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Abstract

In a wide range of fields, the word “modular” is used to describe com-
plex systems that can be decomposed into smaller systems with limited
interactions between them. This essay argues that mathematical knowl-
edge can fruitfully be understood as having a modular structure, and
explores the ways in which modularity in mathematics is epistemically
advantageous.
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1 Introduction

Roughly speaking, a complex system is said to be modular when it can be
decomposed into smaller systems, or components, with limited or controlled
interactions between them. The term “modular” is now used in a number of
fields, including biology [14], computer hardware and software design [9, 19, 31,
32, 41], business administration [37], and architecture, as well as research at
the intersection of neurobiology, cognitive science, psychology, and philosophy
of mind [22, 10, 15, 34].

The thesis of this essay is that mathematical knowledge is structured in
modular ways. Part of the project is descriptive, in the sense that I will offer a
certain perspective on the constituents of mathematical knowledge and clarify
the ways in which they can be said to be modular. But there is also a normative
component, in that I also aim to explain why this should be the case, by high-
lighting some of the epistemological benefits that such a modular structuring
confers.

The concept of modularity is often applied to the study of natural systems,
sometimes with an eye toward proving an explanation as to why these systems
have evolved the way they have. But the concept is equally often used in
discussions of manufactured systems, where it is often portrayed as an explicit
design goal. Modularity is generally said to improve the comprehensibility of
such systems and lead to greater robustness, flexibility, efficiency, and economy.
Here we will explore the extent to which the design of mathematical resources
can be understood in such terms.

In a branch of computer science known as formal verification, one can now
use computational proof assistants to verify the correctness of substantial math-
ematical theorems [6]. This affords a two-step process for translating the con-
cept of modularity from software engineering to mathematics. Insofar as the
formal proof texts that serve as input to computational proof assistants are like
computer programs, it makes as much sense to talk about modularity in formal
mathematics as it does to talk about modularity in software design. And insofar
as these formal proof texts illustrate important features of informal mathemat-
ical texts, in makes sense to talk about modularity in informal mathematics as
well.
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This strategy does not presuppose strong assumptions about the relationship
between formal and informal reasoning. It can be seen, rather, as a heuristic
means of making sense of the phenomena. Even if there were no formal lan-
guages or computational proof assistants, mathematical knowledge would still
be modularly structured; but the availability of formal proof languages and their
similarities to programming languages provide us with ready-made conceptual
tools to begin to understand how and why this is so.

Section 2 lays the groundwork by introducing a general framework for think-
ing about mathematics and its goals. Section 3 analyses the way that modularity
is understood in various sciences, with a focus on computer science, which is
closest to our present concerns. Section 4 transports notions of modularity from
computer science to mathematics. Section 5 considers examples that illustrate
some of the ways that modularity plays out in everyday mathematics. Finally,
Section 6 suggests directions for future research, and sums up the main conclu-
sions.

2 Mathematics from a design standpoint

2.1 Mathematical resources

Let us start with the question as to what mathematics is, and, more to the
point, what sorts of objects can bear the predicate “modular.” In the approach
we will adopt here, we will think of mathematics as a shared linguistic practice,
so that the objects of evaluation are things like definitions, theorems, proofs,
problems, conjectures, questions, theories, and so on. These are all things that
can be written down, and, indeed, things that are written down, constituting
the mathematical literature. In modern logic, such objects are viewed as pieces
of syntax. The way we will use the notions here will perhaps admit some degree
of abstraction, factoring out the idiosyncrasies of a particular language or choice
of expression. But if we are not dealing with raw syntax, we are dealing with
something pretty close to it. Below I will try to spell out the sense in which
a proof or a theory can be said to be modular, as well as the sense in which
definitions and lemmas support modularity.

I have argued elsewhere, however, that limiting attention to such syntactic
entities is too restrictive [3, 4, 5]. In order to address important epistemological
issues, we need to make sense of more dynamic components of our understand-
ing: things like methods, concepts, heuristics, and intuitions, which give rise
to the abilities, or capacities, that we take to be constitutive of mathematical
thought. The problem is that we do not yet have good ways of talking about
these things, and so, for the most part, I will focus on the syntactic entities
enumerated in the last paragraph. I expect that when we do have better means
of thinking of mathematical knowledge in the broader sense, we will find that
methods and concepts have a modular structure that is supported by the mod-
ularity of the syntactic entities. In any case, starting with the syntactic entities
cannot hurt.
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Any normative evaluation of mathematical resources necessarily presupposes
some understanding of what it is we want them to do. It is generally held that
mathematics is a means of getting us to the truth. This intuition that can be
cashed out in semantic terms, which is to say, doing mathematics means trying
to discover statements that are true in virtue of standing in an appropriate
relation to the mathematical objects they refer to; or in epistemic terms, which
is to say, doing mathematics means justifying one’s claims in mathematically
appropriate ways. Either viewpoint is consistent with the project set forth here,
and we will not be directly concerned with the foundational task of coming to
terms with the nature of mathematical justification and truth.

What is more important to the present work is the fact that simply getting
to the truth cannot be the whole story. Otherwise, glib epistemic advice such as
“check every natural number to ascertain the truth of the Goldbach conjecture”
or “appeal to an omniscient and beneficent deity for the answer” would solve
most of our philosophical problems. Implicit in all philosophical approaches to
thinking about mathematics is the recognition that we are finite beings with
finite resources, facts that constrain the epistemological account. The only
additional observation we need is that not all finite burdens are equal: some
burdens are bigger than others, which is to say, some tasks require greater
epistemic resources.

As a result, we should think about mathematics as an attempt to get at the
truth in an efficient manner. We want our definitions and theories to be simple
so that we can understand them and deploy them more easily, and we want our
proofs and solutions to be reasonably short, so that we can devote our energy to
even harder problems and more difficult proofs. If a computation carried out on
our fastest computer will not terminate before the sun burns out, the possibility
of carrying out that computation is closed to us. A computation that gets us
the right answer in reasonable time is therefore to be valued over one that does
not.

Developing such a view requires one to come to terms with ways of measuring
simplicity and complexity (see the discussion of this in [5]). This essay makes
a small start on doing so, but without developing precise formal measures. For
the moment, näıve intuitions on the nature of simplicity will have to suffice. It
seems uncontroversial to say that it is usually easier to understand a short proof
than a long one, at least given the right background knowledge; that it is easier
to work through a proof that requires us to keep fewer pieces of information
in mind at any given stage; and that it is easier to solve a problem when the
context suggests which steps will plausibly lead to a solution, rather than trying
all paths blindly. My goal here is to begin to explain how modularity can deliver
such benefits.

To summarize: here we will view mathematics as a body of resources, both
syntactic entities like definitions, theorems, proofs, and theories, as well as less-
easily-circumscribed resources, such as concepts, methods, and heuristics. These
resources are designed to help us get to the truth (answer questions, make
predictions, solve problems, and prove theorems) simply and efficiently. Such
resources are valuable insofar as they serve that purpose well, and the goal here
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is to begin to understand some of the general principles that ensure that they
do.

2.2 Mathematics and design

The use of the word “designed” in the last paragraph imposes a distinct way of
thinking about mathematical resources, namely, as artifacts that are developed
with particular ends in mind. Indeed, Kenneth Manders [30, 29] has used the
term “artifact” in such a way, and his choice of terminology is apt. Whenever
we introduce a new definition or notation, lay out a sequence of lemmas that
make it possible to prove a theorem, or introduce a new algorithm or method of
calculation, we contribute a new resource to the body of mathematical knowl-
edge. Whenever we reformulate a definition, generalize a lemma, or rewrite a
proof, we are, in effect, tinkering with those resources to augment their utility.

The exploration here is intended as a contribution to a theory of mathemat-
ical design — that is, a design theory for mathematics, one that can help us
understand the principles that govern the effectiveness of a body of mathemat-
ical resources. Such theories are familiar across the arts and sciences: we have
theories of automotive engineering, theories of software design, theories of ar-
chitecture, theories of graphic design and typesetting. They help us understand
what makes a good car, a good house, a good program, or a good poster, and
articulate guidelines that help ensure that these artifacts serve their purposes
well. A theory of mathematical design should do the same for mathematics.

Some comments may forestall misunderstanding. To start with, developing
a theory of mathematical design is not sharply distinct from doing mathematics.
There are design decisions implicit in every mathematical offering. Developing
the philosophy of mathematics as a design science is a matter of reflecting on
the mathematical choices we make, and then “going scientific”: articulating the
goals with greater precision, modeling the space of design options, and assessing
their effects. The analogy to automotive engineering may be helpful: while hu-
mans have designed vehicles for centuries, the theory of automotive engineering
aims to articulate the goals and constraints, understand the tradeoffs, and offer
general methodological guidelines that contribute to the success of the design
process.

If nothing else, such a design theory for mathematics may help us better
convey our expertise, since the aim of our expository and educational efforts
in mathematics is to convey advice to others that will help them do mathe-
matics well. But the need is not only pedagogical. Just as twentieth century
work in foundations has supported important developments in mathematical
method, and, more recently, has supported the mechanization of mathematical
reasoning and verification, so, too, can a theory of mathematical design con-
tribute to mathematics itself. The primary goal here, however, is philosophical:
mathematics is important to us, and we would like to understand how it works.

A concern commonly raised when it comes to the normative assessment
of mathematical resources is that the bases for judgment may be contextual,
depending, for example, on the capacities and goals of the agents that employ
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them. Put simply, what counts as a useful piece of mathematics to you may be
less valuable to me. Our evaluations may depend on our backgrounds: perhaps
you know differential geometry, and I don’t. It may depend on our talents and
taste: perhaps you prefer geometric arguments, whereas I am better when it
comes to algebraic manipulations. And it may depend on our individual goals:
perhaps you are interested in the Riemann hypothesis, while I am trying to prove
the Goldbach conjecture. This may leave us in the uncomfortable situation of
trying to develop an objective science of something that is largely subjective, or
at least highly dependent on context.

Once more, the analogy to the design sciences like automotive engineering
is handy. What makes a good car depends strongly on the desires, attributes,
and goals of the owner, and will vary depending on intended use: commuting to
work, transporting a family, winning NASCAR races, or impressing a potential
mate. But theories of automotive engineering tend to bracket these issues,
relying on more objective measures of value: capacity, legroom, storage space,
fuel efficiency, horsepower, acceleration, and the like. It is understood that there
are tradeoffs involved, but the hope is that various weightings and combinations
of these parameters are sufficiently capable of representing the more subjective
measures to provide useful guidance as to how the latter can be addressed.

In the same way, we would expect a theory of mathematical design to be
parameterized by features of the mathematical context that play a role in norma-
tive evaluations. Part of the challenge in developing such a theory is determining
what these features are, and how they interact.

3 The concept of modularity

3.1 The general notion

The locus classicus of the study of modularity in complex systems is Herbert
Simon’s 1962 essay, “The architecture of complexity” [36], which examines the
nature of complex systems in biology, physics, and economics, as well as social
and symbolic systems. Though widely viewed as a seminal source in the study of
modular systems, it is a curious historical fact that the word “modular” never
appears in that work; rather, Simon used the phrase “nearly decomposible”
in its place. The term “modular” is now used in disparate fields of research,
and applied to both natural systems and systems that are designed. Before
focusing on the use of the term in computer science, it will be helpful to try to
discern features that are common to the various descriptions of modularity in
the disciplines just enumerated.

It is important to keep in mind that any discussion of a complex system,
whether it is natural or artificial, presupposes a level of description that is ap-
propriate to the features and behaviors of interest. For example, a human being
can be construed as a biological system, a cognitive system, or an agent in a so-
cial network. A different design description will be operant in each case. There
is an inherently teleological component to the choice of a description; when we
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speak of the design of a system, we invariably have a functional description of
the system and its components in mind, and, moreover, are generally interested
in understanding how the behavior of the components contribute to the sys-
tem’s observed or desired behavior. It will therefore be important, when we
turn our attention to such mathematical artifacts later on, to think about the
features and behaviors that we are trying to model. In the meanwhile, keep in
mind that when we talk about a modular system, we are really talking about
the modularity of a certain design description, which we take to be adequate to
capture those properties that are of interest.

With this caveat implicit, a complex system is generally said to be modular
to the extent it has the following features:

• The system is divided into components, or modules, with dependencies
between them.

• The division supports a level of abstraction: the function of the com-
ponents can be described vis-à-vis the functioning of the entire system,
without reference to the particular implementation.

• Dependencies between modules are kept small, and mediated by precise
specifications, or interfaces.

• Dependencies within a module may be complex, but, due to encapsulation
or information hiding, these are not visible outside the module.1

The relevant notion of “dependency,” which is central to this description, will
depend on the kind of system under analysis. In an administrative system,
dependencies can include channels of communication between and within com-
ponents, as well as relationships of authority. In the design of systems hardware,
the relevant dependencies are physical connections or data transfers between and
within components; but they can also be used to model dependencies between
activities and events involved in the factory production of the system. In a bi-
ological system, the relevant dependencies are likely to include causal relations
between processes and subsystems. Below, we will discuss, in detail, the kinds
of dependencies that are relevant to software design and to mathematics.

Modularity is often associated with an additional property:

• Organization into modules can be hierarchical : within a module, compo-
nents can be divided into smaller submodules, and so on.

This is not a necessary feature of a modular system, in that one can have modu-
lar designs that are essentially flat.2 But a hierarchical design only makes sense
in terms of a modular presentation, and, conversely, the most modular descrip-
tion of a system is often obtained via a hierarchical conception of its components.

1Some characterizations of modularity are more involved. For example, Fodor [22] provides
a long list of features generally associated with modularity. However, others have pointed out
[10, 34] that most of these seem to be derivative of the notion of encapsulation.

2Parnas [32] observes this as well.
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As mathematical theories and proofs also have a hierarchical structure, this is
an issue that is worth keeping in mind.

With respect to both natural and artificial (which is to say, designed) sys-
tems, modularity is often credited with the system’s ability to achieve a desired
behavior. In the case of designed systems, modularity is also credited with
making it possible for an agent to produce the system itself (thereby also, in-
directly, achieving the desired behavior). Since we are thinking of mathematics
as a human artifact, the analogies to designed systems will generally be more
appropriate. Across the literature, the purported benefits of modular design
generally fall under the following headings:

• Comprehensibility. When a system is modular, it is easier to understand,
explain, and predict its behavior. In fact, modularity is often held to be a
precondition for comprehensibility, or surveyability: when a system is suf-
ficiently complex, it cannot be adequately understood unless a sufficiently
modular description is available.

• Reliability and robustness. An appropriately modular description makes it
possible to assess and test components of a system individually; to localize
a problem to the behavior of one component; and to detect problems that
would otherwise be lost in an overabundance of detail.

• Independence. A modular design allows the components of a system to
be built (or to evolve) independently. They can be built concurrently, by
different agents, at different locations.

• Flexibility. A modular design allows the system to change more quickly.
For example, one can change the implementation of one component, with-
out having to modify all the other components in the system, and one can
add functionality to a component, without breaking the behavior of other
components that depend on it.

• Reuse. Components that prove successful in one system can be used in
other systems, in which one would like to obtain comparable behavior.

All these aspects are found in Simon’s essay. Similarly, the book Design
Rules: Volume 1. The Power of Modularity [9] is about the design of computer
hardware, and characterizes modularity as “a particular design structure, in
which parameters and tasks are dependent within units (modules) and indepen-
dent across them.”

The concept of modularity spans an important set of principles in
design theory: design rules, independent task blocks, clean inter-
faces, nested hierarchies, and the separation of hidden and visible
information. Taken as a whole, these principles provide the means
for human beings to divide up the knowledge and the specific tasks
involved in completing a complex design or constructing a complex
artifact. [9, pp. 89–90]
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The authors go on to explain that “modularity does three basic things” that
designers might judge to be desirable:

1. Modularity increases the range of “manageable” complexity. It
does this by limiting the scope of interaction between elements or
tasks, thereby reducing the amount and range of cycling that occurs
in a design or production process. As the number of steps in an
interconnected process increases, the process becomes increasingly
difficult to bring to successful completion. . . .

2. Modularity allows different parts of a large design to be worked on
concurrently. The independent blocks in a modular task structure
can all be worked on simultaneously. . . .

3. Modularity accommodates uncertainty. The defining characteris-
tic of a modular design is that it partitions design parameters into
those that are visible and those that are hidden. Hidden parame-
ters are isolated from other parts of the design, and are allowed to
vary. (Sometimes their range is limited, but they can vary within the
range.) Thus from the perspective of the architects and the design-
ers of other hidden modules, hidden parameter values are uncertain.
They lie inside a black box known as “the module.” [9, pp. 90–91]

Applied to the design of mathematical resources, these goals are appealing:
we would like our mathematics to be comprehensible, reliable, flexible, and
reusable, and, of course, mathematical contributions are made by agents working
independently, at different times and in different locations. Our task in Section 4
will be to understand how the modular design of mathematical artifacts supports
these goals.

3.2 Modularity in software engineering

The gospel of modular design is most keenly felt in computer science and soft-
ware engineering. The digital microprocessors that lie at the heart of modern
computers embody fairly simple models of computation: they maintain inter-
nal registers, move information from memory, carry out arithmetic comparisons,
and, importantly, branch on the results of these comparisons to different parts of
the code. Long sequences of instructions written in assembly language, which di-
rectly represent a machine instruction set, are generally hard to understand and
difficult to write, and they are likely to contain mistakes. Although program-
ming languages like Fortran (introduced in the 1950’s) and Basic (introduced in
the early 1960’s) were an advance over assembly language, early programmers
still produced long sequences of instructions and branch (go to) statements that
often resulted in “spaghetti code.”

Early programming languages did, however, provide the ability to write sub-
routines, procedures that could be separated from a block of code and called
as though executing a single instruction. This allowed programmers to divide
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complex tasks into smaller ones that could be designed and tested indepen-
dently. In the 1960’s, programming methodologies evolved to support a style of
implementation wherein a subroutine can be viewed as an independent module,
conceptually distinct from other parts of the program. Interactions with other
pieces of code were mediated by the module’s interface, which specified the in-
put expected by the subroutine, the output it would return, and any behavior
that might alter the global state of a computation, which is visible to outside
code. A programmer could then focus on writing code in such a way to meet this
specification, while other programmers could use the subroutine knowing only
the specification, without knowing or caring about the implementation details.

In the 1970’s, programming methodology itself became an object of study.
At the start of the decade, Niklaus Wirth, designer of the Pascal programming
language, published a paper titled “Program development by stepwise refine-
ment” [41] in which he considered “the creative activity of programming . . .as a
sequence of design decisions concerning the decomposition of tasks into subtasks
and of data into data structures.” It drew a sequence of four conclusions, the
first two of which are as follows:

1. Program construction consists of a sequence of refinement steps.
In each step a given task is broken up into a number of sub-
tasks. Each refinement in the description of a task may be ac-
companied by a refinement of the description of the data which
constitute the means of communication between the subtasks.
Refinement of the description of program and data structures
should proceed in parallel.

2. The degree of modularity obtained in this way will determine
the ease or difficulty with which a program can be adapted to
changes or extensions of the purpose or changes in the environ-
ment (language, computer) in which it is executed.

In 1972, David Parnas, a member of the Department of Computer Science
at Carnegie Mellon University, wrote an influential paper, “On the criteria to
be used in decomposing systems into modules” [32]. It begins by quoting a 1970
textbook:

A well-defined segmentation of the project effort ensures system
modularity. Each task forms a separate, distinct program module.
At implementation time each module and its inputs and outputs
are well-defined, there is no confusion in the intended interface with
other system modules. At checkout time the integrity of the module
is tested independently; there are few scheduling problems in syn-
chronizing the completion of several tasks before checkout can begin.
Finally, the system is maintained in a modular fashion; system er-
rors and deficiencies can be traced to specific system modules, thus
limiting the scope of detailed error searching.

Parnas continued:
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The major advancement in the area of modular programming has
been the development of coding techniques and assemblers which
(1) allow one module to be written with little knowledge of the code
in another module, and (2) allow modules to be reassembled and
replaced without reassembly of the whole system. This facility is
extremely valuable for the production of large pieces of code. . .

Comparing two ways of breaking a particular program into modules, Parnas
argued that the more effective division is one that incorporates “information
hiding”:

We propose . . .that one begins with a list of difficult design decisions
or design decisions which are likely to change. Each module is then
designed to hide such a decision from the others.

The paper also summarizes the reasons to adopt such an approach.

The benefits expected of modular programming are: (1) managerial—
development time should be shortened because separate groups would
work on each module with little need for communication; (2) prod-
uct flexibility—it should be possible to make drastic changes to one
module without a need to change others; (3) comprehensibility—it
should be possible to study the system one module at a time. The
whole system can therefore be better designed because it is better
understood.

The word “encapsulation” is often used in place of “information hiding.” In
1974, in an essay called “On the role of scientific thought” (eventually published
as [19]), the computer scientist Edsger Dijkstra, who was also cited in Parnas’
paper, used the phrase “separation of concerns.” This phrase has also come to
stand as the goal of a modular structuring. In 1978, Glenford Myers, then a
software engineer at the IBM Systems Research Institute in New York, wrote
a textbook [31] that codified the modular approach and again emphasized the
same benefits: understandability, maintainability, flexibility, and reuse.

It was not long before this advice made its way into the undergraduate cur-
riculum. The influential MIT textbook, Structure and Interpretation of Com-
puter Programs [1], was first published in 1985; its first three chapters are titled
“Building Abstractions with Procedures,” “Building Abstractions with Data,”
and “Modularity, Objects, and State.” Most software engineering textbooks
today focus on compositional design, and explicitly emphasize the benefits of
modularity. The overall message can be summarized as follows:

• Large programs should be divided into independent modules.

• A module is a body of code with a well-defined interface. The interface
specifies what procedures the user can call from the outside, what data
these procedures expect, what data these procedures return, what state
information the module keeps track of, and how procedural calls change
the state.
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• The internal workings of the code can otherwise largely be ignored; in
particular, code that interacts through the interface is guaranteed to work
even if the implementation changes.

This is essentially an instantiation of the notion of a modular system, as char-
acterized in Section 3.1, to the case of software design.

In Section 4 we will regard mathematical artifacts from such a perspective,
and consider a piece of mathematics such as a theory or a proof to be modular
if it is structured as a collection of components with well-defined interfaces that
hide implementation details when possible. We will then consider ways that
such a structuring confers comprehensibility, reliability, flexibility, and reuse,
just as it does in software design.

3.3 Refactoring

The dicta of modularity recommend designing software in certain ways. But
large software projects tend to grow and evolve over time, often in haphazard
and unpredictable ways, and despite their best intentions teams of software
engineers often find the complexity of a body of code getting out of hand.
When that happens, it is generally deemed to be a good idea to try revise the
code, reorganizing and rewriting various parts, in order to restore modularity
and its benefits. In that respect, computer scientists and engineers speak of
refactoring. Like the sailors on Neurath’s boat, they have the task of revising
and improving the code while it is still actively being used.

A 1999 textbook by Martin Fowler, Refactoring: Improving the Design of
Existing Code, describes the methodology. The following passage, contributed
by Kent Beck, conveys the central idea:

Programs have two kinds of value: what they can do for you today
and what they can do for you tomorrow. Most of the times when
we are programming, we are focused on what we want the program
to do today . . .

. . .you know what you need to do today, but you’re not quite sure
about tomorrow. Maybe you’ll do this, maybe that, maybe some-
thing you haven’t imagined yet.

I know enough to do today’s work. I don’t know enough to do
tomorrow’s. But if I only work for today, I won’t be able to work
for tomorrow at all.

Refactoring is one way out of that bind. . .

Refactoring is the process of taking a running program and adding
to its value, not by changing its behavior but by giving it more of
these qualities that enable us to continue developing at speed.

The book is a journeyman’s guide to restructuring code, reorganizing data,
improving interfaces, and improving encapsulation.
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When one considers the history of mathematics, one sees that mathematical
developments — definitions, proofs, and theories — are often revised, recast,
and restructured over time. This can happen on the scale of centuries. In
Section 4, however, we will note that the pressures to do so, and the attendant
benefits, are similar to the ones involved in refactoring software. Thus viewing
historical developments in these terms can help us understand them better.

3.4 Characterizing modularity of programs

Textbooks in computer science typically describe modularity without offering
a precise definition of the notion. Toward obtaining better formal models of
modularity in mathematics, however, it will be helpful to gain additional clarity
as to what the concept entails. As noted in Section 3.1, talk of modularity
presupposes notions of dependence, interface, and encapsulation. The aim of
this section is to better understand the way these notions play out in the setting
of computer science.

At face value, pronouncements about modularity of code are precisely that:
ascriptions of properties to the syntactic strings of symbols that constitute com-
puter programs. To some extent, it may be possible to make sense of the mod-
ularity of something more abstract than a computer program; for example, it
may make sense to talk about the modularity of an algorithm, independent of
the programming language and the particular piece of code that implements it.
But finding an appropriate level of abstraction is likely to be delicate, and not
essential to my present goals. So, at least for the time being, it makes sense to
start with syntax.

Expressions in a programming language can be used not only to define pro-
grams themselves, but also to declare data types and data. Here are some
examples, in a made-up programming language:

struct point := {xval : float, yval : float}

const pi : float := 3.1415

def gcd (x y : nat) : nat :=

if y = 0 then x else gcd y (x mod y)

def circle_area (r : float) : float := pi * r^2

def distance (a b : point) : float :=

sqrt ((a.xval - b.xval)^2 + (a.yval - b.yval)^2)

Each of these is a definition, which associates an identifier, the definiendum, to
an expression, the definiens. In the examples, the identifiers that are introduced
are point, pi, gcd, circle_area, and distance. In each case, the expression
after := provides the definiens.

In addition, each definition either implicitly or explicitly singles out the type
of object being defined. Specifically, the first example declares a new data type,
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point, which is a structure that consists of two integers, denoted xval and
yval. The second example declares pi to be a floating point constant; the ex-
pression float after the colon specifies the type of object that is being defined.
The next three examples, gcd, circle_area, and distance, are functions. The
parenthesized expressions that appear after the name but before the colon in-
dicate the type of inputs each function expects, whereas the expressions nat

and float after the colon specify the type of output. The first of these is a
recursive definition of a function that computes the greatest common divisor of
two natural numbers; the next computes the area of a circle with radius r, and
the final one computes the distance between two points.

Now notice that the body of a definition can make use of identifiers for other
objects and data types. These identifiers may be defined in the same file, or
imported from another file or library, or built into the system at a fundamental
level. For example, the definition of point presupposes that the system knows
what a float is; the definition of the function circle_area makes use of pi,
the multiplication symbol, the exponentiation symbol, and the constant symbol
2; and the definition of distance uses, among other things, point, sqrt, and
the projections xval and yval, which return the components of a point.

This induces a bare-bones notion of syntactic dependence: one definition de-
pends on another if the declaration of the first — the definiens and its data type
specification — references the definiendum of the second. Thus, circle_area,
for example, depends on pi, multiplication, exponentiation, 2, and the float

data type.
There are other notions of dependence, which may be closer to one’s specific

concerns. These include:

• Syntactic correctness. The syntactic correctness of a definition depends on
types of the definitions it refers to. For example, the syntactic correctness
of the function circle_area depends on the fact that the function sqrt

expects a floating point input and returns a floating point output.

• Semantics. The intended denotation of a definition depends on the deno-
tations of the definitions it refers to. For example, if we take the semantic
denotation of a function identifier to be a function from inputs to outputs,
the function that a definition denotes depends on the semantic denotations
of the identifiers it involves.

• Semantic properties. The properties of the object denoted, such as the
fact that circle_area always returns a nonnegative number, depends on
properties of the definitions it depends on, such as the property that pi

is a positive number.

These can all be taken to be derivative of the notion of syntactic dependence. In
other words, each of these kinds of dependence follows from the brute syntatic
dependences between program elements.

What counts as the notion of an interface, however, seems to be more sen-
sitive to context. From the point of view of syntactic correctness, it may be
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sufficient to think of the interface as being the syntactic specification of the
data type: the interface to point, for example, specifies that it is a structure
with the two projections, xval and yval). From the semantic point of view,
the interface may be the denotation itself: all we need to know to determine
the denotation of a defined function are the denotations of the components,
independent of how they are implemented. Finally, when it comes to reasoning
about properties of the objects that the identifiers denote, the interface may
simply be the list of relevant properties. For example, for some purposes, we
may only need to know that circle_area returns a nonnegative number, or
that gcd is nonzero if both of its inputs are. In that case, those properties
can be included in a formal or informal specification, which then becomes the
relevant interface.

What is encapsulated is then everything that is left out of the interface.
From the point of view of checking syntactic correctness, all that is important
is that pi denotes a float; the particular value is hidden to the definition
that references it. From the point of view of determining the denotation of
circle_area, all we need to know is that sqrt computes a certain approxima-
tion to the square root function; the details of the definition of that function are
again, left hidden. When reasoning about properties of the denoted objects, if
we need to know that circle_area returns a nonnegative number, then in that
context the specification can hide any additional information about the value
that is computed.

When we transfer the notions to mathematical definitions and proofs in Sec-
tion 4, we will see that in a sense some of the issues are more cleanly expressed
there. Formal languages used by contemporary interactive proof assistants pro-
vide means to define mathematical objects and, moreover, to reason about their
properties. As a result, the distinction between interfaces that express data
types and interfaces that express properties is not sharp; mathematical inter-
faces can specify both uniformly.

Let me add a few observations that will be relevant to the discussion of
modularity in mathematics. First, notice that we can distinguish between direct
and indirect dependencies. One definition may refer to another, which, in turn,
refers to another. A definition then depends directly on the definitions it refers to
in its definiens, and indirectly to the ones that occur downstream. In discussions
of modularity, it is generally the direct dependencies that we care about, the
ones that the definition itself “sees.” The whole point to modularization is to
organize matters so that the lower level dependencies are managed through the
intermediaries.

Second, large programs and libraries tend to be hierarchical in nature. Com-
plex procedures are implemented in terms of simpler ones, and even within the
body of a function definition, tasks and steps are often decomposed into blocks.
Libraries of routines are often grouped into modules, which are groups of pro-
cedures that share data, representations, and supporting utilities.

Concomitant with this hierarchical organization, objects usually come with
a well-defined scope, which is to say, identifiers are only visible at some points
in a development. For example, a local variable x : nat may be used within
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a function definition, proving a reference that is only defined within the scope
of that definition. Or a library module may define utility routines that are
only visible to other functions and procedures in the module. This is a way of
enforcing separation of concerns and limiting dependence. It is often useful to
invoke the notion of a context, which one can think of a record of the objects
that are visible in a given scope.

Finally, it is important to recognize that in programming languages, de-
pendencies are sometimes left implicit, and ambiguous expressions are some-
times disambiguated by the surrounding data. For example, in the definition of
circle_area, the multiplication symbol denotes multiplication of floating point
numbers, whereas in other situations, it may denote multiplication of integers.
Or, when multiplying a floating point number by an integer, the system might
insert an implicit cast, in this case, the function which converts the integer to a
float. In that case, the code may be said to depend on the cast, even though it
is not explicitly present in the definition.

This last feature is much more pronounced in ordinary mathematical defi-
nitions and proofs, where a tremendous amount of information is left implicit.
In an ordinary proof, explanations as to why a certain claim follows from the
ones previous to it are often omitted entirely, leaving it to the reader to fill in
the justification. Thus we not only have to deal with implicit dependencies of
proofs on facts, but also the complexity of filling in these justifications, and the
mechanisms that make it possible to do that efficiently. We will return to this
issue below.

4 Modularity in mathematics

4.1 From programs to proofs

Replace “software” by “piece of mathematics” everywhere in the last section,
and many of the statements still make sense. Developing mathematics in a
modular way should make the mathematics easier to understand, less error-
prone, and more flexible and reusable. Our goal now is to explore the analogy
and make it more precise.

At least some computer scientists have made this analogy explicit. Part
XVII of Robert Harper’s Practical Foundations for Programming Languages [24]
is titled “Modularity,” and Chapter 44, “Type Abstractions and Type Classes,”
opens with the following observation:

Modularity is not limited to programming languages. In mathe-
matics the proof of a theorem is decomposed into a collection of
definitions and lemmas. Cross-references among lemmas determine
a dependency structure that constrains their integration to form a
complete proof of the main theorem. Of course, one person’s theorem
is another person’s lemma; there is no intrinsic limit on the depth
and complexity of the hierarchies of results in mathematics. Math-
ematical structures are themselves composed of separable parts, as,
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for example, a Lie group is a group structure on a manifold.

We have already seen that data type and function type specifications in pro-
gramming languages can be seen as a way of supporting modularity, providing
interfaces that specify how a particular data or function can be used. This
discipline is central to Harper’s book.

The analogies between mathematical texts and computer programs are fairly
straightforward. Mathematical proofs are decomposed into definitions and lem-
mas, just as programs are decomposed into smaller blocks of code. Ordinary
mathematics imposes an interface that regulates talk of Lie groups and com-
plex numbers and encapsulates the specifics as to how these are defined, just
as a modular programming style imposes an interface on data structures that
encapsulates the details of the implementation.3

To be sure, there are differences between writing a program and proving
a theorem. One difference lies in the scope of the theorem-proving enterprise:
most programs are fairly self-contained, whereas a mathematical theorem can
rely on definitions and facts introduced by countless others, over a course of
decades or centuries. We would thus expect to see in mathematics the kind of
refactoring that occurs in large software projects, for example, with industrial
programs that are the product of multiple contributors over a long period of
time. And, indeed, we do: in the history of mathematics, it is often the case
that concepts are introduced, a theorem is proved, the concepts then are re-
fined, and the proofs are rewritten to improve comprehensibility, robustness,
and reusability. This gives hope that programming methodology can help illu-
minate the way that mathematical theories and proofs evolve.

In a branch of computer science known as formal verification, one can now
use computational proof assistants to verify the correctness of mathematical
theorems, and the formal languages they use will help us solidify the corre-
spondence between mathematical texts and proofs. Working interactively with
such a proof assistant, users provide input in stylized proof languages, provid-
ing enough information for the system to construct a fully detailed proof in an
underlying formal axiomatic system. We can think of such a proof script as
providing instructions to the system as to how to construct the desired proof.
In other words, a proof script is really a program, of sorts. Indeed, practitioners
often refer to proof scripts informally as “code.”

Interactive theorem proving thereby provides a useful intermediary. Insofar
as the texts acted on by computational proof assistants are like computer code,
we can speak of modularity of these formal texts in ways similar to the ways
we speak of modularity of code. And insofar as these formal texts model infor-
mal mathematical language, we can expect that modularity of the formal texts
should tell us something about modularity in informal mathematics. Reading

3I am grateful to David Waszek for pointing out that Bourbaki discussed aspects of the
modular structure of mathematics, though note in those terms (indeed, long before the term
“modularity” was widely used). Their manifesto [12] describes the use of axiomatic and
structural methods to manage complexity, render mathematics intelligible, and unify different
parts of the field. It also emphasizes the resulting gains in economy and efficiency of thought.
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an informal mathematical proof and assessing its correctness requires us to keep
track of local data and hypotheses, and combine then with background knowl-
edge drawn from a wide variety of domains. The computational verification of
a formal proof requires the same. We can therefore optimistically expect that
mechanisms for developing formal mathematical theories in a modular way will
illuminate the methods we use to develop informal mathematical theories in
a modular way, and the benefits of modularity in formal mathematical texts
should tell us something about the benefits of modularity in ordinary mathe-
matics.

The analogies between formalized mathematics and software are have also
been made explicit in the past. For example, the formalization of the Feit-
Thompson Odd Order Theorem, an important first step in the classification
of finite simple groups, was a milestone achievement in interactive theorem
proving. The project, led by Georges Gonthier, was a joint venture between
the French computer science agency Inria and Microsoft Research, Cambridge,
and made use of an interactive proof assistant called Coq. The project was
completed in 2012, and is described in a report written by 14 authors (myself
among them) [23]. Even the name of the project, Mathematical Components,
invokes a catchphrase, “software components,” that is used to describe modular
programming methodology in software engineering. At the time of writing, an
Inria web page4 describes the project in the following way:

The object of this project is to demonstrate that formalized math-
ematical theories can, like modern software, be built out of com-
ponents. By components we mean modules that comprise both
the static (objects and facts) and dynamic (proof and computation
methods) contents of theories.

The report on the formalization [23] invokes similar analogies to software design:

. . .the success of such a large-scale formalization demands a careful
choice of representations that are left implicit in the paper descrip-
tion. Taking advantage of Coq’s type mechanisms and computa-
tional behavior allows us to organize the code in successive layers
and interfaces. The lower-level libraries implement constructions of
basic objects, constrained by the specifics of the constructive frame-
work. Presented with these interfaces, the users of the higher-level
libraries can then ignore these constructions. . .

And later:

A crucial ingredient [in the success of the project] was the transfer of
the methodology of “generic programming” to formal proofs. . .[T]he
most time-consuming part of the project involved getting the base
and intermediate libraries right. This required systematic consoli-
dation phases performed after the production of new material. The

4http://www.msr-inria.fr/projects/mathematical-components-2/
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corpus of mathematical theories preliminary to the actual proof of
the Odd Order theorem represents the main reusable part of this
work, and contributes to almost 80 percent of the total length. Of
course, the success of such a large formalization, involving several
people at different locations, required a very strict discipline, with
uniform naming conventions, synchronization of parallel develop-
ments, refactoring, and benchmarking. . .

The analogy, then, is at least suggestive. Just as we clarified the notion of
modularity in programming languages in Section 3.4 with reference to a made-up
programming language, let us try to spell out the relevant notions of dependence
and interface with respect to a formal proof language.5

4.2 Toward a formal model

We have seen that in a conventional programming language, identifiers can refer
to at least two different sorts of objects: data type specifications, such as nat,
float, and point in the examples in Section 3.4, and data itself, such as pi

and circle_area. Notice that I am not distinguishing between constants and
functions in treating both as data: the constant pi is an object of type float and
the function circle_area is an object type float → float, where the arrow
is used to denote a function type. In other words, if we think of the function
specification as a data type, we can view constants and functions uniformly as
data, whose intended usage and behavior are specified by their associated type.

Interactive theorem proving adds two more components to the mix: in ad-
dition to specifying mathematical objects and their types, one can also make
assertions and prove them. Thus, the language of a proof assistant will provide
means to construct expressions denoting all of the following objects:

• data type specifications

• mathematical objects of these types

• propositions

• proofs of these propositions

This list is not meant to be exhaustive: many interactive theorem provers also
provide means to organize information and import objects into the current con-
text, configure automation, provide heuristic hints, write new proof procedures,
evaluate expressions, and so on. But entities listed above are essential, and it is
hard to imagine anything that might be called a theorem prover that does not
provide means to describe them.

For illustrative purposes, I will adopt a logical framework known as depen-
dent type theory, which provides a single uniform language in which one can

5For this purpose, I will in fact use an actual proof language, namely, that of the Lean
theorem prover [17].
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define all four sorts of objects. The use of dependent type theory is not es-
sential to the account, but it is convenient, especially because it also allows
dependencies between objects of the different categories. In dependent type
theory, there are expressions, and every expression has a type. The novelty is
that data types themselves are expressions in the language, which happen to
have the type Type. Propositions are also expressions in the language, having
the type Prop. And if p is a proposition in the language, a proof of p is nothing
more than an expression having type p. In other words, all four objects above
are given by expressions in the same language:

• A data type specification, α, is given by an expression of type Type.

• A mathematical object of that type is given by expression of type α.

• A proposition, p, is given by an expression of type Prop.

• A proof of that proposition is given by an expression of type p.

As in Section 3.4, we can write e : α to indicate that expression e has type α,
which in turn determines what sort of object e is.

• If α : Type, then α is a data type. In that case, e : α means that e

denotes an object of that type.

• If p : Prop, then p is a proposition. In that case, e : p means that e is
a proof of p.

As in Section 3.4, we can also use the general pattern i : α := e to denote
that the identifier i denotes the object of type α defined by e, where α can be
either Type, a particular data type, Prop, or a particular proposition. This pro-
vides us with a uniform language for expressing data types, objects, assertions,
and proofs. To repeat, the use of dependent type theory is not essential here;
we could have used four separate languages instead. What is important for the
model of mathematical language we adopt here is that (1) we can express all
four sorts of objects; (2) every expression has a syntactic type, which indicates
what sort of entity it is; and (3) the various syntactic categories interact with
one another, as described below.

As examples of types and objects, N denotes the type of natural numbers,
and bool denotes the type of Boolean values (tt and ff, for “true” and “false”).
The type N × bool is the type of pairs consisting of a natural number and a
boolean, and the type N → (N → N) is the type of functions which take two
natural numbers as arguments, and return a natural number; here the conven-
tion is that the arrow operation associates to the right. In contrast, the type
(N → N) → N is the type of functionals which take a function from natural
numbers to natural numbers as arguments, and returns a natural number.

We can specify variables of these types:

variables (m n: N) (f : N → N) (p : N × N)
variable g : N → (N → N)
variable F : (N → N) → N
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Once that is done, f n, pr1 p, m + n^2 + 7 are all terms of type N. Note that
function application is written without parentheses, so that g m is a function
of type N → N and g m n is an expression of type N. Thus we can view g as
a function that takes two natural numbers as arguments and returns a natural
number, and F (g m) is also an expression of type N.

We can write propositions using quantifiers and connectives in the usual
ways. For example, consider the following proposition:

∀ α : Type, ∀ x y z : α, x = y → y = z → x = z

This expresses that for every type α, the equality relation on α is transitive.
Notice that here we do not have to specify that = denotes the equality relation
on α, since that can be inferred from the fact that the arguments have type α.

We can then start writing definitions and proving theorems, which amounts
to introducing identifiers to name the various kinds of objects. The following
example illustrates this.

def binary_relation (α : Type) : Type := α → α → Prop

def transitive {α : Type} (r : binary_relation α) : Prop :=

∀ {x y z}, r x y → r y z → r x z

def binary_relation_inverse {α : Type}

(r : binary_relation α) : binary_relation α :=

λ x y, r y x

theorem transitive_binary_relation_inverse {α : Type}

{r : binary_relation α} :

transitive r → transitive (binary_relation_inverse r) :=

assume h : transitive r,

assume x y z : α,
assume h1 : binary_relation_inverse r x y,

assume h2 : binary_relation_inverse r y z,

show binary_relation_inverse r x z,

from h h2 h1

The first definition, binary_relation, defines a new data type: for every type
α, binary_relation α is the type of binary relations on α. Notice that we
can represent such a relation as a function r which takes two elements of α
and returns a proposition. The second definition, transitive, introduces a
new predicate on binary relations: if r is a binary relation on a type α, the ex-
pression transitive r represents the assertion that r is transitive. The curly
brackets in the definition specify that we do not need to indicate the under-
lying type α explicitly, since it can be inferred from the type of r; in other
words, we can write transitive r instead of transitive α r, thereby leav-
ing the dependence on α implicit. (These implicit dependencies were foreshad-
owed in Section 3.4, and are discussed in further detail below.) The function
binary_relation_inverse takes a binary relation r as input, and returns the
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inverse relation: binary_relation_inverse r x y holds if and only if r y

x holds. Finally, transitive_binary_relation_inverse names the theorem
that if a binary relation r is transitive, so is binary_relation_inverse r. The
expression following := is a proof of that theorem.

The precise syntax of dependent type theory need not concern us here. What
is important is that, as in Section 3.4, the association of identifiers to expres-
sions induces a notion of dependence: an expression depends on the identifiers
it mentions. For example, the definitions of transitivity of the inverse rela-
tion, presented above, depend on the notion of a binary relation. The theorem
transitive_binrel_inverse depends, in turn, on the depend on the notions
of transitivity and inverse relation. The proof of transitive_binrel_inverse
uses nothing beyond pure logic, but if the proof invoked other lemmas, theo-
rems, and constructions, we would have a formal record of those dependencies
as well.

Recall that in Section 3.4, we observed that there are derivative notions of
dependence associated with the semantic reference of the expressions involved.
Here, however, there is less of a need to invoke semantic notions. Since interac-
tive theorem provers rely on a foundational language to specify all mathematical
objects and their properties, it is not clear that there is anything to be gained
by stepping outside the system and worrying about semantic reference. Sim-
ilarly, because we can assert and establish facts about the objects we define
within the foundational language, dependencies between properties are tracked
by syntactic references as well.

The examples make it clear that an expression of one sort can depend on
entities of other sorts. For example, the definition of a mathematical object can
depend on other objects and data types, and a proof can depend on data types,
objects, propositions, and other proofs. Some of the dependencies that can
occur are not as obvious. The expression if even x then 0 else 1 denotes
an object (in this case, a natural number), but it depends on the proposition
even x. More strikingly, the definition of an object can depend on a proof; if
we were to define gcd x y as the greatest common divisor of x and y, we would
have to provide a proof that this description characterizes a unique object.

As noted in Section 3.4, what we generally care about are the direct de-
pendencies between expressions and identifiers, but some dependencies may be
implicit. Expressions in interactive theorem provers often elide information
which is inferred and inserted by the system. For example, the system may
infer that a multiplication symbol denotes multiplication in a group; in that
case, the expression implicitly depends on the notion of a group, and on the
notion of multiplication in a group. The situation is even more complicated
with proofs. Ordinary mathematical proofs often omit detailed justifications
and leave it to the reader to fill in the details. This is mirrored in an interactive
theorem prover by the fact that often proofs are supplied by automated rou-
tines, which invoke theorems and constructions that are invisible to the user. In
that case, we should say that the surface proof implicitly depends on the facts
and data invoked by the automation; or in some contexts, perhaps, it would be
more illuminating to say that the proof depends on the steps supplied by the
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automation, treating those steps as black boxes.

4.3 Mathematical interfaces

Given the centrality of the notion of an interface in computer science, we should
now say something about how it plays out in a mathematical setting. In Sec-
tion 3.4, we saw that the notion of interface is slippery and context dependent;
what is considered an interface in computer science can depend, for example,
one whether one is trying to account for syntactic correctness, the denotation of
a program, or specific properties. It can also depend on the object of analysis,
which can be a single function, data structure, or procedure, or a module or
library that bundles a number of these together to provide useful functionality.

The same is true in the mathematical setting. To start with, as was the case
with computer programs, type information can be viewed as an interface for
mathematial objects and functions. Knowing that an expression e has type N
means that one can profitably write e + 7 and send it to other functions that
expect a natural number as input. It also specifies that it can serve to instantiate
any theorem that makes a general statement about natural numbers. Similarly,
knowing that an expression f has type N → N → N means that it can be
applied to two natural numbers to obtain a natural number, and also that it
can be send as an argument to another function that expect such a function as
an argument.

Analogously, the “interface” to a theorem-proof pair is the statement of the
theorem itself. Suppose we have a proof of Fermat’s last theorem in our library:

theorem fermat :

∀ x y z n : N, n > 2 ∧ x * y * z 6= 0 → x^n + y^n 6= z^n :=

...

The statment of the theorem specifies that it can be applied to any tuple of
natural nunmbers x, y, z, and n, provided n > 2 and x, y, and z are not
all zero. The very act of stating and proving a theorem presents a powerful
form of encapsulation: anyone can make use of the theorem knowing only the
statement of the theorem and the fact that it has been proved. The details
of the proof can remain hidden. Mathematics would be unworkable if we had
to recapitulate the proof of a theorem each time we want to use it, and so this
type of encapsulation is essential to the reusability of theorems and the ability of
different mathematical communities to develop results independently and share
them after the fact.

But if we try to transfer this observation back to expressions that denote
objects and functions, we find that the analogy breaks down: the type of an
object or function is clearly not sufficent to specify all aspects of its proper use.
Knowing that a function has type N → N → N tells us that it expects two
natural numbers as arguments and returns a natural number, but it doesn’t tell
us anything more than that: the function may be addition, or multiplication,
or it may return the greatest common divisor of its inputs.
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Even when it comes with definitions of objects and functions, however, en-
capsulation plays an important role. Foundationally, there are many ways of
defining the real numbers. For example, they can be defined as equivalence
classes of Cauchy sequences or as Dedekind cuts. For most purposes, the spe-
cific choice is irrelevant, and conventional textbooks are usually entirely agnostic
as to how they are defined. Along these lines, most theorem provers provide
mechanisms to choose which aspects of a formal library to make publicly avail-
able and which to hide from view. For example, a library for the real numbers
might expose arithmetic operations on the real numbers and their basic prop-
erties while hiding the specific details of how the reals are implemented. In
that sense, the body of publicly available theorems and functions serve as the
interface to the library.

One way mathematics manages such interfaces is to encode them as algebraic
structures. The real numbers can be characterized uniquely, up to isomorphism,
as a complete archimedean ordered field. The algebraic structure known as an
ordered field specifies a signature of functions and relations that any instance
must implement, and the properties that they must satisfy. Theorems can then
be proved generically for any structure that meets that specification. Instantiat-
ing the real numbers as an ordered field makes those theorems available in that
particular instance. In that sense, ordered ring structure provides an interface
to the real numbers (as well as to the integers and rationals).

The situation may seem disappointing: we are looking for a notion of inter-
face in mathematics, and now we have an unruly host of candidates on offer.
What does this say about our attempts to discern modular structure in mathe-
matics?

It should be encouraging that computer science fares no better in this regard.
For all the talk of modularity and interfaces, there is no univocal interpretation
of the term in that field. Depending on the context, computer scientists make
speak of an interface to a particular data structure or function, an interface
to a collection of data types and functions bundled together into an object or
module, or an interface to a complex system or body of code. This does not
seem to be a handicap. They can be very precise about particular mechanisms
that support modularity, while allowing the notion of interface to remain fluid.

We should expect the same to be the case for mathematics, whether we
analyze it in formal or informal terms. Information hiding, encapsulaton, and
interfaces are important to mathematics, but what is being hidden and encap-
sulated can vary depending on context, and different mechanisms are used to
make it happen. It will not help us to impose an artificial order. We have to
analyze the data as we find it, and try to obtain a better understanding of the
way that mathematical information is managed effectively.

I have so far argued that formal methods and interactive theorem proving
provide us with a conceptual scaffolding that can help us make sense sense
of modularity in mathematics and understand how it plays out in informal
mathematical texts. Section 5 takes some initial steps in analyzing examples
from ordinary mathematics in these terms.
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4.4 Measures of complexity

Maintaining modularity in software is supposed to make code easier to under-
stand, easier to maintain, and easier to extend, and to increase the likelihood
that the code can be reused in other contexts. We would like to make the
case that maintaining modularity in mathematical theories has similar benefits.
Making this case presupposes some conception of what it means to be easier to
understand, maintain, or extend a theory. Whether we try to formalize these
assessments or deal with them at an informal level, it still behooves us to clarify
the measures of understandability, maintainability, or extendability we have in
mind. Here I will take only a few small steps in this direction.

Let us focus on the benefits of modularity with respect to mathematical
proofs. At least two measures of difficulty come to mind: we can consider how a
modular organization makes it easier to find, or discover, a mathematical proof
in the context of a background theory, or we can consider how a modular orga-
nization makes it possible for us to read and understand a proof that is given to
us. The distinction between the two is not sharp: part of understanding a proof
involves being able to fill in justificatory steps, and explain why an assertion
follows from previous ones. In other words, part of understanding a proof and
verifying its correctness involves rediscovering small chains of reasoning that
are left implicit. Since, however, the task of processing an existing proof seems
more straightforward than the task of finding a new one ab initio, the former
seems to be a good place to start.

Even making sense of that, however, is not an easy task. As I noted in
Section 3.4, what makes mathematical proofs, even formalized ones, different
from computer code is the amount of information that is ordinarily left implicit.
Reading a proof is a complex task: when we do so, we need to keep track of the
objects and facts that are introduced, muster relevant background knowledge,
and fill in nontrivial reasoning steps that are nonetheless deemed to be straight-
forward by the author. We should expect that a modular structuring of the
background knowledge, as well as the proof itself, should decrease the cognitive
burden in all the following ways:

• Type specifications make it possible for us to infer the types of objects and
expressions in front of us, for example, to recognize that one expression
denotes a natural number while another denotes an element of some group.

• Types and axiomatic structures make it easier to apply constructions and
theorems, telling us exactly what data is necessary and what side con-
ditions need to be dispelled, and giving us the means to recognize the
structure that the constructions and theorems presuppose.

• Types, axiomatic structures, and modular structuring of theories makes it
easier to find and retrieve relevant facts from our background knowledge,
since the background knowledge is organized by topic and key construc-
tions.
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• Encapsulation keeps information overload at bay. Rather than require us
to keep an overwhelming level of detail fresh in our minds, a modular
structuring ensures that we only keep track of the information that is
essential to the inferential structure of the proof, suppressing extraneous
and distracting details.

Spelling out a precise model to justify these intuitions is no small task.
But the concerns are familiar to those who have worked in interactive theo-
rem proving and automated reasoning. These fields provide formal algorithmic
descriptions of fundamental cognitive tasks: matching refers to methods that
make it possible to instantiate a theorem or generic construction to specific
data, unification refers to methods that, more generally, make it possible to
instantiate variables in such a way as to make terms or hypotheses match, and
indexing refers to methods that make it possible to find relevant data and facts
quickly (see, for example, [35]). It is therefore reasonable to seek robust and
cogent explanations as to how modularity supports these fundamental tasks.

5 Examples from number theory

In informal mathematics, modularity is everywhere you look. Take any textbook
off the shelf, and you will find definitions and theorems organized into chapters
according to topic, in such a way the later appeals to them are regimented and
controlled. Every definition encapsulates information in its definiens, and theo-
rems are carefully designed to manage the way we work with the mathematical
objects so defined. Axiomatically defined structures in algebra and analysis
provide interfaces to instances thereof.

Nonetheless, considering a few specific examples will be informative, and
will help illustrate some of the ways that mathematical definitions and concepts
encapsulate information, manage the flow of data, and facilitate reuse.

5.1 Congruence

Let us start with an example from number theory, one that is simple but
nonetheless illustrates some of the relevant phenomena.

Definition 5.1. If x and y are integers, then x divides y, written x | y, if there
is an integer z such that y = xz.

Definition 5.2. If x, y, and m are integers, then x is congruent to y modulo
m, written x ≡ y (mod m), if m | x− y.

The fact that computations modulo an integer m is known as “modular
arithmetic” is apropos. If we want to determine what day of the week it will be
1,000 days from today, we only care about the remainder upon division by seven,
and modular arithmetic provides an interface which abstracts, or encapsulates,
any additional information. Here is an example of something that can be proved
using these notions.
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Proposition 5.3. If x ≡ y (mod m), then x3 + 3x+ 7 ≡ y3 + 3y+ 7 (mod m).

Here is a brute-force proof.

Proof. Unpacking definitions, we have x ≡ y (mod m) if and only if x = y+mz
for some z. Then

x3 + 3x+ 7 = (y +mz)3 + 3(y +mz) + 7

= y3 + 3y2mz + 3ym2z2 +m3z3 + 3y + 3mz + 7

= y3 + 3y + 7 +m(3y2z + 3ymz2 +m2z3 + 3z)

which shows that x3 + 3x+ 7 ≡ y3 + 3y + 7 (mod m).

Of course, this is not the sort of proof one expects to see in mathematics. For
one thing, it does not scale well: replace x3 by x30 and the calculation becomes
unbearable. But what is more notable here is that it breaks an abstraction
barrier. The existential quantifier in the definition of “x divides y” serves to
encapsulate information, namely, hiding the value of z such that y = xz. We
introduce such a definition precisely for that purpose. Then, when we define
congruence in terms of divisibility, we expect properties of the former to be
obtained by properties of the latter. The following is a modularization of the
above proof that respects that abstraction.

Proposition 5.4. Let x, y, and z be integers.

1. x | x.

2. If x | y and y | z, then x | z.

3. If x | y and x | z, then x | y + z.

4. If x | y, then x | zy.

5. x | 0.

Proof. For the first claim, we have x = x · 1. For the second claim, if y = xu
and z = yv, then z = x(uv). For the third claim, if y = xu and z = xv, then
y + z = x(u + v). For the fourth claim, if y = xu, then zy = x(zu). The fifth
claim follows from the fact that 0 = x · 0.

With Proposition 5.4 in hand, we no longer need to unfold the definition of
divisibility. In fact, the proof of Proposition 5.4 is the only place we need to
provide explicit witnesses to the existential quantifier.

Proposition 5.5. For a fixed m, the relation x ≡ y (mod m) is an equivalence
relation, which is to say, it is reflexive, symmetric, and transitive.

Proof. Since m | x − x, we have x ≡ x (mod m). If x ≡ y (mod m), then m
divides x− y, and so it divides −1(x− y), which is equal to y− x. This implies
y ≡ x (mod m). To see that congruence is transitive, suppose x ≡ y (mod m)
and y ≡ z (mod m). Then m divides both x− y and y− z, and hence it divides
their sum, x− z, as required.
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Proposition 5.6. 1. If x ≡ y (mod m), then x+ z ≡ y + z (mod m)

2. If x1 ≡ y1 (mod m) and x2 ≡ y2 (mod m) then x1 + x2 ≡ y1 + y2
(mod m).

3. If x ≡ y (mod m), then xz ≡ yz (mod m).

4. If x1 ≡ y1 (mod m) and x2 ≡ y2 (mod m) then x1x2 ≡ y1y2 (mod m).

5. If x ≡ y (mod m), then xn ≡ yn (mod m) for every natural number n.

Proof. For the first claim, (x + z) − (y + z) = x − y, so if m divides x − y, it
divides (x+z)−(y+z). The second identity is obtained by applying the first one
twice, using the commutativity of addition and the transitivity of congruence.
For the third claim, if m divides x − y, then it divides (x − y)z by clause 3 of
Proposition 5.4. The fourth claim is obtained by applying the third claim twice,
and the last is obtained by induction on n, using clause 4.

It now follows that if p(x) is any polynomial in x with integer coefficients
and x ≡ y (mod m), then p(x) ≡ p(y) (mod m). Formally, this can be proved
by induction on the number of monomials in p. Proposition 5.3 is merely a
special case.

This simple example nicely illustrates the way a mathematical definition can
suppress information. In this case, it is not a matter of being able to compute
the missing data: if x divides y, then y is equal to x(y/x). At odds is simply
whether y/x is an integer. Our first proof of Proposition 5.3 shows that it is by
expressing it explicitly in terms of x, z, and m. In some cases, this information
may be useful, but when it is not, keeping it around is a distraction. Our second
proof therefore suppresses it. In practice, it is often not clear what information
should be hidden and what should be left explicit; these are design decisions
that require mathematical judgment, and remain subject to revision as a theory
evolves.

Mathematics is replete with information hiding of this sort. In analysis, if f
is a function from the real numbers to the real numbers, writing limx→a f(x) = b
means that for every ε > 0 there is a δ > 0 with the property that whenever
|x− a| < δ, |f(x)− b| < ε. Thus any limit statement encapsulates information,
namely, the dependence of δ on ε. Once again, it is the use of the existential
quantifier that serves to hide the relevant data. The notion of a limit is used
in later definitions, such as that of continuity, differentiation, and integration,
and calculus provides rules for establishing continuity and calculating deriva-
tives and integrals without providing explicit rates of convergence. Here the
suppression is less benign: for the purpose of approximating derivatives and
integrals numerically, having a bound on the rate of convergence is of utmost
importance, and numerical analysis provides means of obtaining these. Conven-
tional theories of analysis, however, suppress quantitative information in favor
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of a qualitative understanding of the phenomena involved.6 In that way, the
limit concept is an effective means of information management.

The refactored proof of Proposition 5.3 is not shorter than the original if
we count the auxiliary propositions, but those can be reused, and yield a much
more general result. And even in this simple case, breaking the proof into small
pieces makes each step easier to check and understand, and reduces the risk of
error.

5.2 Fermat’s Little Theorem

For an example of refactoring where the gains in the refactored proof are not
solely attributable to the suppression of information, consider the following,
known as Fermat’s little theorem.

Theorem 5.7. Let p be any prime number, and suppose p - a. Then ap−1 ≡ 1
(mod p).

This fact was known to Fermat, and Euler published a proof in 1761. An ex-
cerpt of Euler’s proof appears in translation in Struik’s sourcebook [39]. Modern
terminology agrees with Euler’s in using the phrase “the residue of a modulo p”
to denote the remainder upon dividing a number a by p. Before the beginning
of the text excerpted by Struik, Euler has shown that for any prime p and any
a not divisible by p, there is a value λ such that aλ ≡ 1 (mod p). He has also
shown that if a is not 1, then for the least such value λ > 0, the residues of

1, a, a2, a3, . . . , aλ−1

are distinct and not equal to 0. In modern terms, we would say that the Euler
has essentially shown that the order of a is λ modulo p. In particular, aλ−1 is
the multiplicative inverse of a modulo p. Since every nonzero residue has an
inverse and the product of two nonzero residues modulo p is again a nonzero
residue modulo p, we have that the set of nonzero residues modulo p form a
finite group under multiplication modulo p. We would also say that the set of
residues of {1, a, . . . , aλ−1} forms a subgroup of this group, that is, it is a set
that is closed under the product operation.

With those results in place, Euler builds to the proof of Theorem 5.7 with a
sequence of theorems and corollaries, of which the following is the first. (Here
we have corrected a minor typographical error in Struik’s translation.)

Theorem 5.8. If the number of different residues resulting from the
division of the powers 1, a, a2, a3, a4, a5, etc., by the prime number
p is smaller than p− 1, then there will be at least as many numbers
that are nonresidues as there are residues.

6There is a nice discussion of this in a blog post by Terence Tao,
https://terrytao.wordpress.com/2007/05/23/soft-analysis-hard-analysis-and-the-

finite-convergence-principle/.
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Proof. Let aλ be the lowest power which, when divided by p, has the
residue 1, and let λ < p − 1; then the number of different residues
will be = λ and therefore smaller than p− 1. And since the number
of all numbers smaller than p is = p−1, there obviously must in our
case be numbers that do not appear in the residues. I claim that
there are at least λ of them. To prove it, let us express the residues
by the terms themselves that produce them, and we get the residues

1, a, a2, a3, . . . , aλ−1,

whose number is λ and, reducing them in the usual way, they all
become smaller than p and are all different from each other. As
λ is supposed to be < p − 1, there exists certainly a number not
occurring among those residues. Let this number be k; now I say
that, if k is not a residue, then ak and a2k and a3k etc. as well
as aλ−1k do not appear among the residues. Indeed, suppose that
aµk is a residue resulting from the power aα; then we would have
aα = np+ aµk or aα− aµk = np and then aα− aµk = aµ(aα−µ− k)
would be divisible by p. Now aµ is not divisible by p, so aα−µ would,
if divided by p, give the residue k contrary to the assumption. From
this it follows that all the numbers k, ak, a2k, . . . , aλ−1k or numbers
derived from them are nonresidues. Moreover, they are all different
from each other and their number is = λ; for if two of them, say
aµk and aνk, divided by p were to give the same residue r, then
aµk = mp + r and aνk = np + r and thus aµk − aνk = (m − n)p,
or (aµ − aν)k = (m − n)p would be divisible by p. Now k is not
divisible by p, since we have assumed that p is a prime number
and k < p; then aµ − aν would have to be divisible by p; or aµ−ν

would give, divided by p, the residue 1, which is impossible because
µ < λ− 1 and ν < λ− 1; also µ− ν < λ. Therefore all the numbers
k, ak, a2k, . . . , aλ−1k, if reduced, will be different and their number
is = λ. Thus there exist at least λ numbers not belonging to the
residues so long as λ < p− 1.

This is only the first 32 lines of the excerpt, in which the proof of Theorem 5.7
ends on line 127; in other words, the remainder of Euler’s proof runs three times
as long as the excerpt. Part of the length can be attributed to the fact that
Euler makes no effort to be concise. But contemporary proofs also introduce
concepts that streamline the presentation, and it will be informative to consider
how that works.

Reverting to modern terminology, let G be the group of nonzero residues
modulo p, and let H = {1, a, a2, a3, . . . , aλ−1} be the subgroup generated by a,
where now we take the power operation modulo p. If k is any element of G, let
Hk denote the coset {hk | h ∈ H}, that is, the set of elements of the form hk
for some h ∈ H. Notice that Hk is a subset of G.

Proposition 5.9. For any k, r ∈ G, if k 6∈ Hr, then Hk ∩Hr = ∅.
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Proof. We prove the contrapositive. If g is an element of the intersection, then
g = h1k = h2r from some h1, h2 ∈ H. Multiplying by h−11 on the left, we obtain
k = h−11 h2r, which is an element of Hr, since h−11 h2 ∈ H.

Proposition 5.10. For any k in G, the cardinality of the coset Hk is equal to
the cardinality of H, that is, |Hk| = |H|.

Proof. The map which sends any element h of H to hk is a bijection from H to
Hk: it is clearly surjective, and if h1k = h2k, then, multiplying both sides by
k−1 on the right, we have h1 = h2.

Proposition 5.11. The cardinality of H divides the cardinality of G.

Proof. Let g1 = 1. If Hg1 is not equal to all of G, pick an element g2 in G but
not Hg1. If Hg1 ∪Hg2 is not all of G, pick an element g2 in G but not Hg1 or
Hg2, and so on. Since G is finite, eventually we obtain

G = Hg1 ∪Hg2 ∪Hg3 ∪ . . . ∪Hgn

for some sequence g1, . . . , gn. We have shown that the sets Hg1, Hg2, . . . ,Hgn
are disjoint and each has cardinality |H|, so |G| = |H| · n.

Theorem 5.7 now follows: since |G| = p − 1 and |H| = λ, assuming |G| =
|H| · n we have

ap−1 ≡ aλn ≡ (aλ)n ≡ 1n ≡ 1 (mod p).

It is often said that the proof I have just given is “implicit” in Euler’s proof.
The excerpted passage is just the first step in his proof of Proposition 5.11:
Euler shows that if k is not an element of H, then H ∪Hk has twice as many el-
ements as H. An important difference between Euler’s proof and the refactored
version is that the latter relies solely on properties of the group operations —
multiplication and the inverse function — while Euler’s calculations rely in the
details of this particular multiplication. This requires descending to the level
of powers of a, integer multiplication, the act of taking residues, and properties
of congruence modulo p. There is no notation for congruence, and Euler does
not explicitly use properties of divisibility; rather, the calculations are expressed
in terms of the arithmetic operations modulo p. As a result, properties that I
highlighted at the start of this section as implicit in Euler’s earlier proof are
replayed in detail in this specific instance.

Notice that calculations in the refactored version of Euler’s proof are all
carried out via the group interface, which is to say, only generic properties of
multiplication and inverses are used, as sanctioned by the group axioms. As a
result, Propositions 5.9–5.11 are true of any group G and subgroup H, finite
or not. Thus it establishes this much more general fact, known as Lagrange’s
theorem.

Theorem 5.12. Let G be any finite group, and let H be any subgroup. Then
the cardinality of H divides the cardinality of G.
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In particular, for any element a of G, if we let H be the cyclic subgroup
generated by a, we obtain a|H| = 1. This is useful in contexts that have nothing
to do with arithmetic, but it also yields a generalization of Fermat’s theorem.
For any integer n > 1, the residues modulo n that are relatively prime to n (that
is, share no nontrivial common factor) also form a group, whose cardinality is
now denoted ϕ(n). Euler’s argument establishes that, more generally, if a is
relatively prime to n, then aϕ(n) is congruent to 1 modulo n, a fact that Euler
made explicit in a paper published two years later, in 1763. The result is now
known as Euler’s theorem, and the function ϕ is now known as the Euler ϕ
function.

Another feature of the refactored proof is that it takes advantage of set-
theoretic language and notation that was not available to Euler, and makes
use of general set theoretic properties. For example, we make use of the fact
that in order to show that the cardinalities of two sets are equal, it suffices to
show that there is a bijection between them. We also make use of the fact that
the cardinality of a union of a finite disjoint collection of finite sets is the sum
of their cardinalities. These are things that Euler does implicitly, but modern
terminology streamlines the argument by providing a clean library and interface
to such properties.

In sum, we have once again the expected benefits of a modular development:
the individual components of the proof are easier to understand, verify, and
adapt to other purposes, and the results are more general, and reusable.

5.3 Historical examples

The goal of this section is to gesture toward some episodes in the development
of nineteenth century number theory where the effects of modularity can be
discerned. Studying the development of number theory is often illuminating,
in that there are many problems that can be stated in elementary terms, but
whose solutions require substantial mathematical machinery. It is informative
to study the way that such machinery – concepts invoked from analysis and
algebra, for example — helps tame a difficult problem and make it manageable.
Moreover, the historical record provides examples of how proofs are revised and
rewritten, with the aim of making them easier to understand, as well as with
the aim of generalizing the results. Thus the development of number theory
provides excellent examples of refactoring, enabling us to discern the factors
that guide the process.

I will briefly discuss four problems in number theory that were present at the
turn of the nineteenth century: proving the law of quadratic reciprocity, classi-
fying the binary quadratic forms, proving that there are infinitely many primes
in any arithmetic progression in which the first term and common difference are
coprime, and determining the asymptotic distribution of the prime numbers.
The first two of these were solved by Gauss in his Disquisitiones Arithmeticae
of 1801, and the third was solved by Dirichlet in 1837. The last problem was
not solved until 1896, when Hadamard and de la Vallée Poussin, independently,
proved the Prime Number Theorem. Let us briefly consider each of these, in
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turn, with an eye toward understanding how notions of modularity can help us
make sense of the historical developments.

The law of quadratic reciprocity is an identity that determines whether a
prime p is a perfect square modulo another prime q in terms of whether q is a
perfect square modulo p. Legendre claimed this result in 1785, but there was
a gap in his proof which will be discussed below. In the Disquisitiones, Gauss
pointed out the gap and claimed credit for being the first one to give a complete
proof of the result. In fact, he gave two proofs in the Disquisitiones, and pub-
lished four additional proofs during his lifetime. Two more proofs were found
in his Nachlass. Since then, the aim of obtaining powerful generalizations of
the law of quadratic reciprocity has been a guiding theme in the development
of modern number theory, and the ability to obtain the law of quadratic reci-
procity as an easy consequence of a new theory has been seen to be a mark of
success. In an appendix to his book, Reciprocity Laws [26], Franz Lemmermeyer
enumerated 236 published proofs of the theorem.

Thus the law of quadratic reciprocity is an example of refactoring par ex-
cellence. Some of the proofs are only minor variants of each other, but the
full range exhibits radically different methods and ideas. Gauss’ original proof
was a brute-force induction that is singularly unilluminating. Some proofs in-
voke properties of the complex numbers, while others use algebraic or geometric
methods. In 1879, Dedekind showed how it could be obtained from his new
theory of ideals in an algebraic number field, which now forms a core part of
algebraic number theory. Thus the case study provides fertile ground for un-
derstanding of how different proofs manage and encode information.

A (binary) quadratic form is an expression of the form ax2+bxy+cy2, where
a, b, and c are integers. A beautiful theorem due to Fermat is that a prime
number p other than 2 can be written as a sum p = x2 +y2 of two squares (that
is, p = x2 + y2, where x and y are integers) if and only if p is congruent to 1
modulo 4. This raises the more general problem of characterizing the primes,
and, moreover, all the integers that can be represented by a quadratic form
ax2 + bxy + cy2, in terms of the parameters a, b, and c.

In a tour de force, Gauss undertook a classification of binary quadratic forms
in the Chapter 5 of the Disquisitiones, a chapter that is longer than the other
six combined. To that end, Gauss introduced a notion of composition of binary
forms, and used a long and exceedingly difficult calculation to show that the
composition law is associative. Harold Edwards writes:

. . .perhaps the profoundest way in which Section 5 affected the de-
velopment of mathematics lay in the challenge that it presented.
Starting with Dirichlet, and continuing with Kummer, Dedekind,
Kronecker, Hermite, and countless others, the unwieldy but fruitful
theory of composition of forms called forth great efforts of study and
theory-building that shaped modern mathematics. [21, p. 108].

Indeed, the development of the theory can be seen as a long process of refac-
toring and reconceptualization. Today we interpret Gauss’ result as telling us
that equivalence classes of binary quadratic forms constitute a group under the
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composition law. Dedekind, with his theory of ideals, was able to translate the
problem to the study of the class group, a group of equivalence classes in an
algebraic number field related to the original binary quadratic form. Histori-
cal information can be found in Cox, Primes of the Form x2 + ny2: Fermat,
Class Field Theory, and Complex Multiplication [16]. The literature on binary
quadratic forms is vast, and understanding how various approaches package
and manage information can illuminate the strategies that are used to situate
a difficult mathematical problem in a broader conceptual framework. Another
interesting feature of the history is that although the motivating problem has
a computational character, various abstractions pull away from and suppress
computational information. Computational theories of binary quadratic forms
(see e.g. [13]) aim to recapture algorithmic information, and it is important to
understand how the computational theories interact with the conceptual ones.
The process of refactoring is still ongoing: quite recently, in fact, Manjul Bhar-
gava has identified Gauss’ composition law as an instance of a more general
construction [11].

Our third example is Dirichlet’s theorem on primes in an arithmetic pro-
gression. When Legendre tried to prove the law of quadratic reciprocity, he
assumed that there are infinitely many primes in any arithmetic progression
a, a+ d, a+ 2d, . . . in which a and d have no common factor. He did not prove
this claim, however, and this is precisely the gap that Gauss identified in the
Disquistiones. Gauss was able to circumvent the assumption, but, in fact, he
was never able to prove it. It was Dirichlet who managed to do so, in 1837,
with a striking approach that combined novel algebraic ideas as well as sophis-
ticated analytic arguments. Rebecca Morris and I have studied the history of
subsequent presentations and reformulations of Dirichlet’s proof, over a 90-year
period, with an eye toward understanding the effects of these reconceptual-
izations [8, 7]. We show that, indeed, the historical process can be naturally
understood in terms of a drive to increase modularity.

Finally, consider the distribution of primes. The density of prime numbers
among the first n integers generally decreases as n increases; for example, four
among the first ten positive integers are prime, but only 25 of the first 100. At
the turn of the nineteenth century, Gauss, on the basis of calculation, conjec-
tured that the number of primes is asymptotic to n/ log n in the limit, which is
to say, the ratio of the two quantities approaches 1 as n approaches infinity. In
1859, Bernhard Riemann established a connection between the distribution of
primes and the zeros of a complex-valued function now known as the Riemann
zeta function. Even with this crucial step forward, the result was not obtained
until 1896, when it was proved by Jacques Hadamard and Charles de la Vallée
Poussin independently. (There is a nice historical account in [20].)

Because the statement of the theorem involves a limit, the role of analysis
in the proof is perhaps not surprising. But the role of the complex numbers
is intriguing: as with any abstraction, here the methods of complex analysis
serve to encapsulate certain bits of information while making other information
salient. Once again, a detailed study of the way the mathematical definitions,
theorems, and proofs serve to tame complexity will help us understand how
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mathematical abstractions serve to support the reasoning process.

6 Conclusions

This exploration of modularity in mathematics has been broad and program-
matic, and more detailed work is needed to make the account fully satisfying.
Nonetheless, I hope I have provided a framing of some of the issues that bear
on the development and normative assessment of mathematical resources that
can help orient and guide their study. In this final section, I will indicate some
directions for future work, and summarize the central themes of this essay.

6.1 Modularity of method

As discussed in Section 2, we can model mathematical practice on two levels.
On the one hand, we have the fairly concrete syntactic data, the definitions,
theorems, proofs, conjectures, questions, and so on that make up the math-
ematical literature. In our discussions so far, the term “modular” is applied
to objects of this sort. But to make progress on questions related to the un-
derstanding of mathematics, we will have to make sense of some of the less
tangible complements of a syntactic body of knowledge, namely, the concepts,
methods, intuitions, and ideas that guide their use. It is far less clear how to
speak rigorously of these. A method, for example, seems to be some sort of
quasi-algorithmic entity that transforms one epistemic state to another, where
the notion of an epistemic state may perhaps be represented as some sort of
quasi-syntactic entity. A concept, like the group concept, may be viewed as a
body of methods, clustered around a central definition or notion. (See [3, 4, 5]
for some thoughts along these lines.)

I will not make progress on refining such talk here, but simply suggest that
these more amorphous objects of knowledge can be modularly structured as well.
Methods (or abilities or capacities) seem to be compositional: we can explain
the ability to solve a problem in group theory in terms of the ability to invoke
and apply relevant theorems, which in turn, may invoke the ability to construct
particular instances of groups, to which the theorems are applied. Insofar as
methods are like algorithms, and algorithms are represented by code, some of the
things we say about modular code may transfer to talk of methods. Notions of
interface may help explain how appropriate methods are triggered and applied,
and what ensures that the results are not sensitive to the implementation. You
and I can both carry out algebraic calculations, and that may be sufficient for
us to understand a particular proof, even though we carry out the calculations
in different ways.

If it does make sense to talk about modularity of the more dynamic compo-
nents of knowledge, one would expect modularity of method to track modularity
of syntax. Insofar as definitions, theorems, questions, and so on are (part of)
the data on which our methods operate, a modular structuring of methods will
necessarily depend on a modular structuring of the data.
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6.2 Philosophical applications

In this section, I describe some of the ways in which the study of modularity
may interact with other lines of inquiry in the philosophy of mathematics.

Representations. In cognitive science, psychology, and education, it is often
held that understanding and cognitive competence rely on having the right rep-
resentations. The notion is also a term of art in philosophy, playing a role in the
philosophy of Descartes and Kant, for example, and contemporary philosophy
of mind [33].

In Section 5.2, we saw that Fermat’s Little Theorem can be expressed in var-
ious ways. Given a prime, p, and an integer a not divisible by p, the conclusion
can be expressed in any of the following forms:

• There is an m such that ap−1 = mp+ 1.

• ap−1 ≡ 1 mod p.

• a|Z
∗
p| = 1 for any a ∈ Z∗p.

(In the last expression, Z∗p is the multiplicative group of nonzero residues modulo
p.) It seems that the best way to make sense of the differences between these
representations is to consider them against a backdrop of a modular structuring
of knowledge, where components of that body of knowledge interact with the
representations in determinate ways, with suitable interfaces to mediate the
interactions. A representation is useless unless one knows what to do with it;
to paraphrase Kant, representations without interfaces are blind.

Abstraction. Understanding mathematical resources via modularity can help
us understand the nature of abstraction, since specifying an interface is a way
of characterizing an object in terms of its essential properties rather than its
representation.

Naturality. Tappenden [40] has suggested that mathematical definitions seem
to denote bona fide metaphysical entities rather than artificial or gerrymandered
concepts when those definitions prove to play a fruitful or even critical role in
our theorizing. The perspective offered here can provide an explanation of how
they come to do so, namely, by contributing to modules and interfaces that have
the desired effects.

Generality. The notion of modularity helps solve another puzzle. The virtue
of introducing axiomatic and algebraic abstractions is usually attributed to their
generality: for example, Dedekind’s notion of an ideal, mentioned briefly in
Section 5.3, has widespread uses in number theory, algebraic geometry, and
functional analysis. But every such abstraction has to have an initial applica-
tion, and unless that initial application yields an immediate payoff, it is hard
to see how the abstraction can get off the ground. It is sometimes the case
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that algebraic abstractions are introduced to unify existing theories and results,
abstracting their common features. But not always: Dedekind introduced his
theory of ideals to improve on Kummer’s theory of ideal divisors, and was clearly
pleased with the results, even before there were additional applications on the
horizon. Indeed, it is often the case that algebraic and axiomatic abstraction
provide a useful means of simplifying and clarifying a single proof or theoretical
development. But that raises the question: is it just a coincidence that the
kinds of abstractions that make proofs and theories more understandable often
give rise to components that are reusable and more generally applicable?

Modularity explains the phenomenon by attributing both the improved un-
derstandability and the reusability to a common cause: the introduction of
components with clear interfaces that make salient the essential data in a cer-
tain line of reasoning, and filter out extraneous information. Doing so makes
a proof easier to understand, because there is less data to process and key re-
lationships are easier to discern; but it also yields concepts and results that
depend on fewer specific features of the context in which they are used, and
hence are reusable and more general.

Explanation. There are various attempts, in the literature, to clarify what
it means for a mathematical result to be explanatory. For example, Kitcher
[25] takes explanation to be theoretical unification, while Steiner [38] expects
an explanatory proof to make use of a “characteristic property” of an object
mentioned in the theorem in a certain way. (These, and other approaches,
are nicely surveyed in [27].) Because such analyses rely on structural notions
of mathematical theories — the applicability of mathematical resources across
different contexts, or the variability of proofs with certain parameters — the
accounts may benefit from a clearer articulation of such structural notions.

Purity. Mathematicians sometimes express sentiments that promote certain
kinds of purity of method, for example, sentiments to the effect that an ele-
mentary theorem should have an elementary proof, or that a geometric theorem
should have a purely geometric proof. Andrew Arana and Michael Detlefsen
have considered various notions of purity and the associated epistemic benefits
(for example, in [2, 18]). The approach offered here may help clarify some of
the claims. For example, the notion of purity explored in [18], topical purity,
demands that a proof draw on only those axioms and definitions that are needed
to determine the meaning of a theorem. Understanding the body of mathemat-
ics in the terms proposed here may help make sense of what determines that
meaning; for example, notions of modularity can be used to screen out terms
and facts that are deemed incidental to a particular presentation.

6.3 Summary

I have argued that it is possible to transfer, in a meaningful way, concepts and
methods of analysis from the realm of software engineering to the philosophy
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of mathematics. The transfer can be decomposed into two steps: insofar as
formal languages used in interactive theorem proving are forms of computer
code, notions from software engineering make sense when applied to formal
definitions, theorems, proofs, theories; and insofar as the latter reflect important
features of their informal mathematical counterparts, we can apply these notions
to informal mathematics as well.

In particular, in computer science, modular structure is typically held to
support understandability, reliability, the possibility of independent develop-
ment, flexibility, and reuse. Transferring notions of modularity to mathematics
provides insight as to how these benefits are achieved in that setting as well.

This perspective is largely orthogonal to traditional approaches to address-
ing ontological and epistemological questions. In particular, it seems equally
compatible with realist and antirealist views of mathematics. But in addition
to being independently valuable, a better understanding of what we value in
mathematics, and why, can inform traditional lines of inquiry as well. For ex-
ample, it can provide a more robust picture of how our mathematical language
deals with mathematical objects, and what it is about such objects that gives
them the air of reality.

There is still a lot of work to be done. One thing we can do is to continue
analyzing the data — the historical and contemporary record of mathemati-
cal practice — in terms of the notions proposed here. At the same time, we
need to develop better conceptual and logical models, with more precise ways of
analyzing the structure of mathematical artifacts and assessing their epistemic
value. Getting a grip on mathematical understanding will requires both philo-
sophical analysis and careful attention to the mathematics itself, and so the two
approaches should go hand in hand.
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