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1 Introduction

Consider an eight-by-eight chessboard and a set of dominos with the property that each domino
can cover exactly two adjacent chessboard squares. Remove the bottom left and top right corners.
The mutilated chessboard problem asks whether it is possible to cover the remaining squares with
nonoverlapping dominos. A simple observation shows that the answer is no: every domino covers
exactly one black square and one white square, and the two corners that have been removed have
the same color—say, white—so there are more black squares to be covered than white squares.

The mutilated chessboard problem is often presented as an example of a problem where an
“ahal” insight makes the solution obvious. The argument has been formalized in a number of
interactive theorem provers, and some of these formalizations were recently discussed in a paper
by Fenner Tanswell.! Silvia De Toffoli asked me if I could formalize the theorem in a manner that
fills out the intuitive argument in a straightforward way. Section 5 contains my attempt to do so,?
using the Lean interactive theorem prover.

The philosophy of mathematics currently hosts a spirited discussion of the extent to which
mathematics is formal, or formalizable, whatever that may mean. Insofar as the practice of in-
teractive theorem proving is relevant to the discussion, this note aims to provide some data. My
goal here is not to make any strong philosophical claims, but merely to report on some aspects
of the formalization process. I don’t think anything I say below is controversial, and I believe the
sentiments expressed are generally shared by those in interactive theorem proving community.

2 Overview of the formalization

Formalization in an interactive theorem prover can be viewed as an extreme form of mathematiza-
tion. To express the mutilated chessboard problem in more mathematical terms, we might write
something like this:

We can represent the mutilated the chessboard as the set {0,...,7} x {0,...,7} with
the elements {(0,0),(7,7)} removed. A horizontal domino at position (4, j) covers the
set of squares {(¢,7), (i + 1,7)} and a vertical domino at position (i, j) covers the set of
squares {(%,7), (¢,7+1)}. So the question is whether it is possible to write the mutilated
chessboard as a union of disjoint sets of those two types.

ITanswell, Fenner, “A problem with the dependence of informal Proofs on formal proof” Phiosophia Mathematica,
23(3):295-310, 2015.
2Tt also online at https://gist.github.com/avigad/1080e327ad6806884c9c5091£5c449bd.



In this case, mathematization is somewhat gratuitous, since the original problem is clear. But if
there were any ambiguity in the statement of the problem itself or in the proof, the mathematical
representation should help clear it up. That is part of what mathematics is supposed to do.

Interactive theorem proving requires us to go further and express all statements in terms of
symbols recognized by the system, identifiers denoting definitions and theorems that are already
in the library, and so on. This is a matter of pushing the mathematization to the point where a
computer can check the syntax against a formally specified grammar, and check the proofs against
the rules of a formal axiomatic system.

The first two lines of the formalization imports some relevant background and open some names-
paces, so that, for example, the theorem named nat.even_or_odd can be written even_or_odd. Lines
4-34 then contain some basic definitions.

def chessboard := zmod 8 X zmod 8

def mutilated : finset chessboard := univ \ {(0, 0), (7, 7)}

def right (u : chessboard) := (u.1 + 1, u.2)
def left (u : chessboard) := (u.1 - 1, u.2)
def up (u : chessboard) := (u.1l, u.2 + 1)
def down (u : chessboard) := (u.1, u.2 - 1)

The chessboard is presented as Zs x Zg, i.e. the data type of pairs (,j) where ¢ and j are integers
modulo 8. Lean has a more basic type, fin 8, that more directly represents that values 0,...,7,
but it is convenient to use zmod 8, because the latter has a ring structure, allowing us in particular
to use addition and subtraction modulo 8. The mutilated chessboard is the set of all elements of
this data type, minus the two corners. The definitions right, left, up, and down specify the four
positions of four squares that are adjacent to the square at position u.

We then define the notion of a domino:

inductive domino
| horizontal : chessboard — domino
| vertical : chessboard — domino

def squares : domino — finset chessboard
| (horizontal u) := {u, right u}
| (vertical w) := {u, up u}

Every domino is of the form horizontal u or vertical u, where x is a chessboard position. If d is a
domino, squares d denotes the finite set of squares that it covers: {u, right u} if d is of the form
horizontal u, and {u, up u} if d is of the form vertical u. This is already enough to state the
main theorem:

theorem mutilated_checkboard_problem {s : finset domino}
(h:Vuées, Vv Es, us# v — squares u N squares v = ()
s.bind squares # mutilated

The notation s.bind squares would be written in more conventional mathematical notation as
Uges squares(s). In words, the theorem says that if s is a set of dominos that do not cover over-
lapping squares, then the union of the sets of squares covered by those dominos is not equal the
mutilated chessboard.



The proof requires the notion of what it means for a square to be white. Note that this property
does not play a role in the statement of the theorem, but, rather, only in the proof. A moment’s
reflection shows that the color of the square at (,7) is determined by the parity of i 4 j, so we say
that (7, 7) is white if ¢ 4+ j is even.

def white (p : chessboard) : Prop := even (p.l.val + p.2.val)

abbreviation white_squares : finset chessboard := filter white finset.univ
abbreviation black_squares := univ \ white_squares

Some other lines in the file—the ones that begin with instance for example—relate to the fact that
Lean’s foundation has a computational framework. We can ask Lean to evaluate expressions. For
example, in response to the input

#eval if white (2, 3) then "white!" else "black!"
Lean returns "black!". The purpose of the line
instance : decidable_pred white := by intro; unfold white; apply_instance

gets Lean to recognize that it is able to evaluate the predicate white. These computational nuances
are not essential to the proof of the theorem.

The careful reader may have noticed that there is something fishy in our formalization. One
of the dominos in our set s might be horizontal 3 7, and our specification says that this domino
wraps around the board, covering squares (3,7) and (3,0). We could easily add a hypothesis that
rules out such dominos by specifying that horizontal dominos have second coordinate strictly less
than 7, and vertical dominos have first coordinate strictly less than 7: define

def reasonable : domino — Prop
| (horizontal (i, j)) :=j # 7
| (vertical (i, j)) =1 #7

and add the hypothesis h' : V d € s, reasonable d. But this would not change the proof: the

hypothesis would simply be unused. In other words, we proved a more general theorem, showing

that it is impossible to cover the mutilated chessboard even if we allow unreasonable dominos.
Lines 36-90 prove some really obvious facts. For example,

lemma right_left (u : chessboard) : right (left u) =u
says that the square to the right of the square to the left of u is u,
lemma right_ne (u : chessboard) : right u # u
says that the square to the right of u is not the same as u, and
lemma white_right {u : chessboard} : white (right u) < — white u

says that the square to the right of u is white if and only if u is not white. It is annoying to
have to prove these—they are so damn obvious! But in each case, the proof is just a matter of
unfolding definition, using some basic properties of modular arithmetic and the like, and relying on
some simple automation to fill in details. Marking lemmas with the attribute [simp] tells Lean’s
automation to use the corresponding identities to simplify expressions in the future.

The remainder of the file consists of three lemmas and then the main theorem. The first lemma
says that the number of white squares is equal to the number of black squares on a full chessboard.



lemma card_white_squares : card white_squares = card black_squares

If you think this is obvious, then—quick!—is it true of a 7x 7 chessboard? The fact that it may have
taken you a second or two to realize why not justifies a short argument that it is true in this case.
The one given here is that the white squares can be paired in a one-to-one fashion with the black
squares by associating to each white square the black square immediately to its right (wrapping
around the chessboard for squares in the last column).

The second lemma uses the previous one to show that on the mutilated chessboard, there are
two extra black squares:

lemma card_mutilated_inter_black_squares :
card (mutilated N black_squares) = card (mutilated N white_squares) + 2

This follows from the fact that the mutilated chessboard removes two white squares and no black
ones.

The third lemma says that a finite set of nonoverlapping dominoes covers just as many white
squares as black squares:

lemma card_bind_squares_inter_white_squares {s : finset domino}
(h:Vuées, Vv Es, us#v — squares u N squares v = ()
card (s.bind squares N white_squares) = card (s.bind squares M black_squares)

It follows from the fact that the dominoes cover disjoint sets of squares, and each one covers one
white one and one black one.

We now have everything we need to prove the main theorem. Suppose s is a finite set of dominos
covering disjoint sets of squares. If we assume s.bind squares = mutilated, we can replace the left-
hand side by the right-hand side in the conclusion of the third lemma to obtain the following:

card (mutilated N black_squares) = card (mutilated N white_squares)

This contradicts the second lemma. Hence s.bind squares # mutilated.

3 Observations

The first thing to note is that the proof is somewhat tedious—at least, a lot longer than the one-
line argument in the introduction. Spelling out the details requires, first, expressing the original
problem in more mathematical terms, and then translating the mathematics into the precise syntax
required by the theorem prover. But mathematics is about making ideas precise, and that is often
tedious. A grade-school exercise asks children to write careful instructions for making a peanut-
butter-and-jelly sandwich, and then has them laugh at all the things that go wrong when their
teacher follows their instructions to the letter while misinterpreting all the things that are left out.
Being precise is hard work, but that is what mathematics is about. Being fully formal requires you
to be wvery precise—usually much more precise than one would like—but the possibility of doing
so stems from the fact that we are dealing with mathematics rather than peanut-butter-and-jelly
sandwiches.

Second, there is an act of translation involved. In this case, we had to express notions like
“chessboard” and “white” in mathematical terms that were alien to the original formulation. This
is common with word problems. Other types of problems leave less room for interpretation: if we
were asked to show that any group in which every element is idempotent is necessarily abelian, we



wouldn’t have to think as carefully about how to represent the statement. But even the mathe-
matical notion of a group can be formulated in various ways, and to be precise one has to pick
one.

Which leads to the next observation: often there are many possible representations, that is,
multiple ways of spelling out the details. Mathematically, it doesn’t matter whether we take the
unit element to be part of the group structure or rely on an axiom that merely asserts that a unit
exists. Similarly, it doesn’t matter whether we take a tiling to be a finite set of dominos or a finite
sequence of dominos. There are lots of reasonable ways to fill out the mathematical details, and
even more choices to be made when it comes to formalization.

When formalizing a mathematical theorem, some choices that have to be made are insignificant,
whereas other choices can result in more or less convenient manners of expression. Sometimes a
choice of representation is even more important than that: it can be crucial to seeing one’s way to
the desired conclusion, or make a big difference in how the argument plays out. Even though the
specific challenges are different, everything I just said it true of informal mathematics as well. Some
representational choices are insignificant, but other choices of representation structure mathematical
arguments in more substantial ways. Novel ways of representing algebraic structures, spaces, and
combinatorial objects sometimes yield crucial insights.

The main moral I would like to extract from this exercise is that formalization is continuous
with the usual mathematical procedures for making claims and arguments precise. When one
comes across a mathematical theorem, one may wonder whether the proof is correct, but once one
convinces oneself that the proof s correct, there is no further question as to whether it can be
formalized. Being correct means that one can supply details to any level of precision, down to the
axioms and rules of a formal foundation if necessary. Spelling out spatial or visual intuitions in
mathematical terms can be inordinately difficult, but we know how to do that, too, and the fact
that we can do it is part and parcel of what we take such arguments to be properly mathematical.
In particular, anyone who has ever formalized a nontrivial mathematical theorem will immediately
recognize that the mutilated chessboard problem can be formalized. One may wonder how best to
do it and how much effort it will require (and the answer is, invariably, “more than we would like”).
But there is never a question as to whether it is possible.

Reducing an informal argument to formal terms is not always mathematically interesting, though
sometimes valuable insights emerge. And although formalization sometimes has its charms, it is
often unpleasant. Struggling with the incidental features of a theorem prover and its libraries can
feel like a distraction from the core mathematical ideas, and we still have a lot to learn about how to
bridge the gap between informal and formal mathematics efficiently and effectively. But the point
is simply that it can be done, and that the practice of interactive theorem proving only corroborates
the claim that, for a piece of mathematics, being correct is tantamount to being formalizable.

4 A note on “translation”

Responding to an earlier draft, Silvia challenged my use of the word “translation” in the last
section on the grounds that it may suggest some sort of equivalence of content or meaning. In
this case, the formal argument is much longer and more detailed than the original one, conforms
to a rigid syntax, and contains additional information. More generally, different presentations of
a mathematical object or argument can have very different features. Silvia is right to point out
that we currently lack a good vocabulary to account for what changes, and what remains the same,
between the different presentations.
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The word “representation” is commonly used in situations like this. For example, one might say
that the formalization described here is a representation of the informal argument. Ken Manders
worried that such uses of the word “representation” results in excessive focus on the thing being
represented, rather than important features of the representation itself. As a result, he preferred
using the term “artifact” in its place. But this choice downplays the fact that our mathematical
artifacts are often related to one another in special ways, which is what we are getting at when we
take them to be representations of a common thing.

I would like to propose using words like “rendering,” “portrayal,” or “depiction” instead. Using
terms generally associated with works of art can keep us mindful of similarities between artistic and
mathematical representation. Artists are free to choose their media; they can render a portrait in
oil, or in watercolor, or digitally. Artists also choose their perspective—they can render a subject
from up close or from afar—and their style—they can be realistic or abstract. Different portrayals
of the Virgin Mary or one of Napoleon’s battles or a scene of nature can serve different purposes
and have different effects, and the artist need not be explicit about the purpose or fully conscious
of the effects. This choice of terminology is subject to Manders’ concern, but we can get over it:
we can talk about depictions of unicorns in medieval art or Basil Rathbone’s portrayal of Sherlock
Holmes without pretending that unicorns and Sherlock Holmes are real objects.

What follows, then, is a formal rendering, or portrayal, of the mutilated chessboard theorem.

W

5 The formalization

import data.finset data.zmod.basic data.nat.parity tactic.norm_num
open finset nat

/— definitions —/
def chessboard := zmod 8 X zmod 8

instance : fintype chessboard := by unfold chessboard; apply_instance
instance : decidable_eq chessboard := by unfold chessboard; apply_instance

def mutilated : finset chessboard := univ \ {(0, 0), (7, 7)}

def right (u: chessboard) := (u.1 + 1, u.2)
def left (u: chessboard) := (u.l — 1, u.2)
def up (u: chessboard) := (u.l, u.2 + 1)

def down (u: chessboard) := (u.l, u.2 — 1)

@[derive decidable_eq]

inductive domino

| horizontal : chessboard — domino
| vertical : chessboard — domino

open domino

def squares : domino — finset chessboard
| (horizontal u) := {u, right u}
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| (vertical u) := {u, up u}
def white (p : chessboard) : Prop := even (p.l.val + p.2.val)
instance : decidable_pred white := by intro; unfold white; apply_instance

abbreviation white_squares : finset chessboard := filter white finset.univ
abbreviation black_squares := univ \ white_squares

/— straightforward facts —/

private lemma auxo (n : nat) : even (n % (8 : pnat)) <> evenn :=
by change even (n % 8) <> _; simp [even_iff, mod_mod_of_dvd _ (dec_trivial : 2 | 8)]

private lemma aux; : (1 : zmod 8).val = 1 := rfl
private lemma auxs : (—1 : zmod 8).val = 7 := rfl

private lemma auxs (u:zmod 8) : = (u+ 1 =u) =
begin
intro h,
have : u + 0 = u + 1, by simp [h],
have : (0 : zmod 8) = (1 : zmod 8), from add_left_cancel this,
have : 0 = 1, from congr_arg fin.val this,
contradiction
end

local attribute [simp} auxp aux; auxe auxs filter_inter filter_insert filter_singleton

Q[simp| lemma right_left (u : chessboard) : right (left u) = u:=
by simp [left, right]

Q[simp| lemma left_right (u : chessboard) : left (right u) = u:=
by simp only [left, right, add_sub_cancel, prod.mk.eta]

@[simp| lemma right_ne (u : chessboard) : right u # u :=
by cases u; simp [right]

@[simp| lemma up_ne (u : chessboard) : up u # u :=
by cases u; simp [up]

@[simp| lemma white_right {u : chessboard} : white (right u) > — white u :=

by { simp [right, white, zmod.add_val] with parity_simps, by_cases even u.fst.val; simp * }

@[simp| lemma white_left {u : chessboard} : white (left u) <> — white u:=
by { simp [left, white, zmod.add_val] with parity_simps, by_cases even u.fst.val; simp * }

@[simp| lemma white_up {u : chessboard} : white (up u) <> — white u:=
by { simp [up, white, zmod.add_val] with parity_simps, by_cases even u.fst.val; simp * }
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@[simp| lemma white_down {u : chessboard} : white (down u) > — white u:=
by { simp [down, white, zmod.add_val] with parity_simps, by_cases even u.fst.val; simp * }

@[simp| lemma card_squares (d : domino) : card (squares d) = 2 :=
by cases d; simp [¥*, squares]

lemma card_squares_inter_white_squares :V d, card (squares dn white_squares) =1
| (horizontal u) := by repeat { simp [squares]; split_ifs }
| (vertical u) := by repeat { simp [squares]; split_ifs }

lemma card_squares_inter_black_squares (d : domino) : card (squares dn black_squares) =1:

have squares d N black_squares = squares d \ (squares d N white_squares),
by { ext x, simp, tauto },
by rw [this, card_sdiff (inter_subset_left _ _), card_squares_inter_white_squares]; simp

/— the main argument —/

lemma card_white_squares : card white_squares = card black_squares :=
have h; : image right white_squares — black_squares,
begin
ext x, simp [@mem_filter _ white],
show (3 y, white y A right y = x) +> —white x,
from (A (y, wy, eq), by simp [eq.symm, wy], A h, (left x, by simp *)),
end,
have hy : V u € white_squares, V v € white_squares, right u = right v - u = v,
by intros u _ v _ eq; rw <[left_right u, eq, left_right],
by rw <—[hi1, card_image_of_inj_on hy]

lemma card_mutilated_inter_black_squares :
card (mutilated N black_squares) = card (mutilated N white_squares) + 2 :=
have h; : mutilated N black_squares = black_squares,
begin
ext x, simp [mutilated],
refine (Ah,h.1,Ah, (h, Ah',h _) ),
cases h'; simp [*, white| with parity_simps
end,
have hy : mutilated N white_squares U {(0, 0), (7, 7)} = white_squares,
begin
ext x, simp [mutilated], split,
{ rintro (rfl | rfl | (_, b)), iterate 2 { simp [white] with parity_simps}, exact h },
intro h, simp [h], rw < [or_assoc]|, apply classical.em
end,
begin
conv { to_lhs, rw [hy, <—card_white_squares, < hs] },
rv [card_disjoint_union],
{ simp, rw [card_insert_of_not_mem|; simp, intro h,

have := congr_arg fin.val h, contradiction },
simp [disjoint, white|, refl
end
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lemma card_bind_squares_inter_white_squares {s : finset domino}
(h:Yu€s,VveEs u#v— squares u N squares v = 0) :

card (s.bind squares N black_squares) = card (s.bind squares N white_squares) :=
begin

rw [bind_inter, card_bind], swap,

{ intros x xs y yt e, rw [inter_right_comm, <—inter_assoc, h x xs y yt ¢|, simp },

rw [bind_inter, card_bind], swap,

{ intros x xs y yt e, rw [inter_right_comm, +inter_assoc, h x xs y yt e], simp },

simp only [card_squares_inter_white_squares, card_squares_inter_black_squares]
end

theorem mutilated_checkboard_problem {s : finset domino}
(h:Yu€s,VveEs, u#v— squares u N squares v = 0) :

s.bind squares # mutilated :=

begin
intro h',
have := card_mutilated_inter_black_squares,
rw < [h', card_bind_squares_inter_white_squares h] at this,
have : 0 = 2, from add_left_cancel this,
contradiction

end



