Definition FS.1.1: $x \Delta_{0} y=x \backslash y \cup y \backslash x$. Precedence: 60 .

Definition FS.1.2: $x \times y$ is the set of (z, w) such that $z \in x$ and $w \in y$. Precedence: 20.

Definition FS.2.1: A is a binary relation if and only if for every $y \in A$, there exist z, w such that $y=(z, w)$.

Definition FS.2.2: A is a ternary relation if and only if for every $y \in A$, there exist z, w, u such that $y=(z, w, u)$.

Definition FS.2.3: If R is a binary relation then the domain of R is the set of x such that there exists y such that $x R y$. Otherwise the domain of R is undefined.

Definition FS.2.4: If R is a binary relation then the range of R is the set of y such that there exists x such that $x R y$. Otherwise the range of R is undefined.

Definition FS.2.5: The field of R is the domain of R union the range of R.

Definition FS.2.6: If R is a binary relation then the converse relation to R is $\{(x, y): y R x\}$. Otherwise the converse relation to R is undefined.

Definition FS.2.8: If R and S are binary relations then $R \circ S$ is the set of (x, y) such that there exists z such that $x R z$ and $z S y$. Otherwise $R \circ S$ is undefined. Precedence: 10.

Definition FS.2.9: If R is a binary relation then $R \mid A$ is R intersect the cartesian product of A and the range of R. Otherwise $R \mid A$ is undefined. Precedence: 5.

Definition FS.2.10: If R is a binary relation then the range of R when restricted to A is the range of $R \mid A$. Otherwise the range of R when restricted to A is undefined. Precedence: 5 .

Definition FS.2.11: R is reflexive on A if and only if R is a binary relation and for every $x \in A, x R x$.

Definition FS.2.12: R is irreflexive on A if and only if R is a binary relation and for every $x \in A$, it is not the case that $x R x$.

Definition FS.2.13: R is symmetric on A if and only if R is a binary relation and for every $x, y \in A, x R y$ if and only if $y R x$.

Definition FS.2.14: R is asymmetric on A if and only if R is a binary relation and for every $x, y \in A$, if $x R y$ then it is not the case that $y R x$.

Definition FS.2.15: R is antisymmetric on A if and only if R is a binary relation and for every $x, y \in A, x R y$ and if $y R x$ then $x=y$.

Definition FS.2.16: R is transitive on A if and only if R is a binary relation and for every $x, y, z \in A, x R y$ and if $y R z$ then $x R z$.

Definition FS.2.17: R is connected on A if and only if R is a binary relation and for every $x, y \in A$, if $x \neq y$ then $x R y$ or $y R x$.

Definition FS.2.18: R is simply connected on A if and only if R is a binary relation and for every $x, y \in A, x R y$ or $y R x$.

Definition FS.2.19: R is reflexive if and only if R is a binary relation and R is reflexive on the field of R.

Definition FS.2.20: R is irreflexive if and only if R is a binary relation and R is irreflexive on the field of R.

Definition FS.2.21: R is symmetric if and only if R is a binary relation and R is symmetric on the domain of R.

Definition FS.2.22: R is asymmetric if and only if R is a binary relation and R is asymmetric on the domain of R.

Definition FS.2.23: R is antisymmetric if and only if R is a binary relation and R is antisymmetric on the domain of R.

Definition FS.2.24: R is transitive if and only if R is a binary relation and R is transitive on the domain of R.

Definition FS.2.25: R is ϵ-connected if and only if R is a binary relation and R is connected on the domain of R.

Definition FS.2.26: R is simply connected if and only if R is a binary relation and R is simply connected on the domain of R.

Definition FS.2.27: $I d(x)=\{(y, y): y \in x\}$.
Definition FS.2.28: R is a quasi order on A if and only if R is reflexive on A and R is transitive on A.

Definition FS.2.29: R is a partial order on A if and only if R is reflexive on A and R is antisymmetric on A and R is transitive on A.

Definition FS.2.30: R is a simple order on A if and only if R is antisymmetric on A and R is transitive on A and R is simply connected on A.

Definition FS.2.31: R is a strict partial order on A if and only if R is asymmetric on A and R is transitive on A.

Definition FS.2.32: R is a strict simple order on A if and only if R is asymmetric on A and R is transitive on A and R is connected on A.

Definition FS.2.33: R is a quasi order if and only if R is a quasi order on the field of R.

Definition FS.2.34: R is a partial order if and only if R is a partial order on the field of R.

Definition FS.2.35: R is a simple order if and only if R is a simple order on the field of R.

Definition FS.2.36: R is a strict partial order if and only if R is a strict partial order on the field of R.

Definition FS.2.37: R is a strict simple order if and only if R is a strict simple order on the field of R.

Definition FS.2.38: x is a minimal element in A, under R if and only if R is a binary relation and $x \in A$ and for every $y \in A$, it is not the case that $y R x$.

Definition FS.2.39: x is a first element in A, under R if and only if R is a binary relation and $x \in A$ and for every $y \in A$, if $x \neq y$ then $x R y$.

Definition FS.2.40: R is a well-ordering on A if and only if R is connected on A and for every $B \subseteq A$, if $B \neq \varnothing$ then there exists x such that x is a minimal element in B, under R.

Definition FS.2.41: y is an immediate successor of x, under R if and only if R is a binary relation and $x R y$ and for every z, if $x R z$ then $z=y$ or $y R z$.

Definition FS.2.42: x is a last element in A, under R if and only if R is a binary relation and $x \in A$ and for every $y \in A$, if $x \neq y$ then $y R x$.

Definition FS.2.43: B is a section of A, under R if and only if R is a binary relation and $B \subseteq A$ and the range of A intersect the converse relation to R when restricted to B is contained in B.

Definition FS.2.44: If R is a binary relation then the initial segment of A at x, under R is $\{y \in A: y R x\}$. Otherwise $\operatorname{Seg}(R)$ is undefined.

Definition FS.2.45: x is a lower bound for A, under R if and only if R is a binary relation and for every $y \in A, x R y$.

Definition FS.2.46: x is an infimum for A, under R if and only if x is a lower bound for A, under R and for every $y \in A$, if y is a lower bound for A, under R then $y R x$.

Definition FS.2.47: x is an upper bound for A, under R if and only if R is a binary relation and for every $y \in A, y R x$.

Definition FS.2.48: x is a supremum for A, under R if and only if x is an upper bound for A, under R and for every $y \in A$, if y is an upper bound for A, under R then $x R y$.

Definition FS.2.50: R is an equivalence relation if and only if R is reflexive and R is symmetric and R is transitive.

Definition FS.2.51: R is an equivalence relation on A if and only if R is an equivalence relation and the field of R equals A.

Definition FS.2.52: If R is an equivalence relation and x is in the field of R then the coset of x with respect to R is $\{y: x R y\}$. Otherwise the coset of x with respect to R is undefined.

Definition FS.2.53: W is a partition of A if and only if $\cup W=A$ and for every $B, C \in W$, if $B \neq C$ then $B \cap C=\varnothing$ and for every $B \in W, B \neq \varnothing$.

Definition FS.2.54: W is a partition if and only if there exists A such that W is a partition of A.

Definition FS.2.55: If V and W are partitions then V is finer than W if and only if $V \neq W$ and for every $A \in V$, there exists $B \in W$ such that $A \subseteq B$.

Definition FS.2.56: If R is an equivalence relation then the partition induced by R is the set of the coset of x with respect to R such that x is in the field of R.

Definition FS.2.57: If W is a partition then the relation induced by W is the set of (x, y) such that there exists $B \in W$ such that $x \in B$ and $y \in B$.

Definition FS.2.58: f is a function if and only if $f=\{(x, y): f(x)=y\}$.
Definition FS.2.59: f is an injection if and only if f and the converse relation to f are functions.

Definition FS.2.60: f is a function from A to B if and only if f is a function and the domain of f equals A and the range of f is contained in B.

Definition FS.2.61: f is a surjection from A to B if and only if f is a function and the domain of f equals A and the range of f equals B.

Definition FS.2.62: f is an injection from A to B if and only if f is an injection and the domain of f equals A and the range of f is contained in B.

Definition FS.2.63: f is a bijection from A to B if and only if f is an injection and the domain of f equals A and the range of f equals B.

Definition FS.2.64: The set of maps from A to B is the set of f such that f is a function from A to B.

Definition FS.3.1: $A \approx B$ if and only if there exists f such that f is a bijection from A to B.

Definition FS.3.2: $x \leq y$ if and only if there exists $z \subseteq y$ such that $x \approx z$.
Definition FS.3.3: $A<B$ if and only if $A \leq B$ and it is not the case that $B \leq A$.

Definition FS.3.4: x is a minimal element of A if and only if $x \in A$ and for every $y \in A$, it is not the case that $y \in x$.

Definition FS.3.5: x is a maximal element of A if and only if $x \in A$ and for every $y \in A$, it is not the case that $x \in y$.

Definition FS.3.6: x is finite if and only if for every $A \neq \varnothing$, if $A \subseteq \wp(x)$ then there exists $y \in A$ such that y is a minimal element of A.

Definition FS.3.7: x is finite if and only if for every $y \subseteq x$, if $y \neq x$ then it is not the case that $x \approx y$.

Definition FS.4.1: x is a transitive set if and only if for every $y \in x$, for every $z \in y, z \in x$.

Definition FS.4.2: x is ϵ-connected if and only if for every $y, z \in x, y \in z$ or $z \in y$ or $y=z$.

Definition FS.4.3: x is an ordinal if and only if x is a transitive set and x is ϵ-connected.

Definition FS.4.4: The ϵ-connected subset of x is the set of (y, z) such that $y \in z$ and $z, y \in x$.

Definition FS.4.5: $A<B$ if and only if A and B are ordinals and $A \in B$.

Definition FS.4.6: $A \leq B$ if and only if A and B are ordinals and $A \in B$ or $A=B$.

Definition FS.4.7: $A>B$ if and only if A and B are ordinals and $B \in A$.
Definition FS.4.8: $A \geq B$ if and only if A and B are ordinals and $B \in A$ or $A=B$.

Definition FS.4.9: If x is an ordinal then the successor of x is $\{y: y \leq x\}$. Otherwise the successor of x is undefined.

Definition FS.4.10: x is a natural number if and only if x is an ordinal and the converse relation to the ϵ-connected subset of x is a well-ordering on x.

Definition FS.4.11: ω is the set of x such that x is a natural number.

Definition FS.4.11.a: $\mathbb{N}=\omega$.
Definition FS.4.12: $0=\varnothing$.
Definition FS.4.13: $1=\{\varnothing\}$.
Definition FS.4.13.2: 2 is the successor of 1.
Definition FS.4.13.3: 3 is the successor of 2.

Definition FS.4.13.4: 4 is the successor of 3 .
Definition FS.4.13.5: 5 is the successor of 4 .

Definition FS.4.13.6: 6 is the successor of 5 .
Definition FS.4.13.7: 7 is the successor of 6 .
Definition FS.4.13.8: 8 is the successor of 7 .
Definition FS.4.13.9: 9 is the successor of 8 .

Definition FS.4.13.10: 10 is the successor of 9 .

Definition FS.4.14: The graph of + is the unique x such that for every y, $z \in \omega, x(y, 0)=y$ and x, evaluated at y, the successor of z equals the successor of $x(y, z)$ and for every $y, z, x(y, z)$ is defined if and only if $y, z \in \omega$.

Definition FS.4.15: $x+y$ is the unique z such that (x, y, z) is in the graph of + . Precedence: 60 .

Definition FS.4.16: The graph of \times is the unique x such that for every y, $z \in \omega, x(y, 0)=0$ and $x(y, z+1)=x(y, z)+y$ and for every $y, z, x(y, z)$ is defined if and only if $y, z \in \omega$.

Definition FS.4.17: $x \times y$ is the unique z such that (x, y, z) is in the graph of \times. Precedence: 40 .

Definition FS.4.18: The graph of exponentiation is the unique x such that for every $y, z \in \omega, x(y, 0)=1$ and $x(y, z+1)=x(y, z) \times y$ and for every y, z, $x(y, z)$ is defined if and only if $y, z \in \omega$.

Definition FS.4.19: x^{y} is the unique z such that (x, y, z) is in the graph of exponentiation. Precedence: 20.

Definition FS.4.20: x is infinite if and only if x is not finite.

Definition FS.4.21: x is denumerable if and only if $x \approx \omega$.
Definition FS.4.22: x is infinite if and only if x is not finite.
Definition FS.4.23: A is countable if and only if there exists f such that f is a bijection from ω to A.

Definition FS.4.24: A is uncountable if and only if A is not countable.
Definition FS.5.1: If $x, y \in \omega$ and $y \neq 0$ then $x / y=(x, y)$. Otherwise x / y is undefined. Precedence: 5 .

Definition FS.5.2: The set of positive fractions is the set of x / y such that x / y is defined.

Definition FS.5.3: $x \equiv y$ if and only if there exist a, b, c, d such that $x=$ a / b and $y=c / d$ and $a \times d=b \times c$.

Definition FS.5.4: $x<y$ if and only if there exist a, b, c, d such that $x=$ a / b and $y=c / d$ and $a \times d<b \times c$.

Definition FS.5.5: $x>y$ if and only if $y<x$.
Definition FS.5.6: $x \leq y$ if and only if $x<y$ or $x \equiv y$.
Definition FS.5.7: $x \geq y$ if and only if $x>y$ or $x \equiv y$.
Definition FS.5.8: $x+y$ is the unique z such that there exist a, b, c, d, e, f such that $x=a / b$ and $y=c / d$ and $z=e / f$ and $e=a \times d+b \times c$ and $f=b \times d$. Precedence: 40 .

Definition FS.5.9: $x \times y$ is the unique t such that there exist a, b, c, d, e, f such that $x=a / b$ and $y=c / d$ and $t=e / f$ and $e=a \times c$ and $f=b \times$ d. Precedence: 20.

Definition FS.5.10: The set $N r a$ is the set of the coset of x with respect to $\{(u, v): u \equiv v\}$ such that x is in the set of positive fractions.

Definition FS.5.10.5: If x is in the set of positive fractions then x is the coset of x with respect to $\{(u, v): u \equiv v\}$. Otherwise x is undefined.

Definition FS.5.11: $x<y$ if and only if x, y are in the set Nra and there exist u, v such that $u \in x$ and $v \in y$ and $u<v$.

Definition FS.5.12: $x>y$ if and only if x, y are in the set Nra and there exist u, v such that $u \in x$ and $v \in y$ and $u>v$.

Definition FS.5.13: $x \leq y$ if and only if x, y are in the set Nra and there exist u, v such that $u \in x$ and $v \in y$ and $u \leq v$.

Definition FS.5.14: $x \geq y$ if and only if x, y are in the set Nra and there exist u, v such that $u \in x$ and $v \in y$ and $u \geq v$.

Definition FS.5.15: $x+y$ is the unique z such that x, y, z are in the set Nra and there exist u, v, w such that $u \in x$ and $v \in y$ and $w \in z$ and $u+v \equiv$ w. Precedence: 40.

Definition FS.5.16: $x \times y$ is the unique z such that x, y, z are in the set Nra and there exist u, v, w such that $u \in x$ and $v \in y$ and $w \in z$ and $u \times v \equiv$ w. Precedence: 20.

Definition FS.5.17: 0 is the coset of $0 / 1$ with respect to $\{(x, y): x \equiv y\}$.
Definition FS.5.18: 1 is the coset of $1 / 1$ with respect to $\{(x, y): x \equiv y\}$.
Definition FS.5.19: $x \equiv y$ if and only if there exist a, b, c, d such that x $=(a, b)$ and $y=(c, d)$ and $a+d=b+c$.

Definition FS.5.20: $x<y$ if and only if there exist a, b, c, d such that x $=(a, b)$ and $y=(c, d)$ and $a+d<b+c$.

Definition FS.5.21: $x+y$ is the unique z such that there exist a, b, c, d, e, f such that $x=(a, b)$ and $y=(c, d)$ and $z=(e, f)$ and $a+c+f=b+d+$ e. Precedence: 40.

Definition FS.5.22: $x \times y$ is the unique z such that there exist a, b, c, d, e, f such that $x=(a, b)$ and $y=(c, d)$ and $z=(e, f)$ and $a \times c+b \times d+f=$ $a \times d+b \times c+e$. Precedence: 20.

Definition FS.5.23: \mathbb{Q} is the set of the coset of x with respect to $\{(u, v): u \equiv v\}$ such that x is in the cartesian product of the set Nra and the set Nra.

Definition FS.5.23.5: If x is in the set Nra then x is the coset of $(x, 0)$ with respect to $\{(u, v): u \equiv v\}$.

Definition FS.5.23.8: If x is in the set of positive fractions then $x=x$.
Definition FS.5.23.A: $\mathbb{Q}=\mathbb{Q}$.
Definition FS.5.24: $x<y$ if and only if there exist z, w such that $x, y \in$ \mathbb{Q} and $z \in x$ and $w \in y$ and $z<w$.

Definition FS.5.25: $x+y$ is the unique z such that $x, y, z \in \mathbb{Q}$ and there exist a, b, c such that $a \in x$ and $b \in y$ and $c \in z$ and $a+b=c$. Precedence: 40.

Definition FS.5.26: $x \times y$ is the unique z such that $x, y, z \in \mathbb{Q}$ and there exist a, b, c such that $a \in x$ and $b \in y$ and $c \in z$ and $a \times b=c$. Precedence: 20.

Definition FS.5.27: 0 is the coset of $(0,0)$ with respect to $\{(x, y): x \equiv y\}$.
Definition FS.5.28: 1 is the coset of $(1,0)$ with respect to $\{(x, y): x \equiv y\}$.
Definition FS.5.29: $x>y$ if and only if $y<x$.
Definition FS.5.30: $x \leq y$ if and only if $x<y$ or $x=y$.
Definition FS.5.31: $x \geq y$ if and only if $x>y$ or $x=y$.
Definition FS.5.32: $x-y=(!z) x=y+z$. Precedence: 60 .
Definition FS.5.33: $|x|$ is the unique $y \in \mathbb{Q}$ such that if $x \geq 0$ then $y=x$ and if $x<0$ then $y=0-x$.

Definition FS.5.35: \mathbb{N} is the unique x such that for every $y, y \in x$ if and only if $y=0$ or $y>0$ and $y-1 \in x$.

Definition FS.5.35.A: $\mathbb{N}=\mathbb{N}$.
Definition FS.5.36: \mathbb{Z} is the unique x such that for every $y, y \in x$ if and only if $y \in \mathbb{N}$ or $0-y \in \mathbb{N}$.

Definition FS.5.36.A: $\mathbb{Z}=\mathbb{Z}$.

Definition FS.5.37: The set of all sequences of rational numbers is the set of maps from ω to \mathbb{Q}.

Definition FS.5.38: $x+y$ is the unique z such that x, y, z are in the set of all sequences of rational numbers and for every $n \in \omega, z(n)=x(n)+y(n)$. Precedence: 40.

Definition FS.5.39: $x \times y$ is the unique z such that x, y, z are in the set of all sequences of rational numbers and for every $n \in \omega, z(n)=x(n) \times y(n)$. Precedence: 20.

Definition FS.5.40: $x<y$ if and only if $x, y \in \omega$ and $x<y$.
Definition FS.5.41: $x>y$ if and only if $x, y \in \omega$ and $x>y$.
Definition FS.5.42: $x \leq y$ if and only if $x<y$ or $x=y$.
Definition FS.5.43: $x \geq y$ if and only if $x>y$ or $x=y$.
Definition FS.5.44: The set of Cauchy sequences of rational numbers is the set of x in the set of all sequences of rational numbers such that for every ε >0, there exists $n \in \omega$ such that for every $m, r>n,|x(m)-x(r)|<\varepsilon$.

Definition FS.5.45: $x \equiv y$ if and only if for every $\varepsilon>0$, there exists $n \in$ ω such that for every $m>n,|x(m)-y(m)|<\varepsilon$.

Definition FS.5.46: $x<y$ if and only if x, y are in the set of Cauchy sequences of rational numbers and there exists $\delta>0$ such that there exists $n \in$ ω such that for every $m>n, x(m)+\delta<y(m)$.

Definition FS.5.47: \mathbb{R} is the set of the coset of x with respect to $\{(u, v): u \equiv v\}$ such that x is in the set of Cauchy sequences of rational numbers.

Definition FS.5.48.1: $x<y$ if and only if there exist z, w such that x, y $\in \mathbb{R}$ and $z \in x$ and $w \in y$ and $z<w$.

Definition FS.5.48.2: $x>y$ if and only if $y<x$.
Definition FS.5.48.3: $x \leq y$ if and only if $x<y$ or $x=y$.
Definition FS.5.48.4: $x \geq y$ if and only if $x>y$ or $x=y$.
Definition FS.5.49: $x+y$ is the unique z such that $x, y, z \in \mathbb{R}$ and there exist a, b, c such that $a \in x$ and $b \in y$ and $c \in z$ and $a+b \equiv c$. Precedence: 40.

Definition FS.5.49.A: $x-y=(!z) x=y+z$. Precedence: 60 .
Definition FS.5.50: $x \times y$ is the unique z such that $x, y, z \in \mathbb{R}$ and there exist a, b, c such that $a \in x$ and $b \in y$ and $c \in z$ and $a \times b \equiv c$. Precedence: 20.

Definition FS.5.51: 0 is the unique $x \in \mathbb{R}$ such that there exists $w \in x$ such that for every $n \in \omega, w(n)=0$.

Definition FS.5.52: 1 is the unique $x \in \mathbb{R}$ such that there exists $w \in x$ such that for every $n \in \omega, w(n)=1$.

Definition FS.5.53: $|x|$ is the unique $y \in \mathbb{R}$ such that if $x \geq 0$ then $y=x$ and if $x<0$ then $y=0-x$.

Definition FS.5.53.A: The identity function on \mathbb{R} is the unique $y \in \mathbb{R}$ such that there exists $w \in y$ such that for every $n \in \omega, w(n)=x$.

Definition FS.5.53.B: If x is in the set Nra then x is the identity function on \mathbb{R}.

Definition FS.5.53.C: If x is in the set of positive fractions then x is the identity function on \mathbb{R}.

Definition FS.5.54: \mathbb{Q} is the set of the identity function on \mathbb{R} such that x $\in \mathbb{Q}$.

Definition FS.5.55: The set of sequences of real numbers is the set of maps from ω to \mathbb{R}.

Definition FS.5.56: The set of Cauchy sequences of real numbers is the set of x in the set of sequences of real numbers such that for every $\varepsilon>0$, there exists $n \in \omega$ such that for every $m, r>n,|x(m)-x(r)|<\varepsilon$.

Definition FS.5.57: If x is in the set of sequences of real numbers then $\lim x$ is the unique $y \in \mathbb{R}$ such that for every $\varepsilon>0$, there exists $n \in \omega$ such that for every $m>n,|x(m)-y|<\varepsilon$.

Definition FS.5.58: x is an upper bound on A if and only if $x \in \mathbb{R}$ and A $\subseteq \mathbb{R}$ and for every $y \in A, y \leq x$.

Definition FS.5.59: If $A \subseteq \mathbb{R}$ then the minimal element of A is the unique $x \in A$ such that for every $y \in A$, it is not the case that $y<x$.

Definition FS.5.59.5: If $A \subseteq \mathbb{R}$ then the maximal element of A is the unique $x \in A$ such that for every $y \in A$, it is not the case that $x<y$.

Definition FS.5.60: If $A \subseteq \mathbb{R}$ then the least upper bound of A is the minimal element of the set of x such that x is an upper bound on A.

Definition FS.5.61.pre: If there exists $n \in \omega$ such that f is a function from n to \mathbb{R} then the graph of the finite sum function is the unique x such that for every $m \in \omega$, if $m<n$ then $x(0)=0$ and x, evaluated at the successor of m equals $x(m)$ plus f, evaluated at the successor of m and if $m \geq n$ then x, evaluated at the successor of m equals 0 and for every $m, x(m)$ is defined if and only if $m \in \omega$.

Definition FS.5.61: If there exists $n \in \omega$ such that f is a function from n to \mathbb{R} then $\sum_{k \in \operatorname{Dom}(f)} f(k)$ is the unique $r \in \mathbb{R}$ such that (the domain of $\left.f, r\right)$ is in the graph of the finite sum function.

Definition FS.5.62: If $r \in \mathbb{R}$ then \sqrt{r} is the unique $y \in \mathbb{R}$ such that $y \geq$ 0 and $y \times y=r$.

Definition FS.5.63: $\sup A$ is the unique s such that s is a supremum for A, under $\{(x, y): x<y\}$.

Definition FS.5.64: $\inf A$ is the unique g such that g is an infimum for A, under $\{(x, y): x<y\}$.

