ LM(G). The set

of standard monomials can be listed after enumerating at most
∏n

i=1 di monomials.

Proof. Write J + 〈xq
1 − x1, ..., x

q
n − xn〉 as J ′. For each 1 ≤ i ≤ n, consider the ideal

Ji = J ′ ∩Fq[xi]. Since V a(J ′) ⊆ V a(〈xq
1−x1, ..., x

q
n−xq

n〉) = F n
q , V a(J ′) is finite. Hence Ji is

a nonempty ideal consisting of univariate polynomials, which must be a principal ideal and
has a unique generator gi(xi).

Since gi ∈ Ji ⊆ J ′, LM(gi) ∈ 〈LM(J ′)〉 = 〈LM(G)〉. By the definition of Gröbner basis,
LM(gi) is reducible to 0 with respect LM(G). Thus, there exists xdi

i ∈ LM(G), 0 ≤ di ≤ q,
and LM(gi) is divisible by xdi

i .
Any monomial xa1

1 · · · xan
n , with ai ≥ di for some i, is divisible by xi

di , and cannot
appear in the standard monomial set. Thus the search for standard monomials halts after
enumerating at most

∏n
i=1 di monomials, which is bounded by qn and does not increase the

overall worst-case complexity of our algorithm.

In practice, di is much smaller than q for polynomial systems with sparse solutions, since
di must be smaller than the total number of standard monomials, which is the number of
solutions as we just proved.

Here we mention the special case of bivariate polynomials. The number of standard
monomials of any ideal can be explicitly formulated from the shape of its reduced Gröbner
basis:

Proposition 4.3. Let J(x,y) ⊆ Fq[x, y] be an ideal containing the field polynomials xq − x
and yq−y. Suppose the set of leading monomials of the reduced Gröbner basis of J(x,y), when
ordered with respect to the lexicographical ordering x > y, has the form:

LM(G) = {xa0 , xa1yb1 , ..., xakybk , ybk+1}.

Then the set of standard monomials of G has size (set ak+1 = 0)

|SM(G)| =
k∑

i=0

(ai − ai+1) · bi+1.

Proof. Since G is a reduced Gröbner basis, for any i, j, xajybj should not divide xaiybi (if
we started from an arbitrary Gröbner basis, we can first delete any monomial reducible by
other monomials in the set of leading monomials). Thus, for any i, j, 0 ≤ i < j ≤ k + 1, we
must have ai > aj (because of the lexicographical ordering) and bi < bj.
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Consider any monomial xsyt, with ai+1 ≤ s < ai for some 0 ≤ i ≤ k.
First, xsyt cannot be divisible by any monomial xalybl with 0 ≤ l ≤ i, since al ≥ ai > s.
If t < bi+1, then xsyt is not divisible by monomials xalybl with l > i either, since bl ≥ bi+1;

thus xsyt is not divisible by any monomial in LM(G) and is a standard monomial.
On the contrary, if t ≥ bi+1 then it is divisible by xai+1ybi+1 .
Hence the standard monomial set can be explicitly written as (set ak+1 = 0):

SM(G) =
k⋃

i=0

{xsyt : ai+1 ≤ s < ai, 0 ≤ t < bi+1}.

And |SM(G)| = ∑k
i=0(ai − ai+1) · bi+1.
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5 A Practical #SAT Solver

5.1 DPLL-based Approaches to #SAT

The first, as well as the most widely studied and used, algorithm for SAT is the DPLL
algorithm [13]. The algorithm is a branch and search algorithm, whose search space can be
easily represented as a binary tree, where each node represents the Boolean formula under
a certain variable assignment. A formula is satisfiable if and only if there exists a leaf node
evaluated to true. The DPLL algorithm can be presented as a recursive procedure:

Algorithm DPLL(formula, assignment)
1. necessary = deduction(formula, assignment)
2. new assignment = union(necessary, assignment)
3. if is satisfied(formula, new assignment)
4. then SATISFIABLE
5. else if is conflicting(formula, new assignment)
6. then CONFLICT
7. branching var = choose free variable(formula, new assignment)
8. assign1 = union(new assignment, assign(branching var, 1))
9. result1 = DPLL(formula, assign1)
10. if result1 == SATISFIABLE
11. then SATISFIABLE
12. else assign2 = union(new assignment, assign(branching var,0))
13. DPLL(formula, assign2)

The top-level function DPLL is called with a CNF formula and a set of assignments.
The function deduce() returns with necessary assignment forced by the formula (so that the
formula is not directly falsified). If the formula evaluates to 1 or 0, the recursion termi-
nates with an answer SATISFIABLE or CONFLICT. Otherwise the a new variable will be
branched upon, and the procedure is recursively called with the new assigments.

The basic idea of extending DPLL for model counting is quite straightforward. The solver
can explore the complete search tree for an n-variable formula as in usual DPLL, pruning
unsatisfiable branches based on falsified clauses and declaring a branch to be satisfied when
all clauses have at least one true literal. When a branch is declared satisfied and the partial
variable assignment at that point has t fixed variables (fixed either through the branching
heuristic or by unit propagation), we associate 2n−t solutions with this branch corresponding
to the partial assignment being extended by all possible settings of the n− t yet unassigned
variables, backtrack to the last decision variable that can be flipped, flip that variable, and
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continue exploring the search space. The model count for the formula is finally computed as
the sum of such 2n−t counts obtained over all satisfied branches.

One heuristic used for avoiding exhaustive enumeration of all the paths is called compo-
nent analysis [3, 31]. Suppose the constraint graph G of a CNF formula F can be partitioned
into disjoint components where there is no edge connecting a vertex in one component to a
vertex in another component, i.e., the variables of F corresponding to vertices in two differ-
ent components do not appear together in any clause. Since the components are disjoint, it
follows that every clause of F appears in a unique component, the sub-problems captured by
the components are independent. Thus, #F can be evaluated by identifying disjoint com-
ponents of F, computing the model count of each component, and multiplying the results
together. Practically, components are identified dynamically as the underlying DPLL pro-
cedure attempts to extend a partial assignment. With each new extension, several clauses
may be satisfied so that the constraint graph simplifies dynamically depending on the actual
value assignments to variables.

Another existing approach for #SAT is called knowledge compilation, which is imple-
mented as part of the c2d compiler [11, 12]. The idea is that Boolean formulas can be
represented in a way that the number of solution is easily obtainable. In the c2d compiler,
Boolean formulas are compiled into a representation form called d-DNNF (deterministic,
decomposable negation normal form). The decomposability and determinism of d-DNNF
allow the number of solutions of a formula, as well as many other queries, to be read-off
easily once it is compiled. The c2d compiler was shown to outperform DPLL-based solvers
in a number of benchmark [12].

As is explained in previous sections, approximate counting solvers use SAT solvers as
oracles [18], and usually scale better than exact solvers, pushing the limit to instances with
several thousand variables. This is reasonable, since in [24] it is proved that approximately
solving #SAT can be done in BPPNP. That is, with an NP oracle (such as a SAT solver),
there exists a probabilistic polynomial-time algorithm that can approximate the number of
solutions with an arbitrarily small error-probability. However, for the same reason the capa-
bility of approximate #SAT solvers is much lower than exact #SAT solvers. For example,
by Toda’s Theorem [37], any bounded Quantified Boolean Formula (PH) can be reduced to
a #SAT instance in polynomial time, while approximate counting (BPPNP ) is much lower
on the complexity hierarchy.

5.2 Gröbner Bases in Boolean Rings

As an alternative to DPLL, the method of Gröbner basis computation [6] has been inves-
tigated previously for solving SAT [8]. The basic idea is to apply the weak Nullstellensatz
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(Theorem 3.3). The Gröbner basis proof system [8] for SAT has been proved to be theoret-
ically as efficient as systems based on resolution methods (which includes DPLL). However,
because of the tremendous success of DPLL-based SAT solvers and the relatively early stage
of optimization on Gröbner basis computation, in practice no SAT solver based on Gröbner
bases has been used.

A propositional formula ϕ(p1, ..., pn) with n propositional variables can always be trans-
lated to a multivariate polynomial f(x1, ..., xn) over the finite field F2 = {0, 1}, in the sense
that ϕ and f define the same function from F n

2 to F2. Note that in F2 we have 1 + 1 = 0,
hence addition behaves like “xor”, and multiplication behaves like “and”. Concretely, the
translation function τ between the set of formulas to the polynomial ring F2[x1, ..., xn] can
be defined as:

τ(pi) = xi;

τ(¬ϕ) = τ(ϕ) + 1;

τ(ϕ1 ∧ ϕ2) = τ(ϕ1) · τ(ϕ2);

τ(ϕ1 ∨ ϕ2) = τ(¬(¬ϕ1 ∧ ¬ϕ2)) = 1 + (1 + τ(ϕ1)) · (1 + τ(ϕ2))

= τ(ϕ1) · τ(ϕ2) + τ(ϕ1) + τ(ϕ2).

A conceivable problem with the translation is that, when the polynomials are expanded,
an exponential number of monomials (products of variables) may occur. But if the Boolean
formulas are in CNF form, say ϕ =

∧m
i=1 Ci, we can translate each clause Ci into a single

polynomial fi, and obtain a polynomial system {f1, ..., fm}. In this way, for a k-CNF formula
where each clause contains at most k literals, the size of each polynomial is bounded by a
constant, and hence the overall length of the polynomial system is linear in the size of the
original formula. Following the translation rules, it is easy to see that ϕ is satisfiable if and
only if there exists ā ∈ F n

2 such that
∧m

i=1 fi(ā) = 1. We call this ā a zero of the polynomial
system {f1 − 1, ..., fm − 1}.

Our implementation of the counting algorithm is based on PolyBori [28], which is an ef-
ficient Gröbner basis computation package specifically designed for Boolean rings. A distin-
guished feature of PolyBori is its use of BDD as the data structure of storing the polynomials,
which significantly reduces the space cost [28].

5.3 Experimental Results

We implemented our algorithm as a #SAT solver in the computer algebra environment
SAGE [35] based on PolyBori [28], a package for efficient Gröbner basis computation in
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Boolean rings.1

We compared our solver with the other exact #SAT solvers on benchmarks of several
different types, as listed in Table 1. All tests were performed on a laptop machine with
1.46GHz Intel Celeron CPU and 2GB memory running 32-bit Linux (c2d was ran in windows
on the same machine). The time-out limit is set as 15 minutes. We write “T” when a solver
fails in the time limit, and “NA” when no answer is returned (in relsat, there is a limit on
the number of solutions).

The first two sets of benchmarks (urquhart, xor) are from “small but difficult” bench-
marks collected in [34]. The instances suffixed with “-sat” are the ones with the last con-
straint deleted from the original instance. We use them to test whether GBsolver can effi-
ciently count a large number of solutions. It can be seen that while DPLL-based solvers scale
exponentially on these benchmarks, both Gröbner basis solver (GBsolver) and c2d performed
well.

The next two sets (rand3bip-sat, pmg) are from hard benchmarks used in 2007 SAT
competitions [5, 21]. In the “rand3bip-sat” set, GBsolver instantly solves all formulas while
all the other solvers fail to terminate. In the “pmg” set, GBsolver easily handles the unsat-
isfiable ones, but runs into trouble when the instances become satisfiable.

The last group of benchmarks shows that GBsolver is complementary to but not a re-
placement for DPLL-based and d-DNNF solvers, since GBsolver fails on these benchmarks
while the other solvers have no difficulties in handling them. Whether this is because of the
inherent limit of Gröbner basis computation, or can be remedied with more optimization
work, remains an open question.

It is worth noting that the Gröbner basis method should have an edge when the number
of solutions of a formula is small, which is often the hard case for search-based approaches. In
fact, a small number of solutions would imply a small set of standard monomials (Theorem
4.2), which corresponds to a simple structure of the Gröbner basis. For example, in the
extreme case, when a formula is unsatisfiable, the standard monomial set is empty. Then its
corresponding Gröbner basis must be of the simplest form {1}, which can often be detected
early in the computation process (this may explain the data on “pmg” benchmarks). In
contrast, DPLL-based methods may need to make a lot of futile search when the solution is
very sparsely distributed. Thus, it is likely that the Gröbner basis approach will turn out to
be a useful complement for DPLL-based methods.

1The code and benchmark can be found at http://www.andrew.cmu.edu/user/sicung/sharp-sat.html
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Table 1: Performance comparison with Relsat, Cachet, sharpSAT, and c2d on selected bench-
marks

Benchmark #Vars #Cls #Sols GBsolver Relsat Cachet sharpSAT c2d

urquhart
2-25bis 36 96 0 0.07 < 1 0.08 0.26 0.27
2-25bis-sat 36 95 2048 0.16 NA 0.28 0.35 0.25
2-25 60 160 0 0.12 7 1.37 86.72 0.47
2-25-sat 60 159 524288 0.34 NA 1.06 86.97 0.44
3-25bis 99 264 0 0.38 T T T 5.87
3-25bis-sat 99 263 4.29e+09 2.81 T T T 2.91
xor
X1.1-16 46 122 0 0.04 < 1 0.30 0.17 0.36
X1.1-16-sat 46 121 16384 0.18 NA 0.22 0.26 0.41
X1.1-24 70 186 0 0.06 63 4.12 42.51 0.56
X1.1-24-sat 70 185 4.19e+06 0.53 NA 9.58 37.49 0.78
X1.1-32 94 250 0 0.08 T 42.46 T 1.22
X1.1-32-sat 94 249 1.07e+09 1.93 NA 177.23 T 1.81
X1.1-36 106 282 0 0.1 T 249.92 T 5.78
X1.1-36-sat 106 281 1.72e+10 2.42 T 179.18 T 2.69
rand3bip
200-3 200 800 1 0.88 T T T T
200-3-sat 200 879 2 0.90 T T T T
220-4 220 880 1 0.94 T T T T
220-4-sat 220 879 2 1.03 T T T T
250-1 250 1000 1 1.10 T T T T
250-1-sat 250 999 1 1.17 T T T T
300-15 300 1200 1 7.39 T T T T
300-15-sat 300 1199 1 6.82 T T T T
pmg
Pmg-12 190 632 0 0.22 T T T T
Pmg-12-sat 190 631 NA T T T T T
Pmg-13 409 1362 0 6.21 T T T T
Pmg-13-sat 409 1361 NA T T T T T
Pmg-14 577 19227 0 49.41 T T T T
Pmg-14-sat 577 1921 NA T T T T T
misc
grid-0010 110 191 5.94e+23 90.12 NA 0.50 0.24 2.19
c499.isc 243 714 2.20e+12 T T T T 13.92
tire-1 352 1038 7.26e+8 T NA 0.11 0.06 4.59
log-1 939 3785 5.64e+20 T NA 0.09 0.09 18.65
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6 Conclusions and Future Work

The main contribution of this thesis is a new method for solving the counting problem which
is both general and practical: It can be applied to any polynomial systems over arbitrary
finite fields, and has been implemented to solve #SAT. The mathematical correctness of our
method relies on a Nullstellensatz modified for finite fields and properties of Gröbner Bases.
Our algorithm is proved to halt in single exponential time in the number of variables. We
have implemented a practical #SAT solver based on our algorithm. Experimental results
show that our solver outperforms existing search-based solvers significantly on a number
of benchmarks, and is competitive in general in terms of the size of problems (number of
variables and clauses) that can be handled.

The complexity of Gröbner Basis computation for ideals with field polynomials should
remain a topic of further research. It is conceivable that the Gröbner Basis computation
may only require polynomial space, since, after all, P#P ⊆ PSPACE. If it turns out that
Gröbner Bases for ideals with the field polynomials can indeed be computed using polynomial
space, then a very interesting question may follow, that is: Would knowing the number of
zeros help computing the Grobner Basis of an ideal? The question arises because given the
theorems we proved, counting the number of solutions (a #P problem) reveals information
about the shape of the Gröbner Basis (for example, trivially, when the number of solutions
is 0, the Gröbner Basis is fixed to be 1). If the answer is positive, then it would confirm
hardness of the P#P class. If the answer is negative, then it may, on the contrary, give more
evidence about separating P#P and PSPACE. Evidently these are distant goals, but to
our best knowledge the connections have not been made before.

Major improvement on the performance of the #SAT solver can be gained through op-
timizing Gröbner basis computation in Boolean rings. In particular, while the order of
variables has a big influence on the computation, few heuristics for choosing the right vari-
able order for Gröbner basis computation have been investigated. It should be mentioned
that while the DPLL algorithm has gone through more than twenty years of improvement,
work on Gröbner basis in Boolean rings has just started recently. Our result demonstrates
the potential of using algebraic methods in Boolean problems that are harder than SAT. We
are convinced that more optimizations for Gröbner basis computation will lead to progress
on these problems, where DPLL-based approaches have not been working very well. Also,
it is likely that the Gröbner basis and DPLL approaches are complementary in general, and
a careful combination of the different approaches may lead to powerful solvers that are able
to handle a wide variety of benchmarks.
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pages 5–6. ACM, 2008.

[36] M. Thurley. sharpSAT - counting models with advanced component caching and implicit
bcp. In A. Biere and C. P. Gomes, editors, SAT, volume 4121 of Lecture Notes in
Computer Science, pages 424–429. Springer, 2006.

[37] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comp., 20(5):865 –
877, 1991.

[38] J. van Lint et al. Introduction to Coding Theory and Algebraic Geometry. Springer,
1988.
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