
Elaboration in Dependent Type Theory

Leonardo de Moura1, Jeremy Avigad*2, Soonho Kong3, and Cody Roux4

1 Microsoft Research, Redmond
2 Departments of Philosophy and Mathematical Sciences, Carnegie Mellon University

3 Department of Computer Science, Carnegie Mellon University
4 Draper Laboratories

Abstract. We describe the elaboration algorithm that is used in Lean,
a new interactive theorem prover based on dependent type theory. To
be practical, interactive theorem provers must provide mechanisms to
resolve ambiguities and infer implicit information, thereby supporting
convenient input of expressions and proofs. Lean’s elaborator supports
higher-order unification, ad-hoc overloading, insertion of coercions, type
class inference, the use of tactics, and the computational reduction of
terms. The interactions between these components are subtle and com-
plex, and Lean’s elaborator has been carefully designed to balance effi-
ciency and usability.

1 Introduction
Just as programming languages run the spectrum from untyped languages like
Lisp to strongly-typed functional programming languages like Haskell and ML,
foundational systems for mathematics exhibit a range of diversity, from the
untyped language of set theory to simple type theory and various versions of
dependent type theory. Having a strongly typed language allows the user to
convey the intent of an expression more compactly and efficiently, since a good
deal of information can be inferred from type constraints. Moreover, a type dis-
cipline catches routine errors quickly and flags them in informative ways. But
this is a slippery slope: as we increasingly rely on types to serve our needs, the
computational support that is needed to make sense of expressions in efficient
and predictable ways becomes increasingly subtle and complex.

Our goal here is to describe the elaboration algorithm of an expressive de-
pendent type theory. This allows using a single language to define datatypes,
objects, and functions, and also to express assertions and write proofs, in ac-
cordance with the propositions-as-types paradigm. Thus, filling in the details of
a function definition and ensuring it is type correct is no different from filling
in the details of a proof and checking that it establishes the desired conclusion.
We have developed these ideas in a fully featured interactive theorem prover,
Lean5 [9]. Our main contribution is a novel elaboration algorithm that employs
non-chronological backtracking, as well as heuristics for handling defined con-
stants that we have shown to be very effective in practice.
* Work partially supported by AFOSR FA9550-12-1-0370 and FA9550-15-1-0053.
5 http://leanprover.github.io



2 de Moura, Avigad, Kong, and Roux

2 The elaboration task

What makes dependent type theory “dependent” is that types can depend on
elements of other types. Within the language, types themselves are terms, and
a function can return a type just as another function may return a natural
number. Lean’s standard library is based on a version of the Calculus of Inductive
Constructions with Universes [8, 21, 16], as are formal developments in Coq [5]
and Matita [3]. There is an infinite sequence of type universes Type0, Type1,
Type2, …, and any term t : Typei is intended to denote a type in the ith
universe. Each universe is closed under the formation of Π-types Πx : A, B,
where A and B are type-valued expressions, and B can depend on x. The idea is
that Πx : A, B denotes the type of functions f that map any element a : A
to an element of B[a/x]. When x does not appear in B, Πx : A, B is written
A → B and denotes the usual non-dependent function space. One can also form
inductive families [10], a mechanism that can be used to define basic types like
nat and bool, and common type-forming operations, like Cartesian products,
lists, Σ-types, and so on. Each inductive family declaration generates a recursor
(also known as the eliminator).

Lean’s kernel can be instantiated in different ways. In the standard mode,
Type0, denoted Prop, is an impredicative universe of proof-irrelevant types. Lean
also provides a homotopy type theory mode without Prop, resulting in a version
of Martin-Löf type theory [18, 27] similar to the one used in Agda [6].

The task of the elaborator, put simply, is to convert a partially specified
expression into a fully specified, type-correct term. For example, in the expression
λx : N, x + x, a user can omit the type annotation on x and leave it to
the elaborator to infer that information. In that case, the expression may be
ambiguous if, for example, the notation + for both natural numbers and integers
is in scope, in which case the elaborator needs to find (or choose) a single type-
correct interpretation.

Higher-order unification. Some elaboration problems are easy to solve using
the Hindley/Milner approach. However, the elaborator often needs to infer an
element of a Π-type, which constitutes a higher-order unification problem. For
example, if e : a = b is a proof of the equality of two terms of some type
A, and H : P is a proof of some expression involving a, the term subst e H
denotes a proof of the result of replacing some or all of the occurrences of a
in P with b. Here not just the type A is inferred, but also an expression T :
A → Prop denoting the context for the substitution, that is, the expression
with the property that T a is convertible to P. Such an expression is inherently
ambiguous; for example, if H has type R (f a a) a, then with subst e H
the user may have in mind R (f b b) b or R (f a b) a or R (f a a) a
among other interpretations, and the elaborator has to rely on context and a
backtracking search to find an interpretation that fits. Similar issues arise with
proofs by induction, which require the system to infer an induction predicate,
and with the formation of a dependent pair ⟨a, b⟩ : Σx : A, B, which requires
the elaborator to infer the dependent expression B.



Elaboration in Dependent Type Theory 3

Even second-order unification is known to be generally undecidable [12], but
the elaborator merely needs to perform well on instances that come up in prac-
tice. In Lean, users can import the notation H ▶ H' for subst H H', and
write:

theorem mul_mod_mul_right (x z y : N) :
(x * z) mod (y * z) = (x mod y) * z :=

!mul.comm ▶ !mul.comm ▶ !mul.comm ▶ !mul_mod_mul_left

The proof applies the commutativity of multiplication three times to an appro-
priate instance of the theorem mul_mod_mul_left. (The symbol ! indicates that
all arguments should be synthesized by the elaborator.) The unifier can similarly
handle nested inductions and iterated recursion.

Computational behavior. The elaborator should also respect the computational
interpretation of terms. It should for instance recognize the equivalence of the
terms (λx, t)s and t[s/x], as well as ⟨s, t⟩.1 (the first projection) and s
under the reduction rule for pairs. Elements of inductive types may also have
computational behavior; on the natural numbers, 2 + 2 and 4 are both defini-
tionally equal to succ (succ (succ (succ 0))), x + 0 is definitionally equal
to x, and x + 1 is definitionally equal to succ x. The elaborator should also
support unfolding definitions where necessary: for example, if x - y is defined
as x + (-y), the elaborator should allow us to use the commutativity of addi-
tion to rewrite x - y to -y + x. Unfolding definitions and reducing projections
is especially crucial when working with algebraic structures, where many basic
expressions cannot even be seen to be type correct without carrying out such
reductions.

It is worth noting that the naive approach of performing all such unfoldings
leads to unacceptable performance, and it is an important aspect of building
a practical elaboration procedure to design heuristics that limit unfolding to
situations that require it. In addition, the user often may require different com-
putational behavior of various definitions, e.g. when it is intended as a simple
notation rather than a mechanism for abstracting logical content.

Overloading and coercions. Lean supports ad-hoc overloading of constants. For
example, users can import notation from “namespaces” for the natural num-
bers, integers, and algebra, overloading symbols for addition and multiplica-
tion. Similarly, if they open all three namespaces, the theorems nat.mul.assoc,
int.mul.assoc, algebra.mul.assoc, denoting associativity of multiplication in
the various contexts, can all be denoted by the overloaded alias mul.assoc. Lean
provides the notation #int a * b to force an overloaded constant to be inter-
preted in the int namespace, but typically such annotations are unnecessary.

Ad-hoc overloading is more flexible than type class overloading (described
below), in that the overloaded constants can denote entirely different kinds of
objects. For example in the Lean standard library, we use ¹ above to denote
the inverse function for algebraic structures that support it, as well as for the



4 de Moura, Avigad, Kong, and Roux

symmetry operation for equalities, without having to support the symmetry of
equality as an element of an axiomatic class.

The treatment of coercions in Lean is as one would expect. One can, for
example, coerce a bool to a nat and a nat to an int, and Lean will insert
coercions in list expressions [n, i, m, j] and [i, n, j, m] when n and m have
type nat and i and j have type int. One can also coerce axiomatic structures,
so that the user can provide a group as input anywhere a semigroup is expected.
One can also coerce from a suitable family of types to Type or to a Π-type.

Type classes. Lean supports the use of Haskell-style type classes [14]. For exam-
ple, we can define a class has_mul A of types A with an associated multiplication,
and a class semigroup A of types A with semigroup structure, as follows:

structure has_mul [class] (A : Type) := (mul : A → A → A)

structure semigroup [class] (A : Type) extends has_mul A :=
(mul_assoc : ∀a b c, mul (mul a b) c = mul a (mul b c))

We can then declare appropriate instances of these classes, and instruct the
elaborator to synthesize such instances when processing the notation a * b or
the generic theorem mul.assoc.

The structure declaration above automatically declares semigroup to be an
instance of has_mul, and also declares a coercion from the former to the latter.
The structure command supports the construction of an algebraic hierarchy
by allowing the user to extend and merge multiple structures:

structure group [class] (A : Type) extends monoid A, has_inv A :=
(mul_left_inv : ∀a, mul (inv a) a = one)

Users can also rename structure components on the fly.
We mark implicit arguments with square brackets instead of curly brackets, to

inform the elaborator that these arguments should be inferred by the type class
mechanism. In the following example, type class inference finds the appropriate
inverse and instance of the theorem inv_inv:

theorem eq_inv_of_eq_inv {A : Type} [s : group A] {a b : A}
(H : a = b ¹) : b = a ¹ :=

by rewrite [H, inv_inv]

Here, the rewrite tactic (see below) replaces a by b ¹ in the goal, and then
rewrites (b ¹) ¹ to b.

In Lean, type classes can be used to infer not only notation and generic facts,
but fairly complex data. For example, in the standard library, we define the class
of propositions that are decidable:

inductive decidable [class] (p : Prop) : Type :=
inl : p → decidable p,
inr : ¬p → decidable p



Elaboration in Dependent Type Theory 5

Logically speaking, having an element t : decidable p is more informative
than having an element t : p ∨ ¬p; it enables us to define values of an
arbitrary type depending on the truth value of p. The distinction is only useful in
constructive mathematics, because classically every proposition is decidable. But
this typeclass allows for a smooth transition between constructive and classical
logic, allowing classical reasoning in suitable constructive settings as well.

For example, we can prove, constructively, that equality and comparisons
on the natural numbers are decidable, and that decidability is preserved under
boolean operations and bounded quantification. As a result, we can reason by
cases on such statements, and use them, constructively, in an if-then-else expres-
sion. We can even use type class inference to prove theorems automatically:

example : ∀ x : nat, x < 10 → x ̸= 10 ∧ x < 12 := dec_trivial

Here dec_trivial is notation for an expression that infers the implicit decision
procedure and verifies that it reduces to true.

Tactics. Finally, definitions and proofs can invoke tactics, that is, user-defined
or built-in procedures that construct various subterms. The constraint solver
described in this paper invokes user provided tactics to construct terms that
cannot be synthesized by solving unification constraints and type class resolu-
tion. Lean’s tactic language is similar to those found in other LCF-style theorem
provers.

Any given definition or theorem in Lean can draw on many of the features just
described. Consider the following, which defines the composition of two natural
transformations between functors (and establishes that it is, indeed, a natural
transformation):

variables {C D : Precategory} {F G H : C ⇒ D}
definition nt_compose (η : G =⇒ H) (θ : F =⇒ G) : F =⇒ H :=
natural_transformation.mk

(take a, η a ◦ θ a)
(take a b f, calc
H f ◦ (η a ◦ θ a) = (H f ◦ η a) ◦ θ a : assoc

... = (η b ◦ G f) ◦ θ a : naturality

... = η b ◦ (G f ◦ θ a) : assoc

... = η b ◦ (θ b ◦ F f) : naturality

... = (η b ◦ θ b) ◦ F f : assoc)

Here the functors F, G, and H are coerced to their action on morphisms, and the
natural transformations η and θ are coerced to their first component. The compo-
sition symbol ◦ for functions is overloaded to denote composition of morphisms
as well, and type class inference infers the category in which the composition
takes place. The appropriate substitution contexts in the calculation are inferred,
as are the arguments to the theorems that are invoked.

The interactions between the components of the elaboration task are subtle,
and the challenge is to deal with them all at the same time. A definition or proof



6 de Moura, Avigad, Kong, and Roux

may give rise to hundreds of constraints requiring a mixture of higher-order
unification, disambiguation of overloaded symbols, insertion of coercions, type
class inference, and computational reduction. The net effect is then a difficult
constraint-solving problem with a combinatorial explosion of options. Lean’s
elaborator manages to solve such problems, and it is fast: Lean’s entire standard
library compiles in seconds. In the next section, we explain how the elaborator
processes the constraints and navigates the search space in an effort to balance
completeness and efficiency.

3 The elaboration procedure

The process for getting to a fully elaborated term from a preterm has two main
steps: preprocessing and constraint resolution. Before we explain each phase, we
describe the term representation and main data structures used in our elabora-
tion procedure. We assume the term language is a dependent λ-calculus in which
terms are described by the following grammar:

t, s = ℓ | x | f | ?m | Type u | t s | λx : s, t | Πx : s, t

where

– ℓ a free variable (also called a local constant)
– x is a bound variable
– f is a constant (parametrized by a list of universe terms)
– ?m is a metavariable
– u is a universe term

Free variables have a unique identifier and a type, and bound variables are
just a number (a de Bruijn index), adopting the locally nameless variable bind-
ing style. Storing the type with each free variable removes the need to carry
around contexts in the type checker and normalizer. As described in [19], this
representation style simplifies the implementation considerably, as it minimizes
the number of places where explicit calculations with de Bruijn indices must be
performed. We use the notation t[x := s] to represent the substitution of x for
s in t, where x is a bound variable, free variable, or metavariable. When x is a
bound variable, the operation also lowers all bound variables with index greater
than x. We use t to denote sequence of terms t1 . . . tn, and x : A for the telescope
(x1 : A1) . . . (xn : An), where Ai may depend on xj for j < i.

An environment stores a sequence of declarations. The Lean kernel supports
three different kinds of declarations: axioms, definitions and inductive families.
Each has a unique identifier, and can be parametrized by a sequence of universe
parameters. Every axiom has a type, and every definition has a type and a value.
A constant is just a reference to a declaration.

Users usually provide partial constructions, i.e., constructions containing
holes that must be filled by the system. Internally, each hole is represented by
a metavariable. Each metavariable has a unique identifier and a type. The main



Elaboration in Dependent Type Theory 7

operation on metavariables is instantiation. In our implementation, only closed
terms can be assigned to metavariables. This design decision guarantees that
operations such as β-reduction and metavariable instantiation commute. Since
only closed terms can be assigned to metavariables, on creation a metavariable is
applied to the variables in the context where it appears. For example, we encode
a hole in the context (x : A) (y : B) as ?m x y, where ?m is a fresh metavariable.
The type of ?m is Π(x : A) (y : B), C, where C is the expected type for the hole
at that position. If the expected type is also unknown at pre-processing time,
we create another fresh metavariable ?mt : Π(x : A) (y : B),Type ?u, where ?u
is a fresh universe metavariable, which gives us ?m : Π(x : A) (y : B), ?mt x y.
We say a term is fully elaborated if it does not contain metavariables.

We say a term is β-reducible if it is of the form (λx : A, s)t, and ι-reducible
if it is of the form C.rec s (C.mki r) t, where C.rec is the recursor/eliminator
for an inductive datatype C; s represents the parameters, minor premises and
indices and (C.mki r) is the main premise (where C.mki is the i-th constructor of
C). The function reduceβι s applies head β and ι reduction to s. We say a term
t is stuck if computation cannot occur without instantiating a metavariable ?m;
where (?m s) is a sub-term of t, we say (?m s) is the reason for t being stuck.
More formally, a term is stuck when the head symbol is a metavariable (i.e., it is
of the form ?m s), or it is a recursor application where the main premise is stuck.
We say the first case is a stuck-application, and the second a stuck-recursor.

During the pre-processing step, unification and choice constraints are gener-
ated. Unification constraints are used to enforce typing constraints, and choice
constraints are for overloading, coercion resolution, and triggering the type class
mechanism.

A unification constraint t ≈ s is annotated with a justification. Justifications
are used to assist the generation of error messages when a term fails to be elabo-
rated, and to implement non-chronological backtracking [22]. Non-chronological
backtracking allows exploring the (possibly infinite) tree of potential solutions
more efficiently, by eliminating branches which we know cannot possibly contain
an actual solution.

There are three kinds of justifications: asserted, assumption and join. An
asserted justification is used to annotate constraints generated during the pre-
processing phase. Whenever the solver has to perform a choice (also known as a
case split), it annotates each choice with a fresh assumption. A join justification
j1 ▷◁ j2 represents the “union” of the justifications j1 and j2. We use ⟨t ≈ s, j⟩ to
denote the unification constraint justified by j. A substitution is a finite collection
of assignments from metavariables to pairs ⟨t, j⟩, written ?m 7→ ⟨t, j⟩, where t is a
closed term and j is a justification for the assignment. Assignments are generated
when solving unification constraints. For example, the constraint ⟨?m ≈ t, j⟩ is
solved by adding the assignment ?m 7→ ⟨t, j⟩. Whenever we apply a substitution
we use a join justification to track its effect. For example, the result of applying
the assignment ?m 7→ ⟨t, jm⟩ over the constraint ⟨r ≈ s, j⟩ is the new constraint
⟨r[?m := t] ≈ s[?m := t], j ▷◁ jm⟩. We also use ⟨s ≈ t, j1⟩ ▷◁ j2 to denote the
constraint ⟨s ≈ t, j1 ▷◁ j2⟩. Moreover, if a is a list of constraints [c1, . . . , cn],



8 de Moura, Avigad, Kong, and Roux

a ▷◁ j is [c1 ▷◁ j, . . . , cn ▷◁ j].
A choice constraint is of the form ⟨?m ℓ : t in f, j⟩, where ?m is a metavari-

able, ℓ are free variables representing the context where ?m was created, t is the
type of ?m ℓ, and f is a function that, given the term ?m ℓ, its type t and a sub-
stitution, produces a (possibly unbounded) stream of constraints representing
possible ways of synthesizing ?m, and a justification j. Note that each alterna-
tive is itself a list of constraints, and is not necessarily just a single unification
constraint.

A choice constraint ?m ℓ : t in f may be marked as ondemand. When the
flag ondemand is set, the constraint solver will try to invoke function f only
after all metavariables in t have been instantiated. We say a ondemand choice
constraint is ready when t does not contain metavariables, and postponed
otherwise. We describe further down how this feature is used to implement the
type class mechanism and coercions. If a choice constraint is not marked as
ondemand, we say it is a regular choice constraint. We use regular choice
constraints to specify overloaded symbols. The result of applying the assignment
?m 7→ ⟨s, jm⟩ over the choice constraint ⟨?n ℓ : t in f, j⟩ is the new constraint
⟨?n ℓ : t[?m := s] in f, j ▷◁ jm⟩. We also use the notation c ▷◁ j when c is a
choice constraint.

Support functions. Both the preprocessing step and the constraint-solving pro-
cedure rely on a constraint-simplification procedure, which we describe below.
First, however, we describe some auxiliary functions that are used throughout.

The function typeof r returns the inferred type of a term r, where r may
contain metavariables. Specifically, it returns a pair ⟨t, S⟩ where t is the type
of r and S is a set of constraints on the metavariables; if r does not contain
metavariables, then S is empty. The function unfold (f t1 . . . tn) applies a δ-
reduction, i.e., it unfolds the definition of constant f . In practice, it is not feasible
to apply δ-reduction to all constants in a constraint solving problem, but the
system would be inconvenient to use if δ-reduction steps were forbidden. To cope
with this performance issue, we allow the user to annotate definitions with the
following hints: irreducible, semireducible or reducible. A irreducible definition is
never unfolded by the constraint solver, while a semireducible or reducible defi-
nition may be unfolded or not depending on the constraint being solved. When
no annotation is provided, the system assumes the definition is semireducible.
We remark that when the kernel type checks fully elaborated definitions, these
annotations are ignored; they are only relevant during the elaboration process.

The procedure error j throws an exception tagged with a justification j.
Finally, the function ensurefun s j ensures that s has a function type. Specif-
ically, it infers the type t of s (using typeof) and then reduces t to t′ in weak
head normal form (whnf ). If t′ is a Π-term, then it returns t′ and any new uni-
fication constraints. If t′ is not a Π-term and is not stuck, then it generates an
error with justification j. Otherwise, if ?m s is the reason that t′ is stuck, where
?m : (Πx : A, B), we create two fresh metavariables: ?m1 : (Πx : A, Type ?u1)



Elaboration in Dependent Type Theory 9

and ?m2 : (Π(x : A) (y : ?m1 x), Type ?u2), and the new constraint

⟨t ≈ (Πx : ?m1 s, ?m2 s x), j⟩.

This ensures that s has a function type, and defers the problem of figuring out
what that type is.

The contraint simplification procedure , simp. To save space, we do not con-
sider symmetric cases such as ⟨(λx : B, t) ≈ s, j⟩. The procedure mklocal A
creates a fresh free variable with type A. To simplify the presentation, we as-
sume there is a global unique name generator. The function depth f returns
the definition depth of the constant f . It is 0 if f is not a definition, and
1 + max{depth g | g appears in the definition of f} otherwise.

simp ⟨t ≈ t, j⟩ = {}
simp ⟨s ≈ t, j⟩ when s is β/ι-reducible = simp ⟨reduceβι s ≈ t, j⟩
simp ⟨ℓ s1 . . . sn ≈ ℓ t1 . . . tn, j⟩ =

∪n
i=1 simp ⟨si ≈ ti, j⟩

simp ⟨f s1 . . . sn ≈ f t1 . . . tn, j⟩ =
if s1 . . . sn and t1 . . . tn do not contain metavariables then

simp (⟨unfold (f s1 . . . sn) ≈ unfold (f t1 . . . tn), j⟩)
else if f is not reducible then

∪n
i=1 simp ⟨si ≈ ti, j⟩

else {⟨f s1 . . . sn ≈ f t1 . . . tn, j⟩}
simp ⟨f s ≈ g t, j⟩ =

if depth f > depth g and f is not irreducible then
simp (⟨unfold (f s) ≈ g t, j⟩)

else if depth f < depth g and g is not irreducible then
simp (⟨f s ≈ unfold (g t), j⟩)

else if depth f = depth g and f and g are not irreducible then
simp (⟨unfold (f s) ≈ unfold (g t), j⟩)

else error j
simp ⟨(λx : A, s) ≈ (λy : B, t), j⟩ =

let ℓ = mklocal A in simp ⟨A ≈ B, j⟩ ∪ simp ⟨s[x := ℓ] ≈ t[y := ℓ], j⟩
simp ⟨(Πx : A, s) ≈ (Πy : B, t), j⟩ =

let ℓ = mklocal A in simp ⟨A ≈ B, j⟩ ∪ simp ⟨s[x := ℓ] ≈ t[y := ℓ], j⟩
simp ⟨s ≈ (λx : B, t), j⟩ =

let ⟨(Πx : A,C), S⟩ = ensurefun s j in simp ⟨(λx : A, s x) ≈ (λx : B, t), j⟩ ∪ S
simp ⟨s ≈ t, j⟩ =

if s or t is stuck then {⟨s ≈ t, j⟩} else error j

Given a unification constraint, the simp procedure produces a set of (poten-
tially) simpler unification constraints or throws an error. Moreover, if the input
constraint does not contain metavariables, then the result is the empty set {} or
an error. In the actual implementation, we also use a heuristic optimization for
the case simp ⟨f s1 . . . sn ≈ f t1 . . . tn, j⟩, where s1 . . . sn and t1 . . . tn do not
contain metavariables, and f is not a projection. In this case, we first try simp
⟨s1 ≈ t1, j⟩ …simp ⟨sn ≈ tn, j⟩, and if no error is thrown, we return {}. Each
unification constraint returned by simp is in one of the following categories:



10 de Moura, Avigad, Kong, and Roux

– delta: ⟨f s ≈ f t, j⟩. Note that, based on the definition of simp, f must be
a reducible definition.

– pattern: ⟨?m ℓ1 . . . ℓn ≈ t, j⟩, where ℓ1, . . . , ℓn are pairwise distinct free
variables, t only contains free variables in {ℓ1, . . . , ℓn}, and ?m does not
occur in t.

– quasi-pattern: ⟨?m ℓ1 . . . ℓn ≈ t, j⟩, where all ℓ1, . . . , ℓn are free variables,
but are not pairwise distinct.

– flex-rigid: ⟨?m s1 . . . sn ≈ t, j⟩, where at least one of s1, . . . , sn is not a free
variable.

– flex-flex: ⟨?m1 s ≈ ?m2 t, j⟩.
– recursor: ⟨t ≈ s, j⟩, where t or s is a stuck-recursor.

We remark that, in the literature, pattern, quasi-pattern and flex-rigid are
simply called flex-rigid constraints, and the category pattern corresponds to
Miller patterns [20]. Note that flex-flex constraints are badly underconstrained,
and we typically expect that other constraints will do more to limit the inter-
pretation of the metavariables.

Given (ℓ1 : A1) . . . (ℓn : An), the operation abstractλ [ℓ1 . . . ℓn] t returns

λ(x1 : A1) . . . (xn : An[ℓ1 := x1, . . . , ℓn−1 := xn−1]), t[ℓ1 := x1, . . . , ℓn := xn]

We also have abstractΠ, the equivalent operation for Π-abstraction.

Preprocessing. The preprocessor is a straightforward recursive procedure that
given a preterm and a context, returns a term t (potentially containing metavari-
ables), and a set of unification and choice constraints. The basic idea is: if
the constraints are solved, their solution should contain an assignment for all
metavariables in t. The preprocessor must carry a context, a list of free vari-
ables, to be able to create fresh metavariables. This is the only procedure in our
implementation that “carries contexts around”. The preprocessor only creates
asserted justification objects.

Applications (r s) are the main source of unification constraints. After a
preterm p in a context ℓ is converted into the application (r s), the preprocessor
uses ensurefun to make sure that the type of r is of the form Πx : A,B, and
simp to enforce that the type C of s is convertible to A. If C is not convertible
to A, the preprocessor checks the database of available coercions, if there is a
coercion c from C to A, it replaces the application (r s) with (r (c s)). If A
is stuck, but there are coercions {c1, . . . , cn} from C, the preprocessor creates a
fresh metavariable ?m : abstractΠ ℓ A, replaces the application with (r (?m ℓ)),
and creates a ondemand choice constraint ⟨?m ℓ : A in f, j⟩, where the choice
function f produces one of the following alternatives s, c1 s, …, cn s. If possible,
the solver will only invoke f after all metavariables in A have been instantiated.
In this ideal situation, f returns at most one solution, and no case-analysis is
needed. The same process is performed when C is stuck and there are coercions
to A. We currently do not try to inject coercions when both A and C are stuck at
preprocessing time. Lean supports parametric coercions, and coercions to sorts
and function classes, but due to space constraints we do not describe them here.



Elaboration in Dependent Type Theory 11

Ad hoc overloading is also realized using choice constraints. The idea is the same,
but we create a regular choice constraint where the choice function f produces
the different interpretations for the overloaded symbol.

Finally, to handle implicit arguments, when we infer the type t of a term r, if
t is of the form Π{x : A}, B, we create a fresh metavariable ?m : abstractΠ ℓ A,
and replace r with the application (r (?m ℓ)). If the implicit argument is marked
with square brackets to indicate it should be synthesized by the type class mech-
anism, we also create an ondemand choice constraint ⟨?m ℓ : A in f, j⟩ where
the choice function f invokes the type class resolution procedure. This procedure
is essentially a simple λ-Prolog interpreter [20], where the Horn clauses are the
user declared instances.

The constraint solving procedure. Given a set of constraints, our solver returns a
failure, or a substitution S and set of flex-flex constraints of the form ⟨?m1 s ≈
?m2 t, j⟩ such that neither ?m1 nor ?m2 are assigned in S. The solver uses
the following data structures: a priority queue Q of constraints, a mapping U
of metavariables to constraints, a substitution S, and a case split stack C. To
simplify the presentation, we assume Q, U , S and C are global variables. The
priorities for the Q are computed using the following total order ≺ on constraint
categories: pattern ≺ ready (choice constraints) ≺ regular (choice constraints)
≺ delta ≺ quasi-pattern ≺ flex-rigid ≺ recursor ≺ postponed (choice
constraints) ≺ flex-flex. Moreover, if two constraints are in the same category,
we use the first-in-first-out method. For each metavariable ?m, U [?m] is the finite
subset of the constraints in Q s.t. for each c in U [?m], c is a unification constraint
stuck because of ?m, or c is an ondemand choice constraint ⟨?n ℓ : t in f, j⟩ and
?m occurs in t.

Given a set of constraints s, for each constraint c in s, the procedure visit s
simply invokes visiteq c if c is a unification constraint, and visitchoice c
otherwise. The procedure visiteq ⟨r ≈ s, j⟩ is defined as:

if r or s is stuck by some ?m and ?m 7→ ⟨t, jm⟩ in S then
visit (simp ⟨r[?m := t] ≈ s[?m := t], j ▷◁ jm⟩)

else if the constraint is a pattern ⟨?m ℓ ≈ t, j⟩ then
add the assignment ?m 7→ ⟨(abstractλ ℓ t), j⟩ to S

else update U , and insert constraint into Q

The procedure visitchoice ⟨?n ℓ : t in f, j⟩ just substitutes any assigned
metavariable ?m occurring in t, updates U , and inserts the constraint into Q.
Note that, we never insert pattern constraints into Q.

To implement a backtracking search, we need a mechanism for restoring the
state of the solver during a backtrack operation. We use a very simple approach
where Q, U and S are implemented using pure data structures (red-black trees)
which provide a constant time copy operation. Whenever we need to create a
case split, we simply create copies of Q, U and S. An alternative approach is
to use a trail stack [22] which stores operations that “undo” the destructive
updates performed during the search. We remark that our simpler approach for
implementing backtracking is not a bottleneck in our implementation. When



12 de Moura, Avigad, Kong, and Roux

solving a non-pattern constraint c, the solver creates a case split, and stores it
on the stack C. Each case split is a tuple of the form ⟨Qc, Uc, Sc, ja, jc, z⟩, where
Qc, Uc and Sc store the state of the solver when the case split was created,
ja is a fresh assumption (justification) used to “track” the case split, jc is the
justification for c, and z is a lazy list containing the remaining alternatives, where
each alternative is a list of constraints. We use pull z to denote the operation
that destructively extracts the head of the lazy list z and returns it, or returns
none when z is empty. The solver catches any error j thrown by the simp
procedure, and uses the error resolution procedure resolve j defined as:

while C is not empty
let ⟨Qc, Uc, Sc, ja, jc, z⟩ = top C in
if j depends on ja then

restore state Q := Qc, U := Uc, S := Sc

if pull z = some a then visit (a ▷◁ jc ▷◁ j) and return
pop C

failed to solve constraints since C is empty

In the procedure above, visit (a ▷◁ jc ▷◁ j) may throw another error j′. If this
happens it recursively invokes resolve j′.

Processing constraints. We now describe how we process the next constraint
in the queue Q. We use an auxiliary procedure process z j, where z is a
lazy list of alternatives, and j is a justification. If z is empty, it just invokes
resolve j. Otherwise, it pulls the head a of z, creates a fresh assumption jus-
tification ja, pushes the new case split ⟨Q,U, S, ja, jc, z⟩ on the stack C, and
invokes visit (a ▷◁ ja ▷◁ j).

For choice constraints ⟨?m ℓ : t in f, j⟩ (ready, regular or postponed),
we just invoke process (f (?m ℓ) t S) j. For delta constraints ⟨f s1 . . . sn ≈
f t1 . . . tn, j⟩, we try two alternatives. In the first one, we assume f is opaque,
and try to avoid the potentially expensive δ-reduction step by using a1 =∪n

i=1 simp ⟨si ≈ ti, j⟩. If it fails, as our next alternative, we unfold f and
try a2 = simp(⟨unfold (f s1 . . . sn) ≈ unfold (f t1 . . . tn), j⟩). We use the
operation tolazy to convert the list [a1, a2] into a lazy list, and process the
delta constraint using process (tolazy [a1, a2]) j. This case split is a heuristic
optimization and is not necessary for completeness.

The constraint categories quasi-pattern and flex-rigid are handled in the
same way. We use different categories to make sure that “easier” constraints
occur first in the priority queue. We (approximately) solve them by using a
variation of the flex-rigid case found in Huet’s unification algorithm [15]. Given
a flex-rigid constraints ⟨?m s1 . . . sp ≈ t, j⟩, the main idea in Huet’s algorithm is
to notice that t must be a term of the form f r1 . . . rn, where f is a free-variable
or a constant. The next idea is to observe that any solution for ?m is convertible
to one in eta-long normal form, which allows us to consider only solutions for
?m that are of the form

λx1 . . . xn, h (?m1 x1 . . . xn) . . . (?mp x1 . . . xn) (*)



Elaboration in Dependent Type Theory 13

where ?mi are fresh metavariables, and h is a constant or one of the bound
variables x1 . . . xn. In Huet’s algorithm, only opaque constants are considered,
thus if h is a constant different from f of the rigid term t, the solution would
lead to an unsolvable constraint. Therefore, we say Huet’s procedure has two
kinds of case splits: imitation (when h is the constant f of the rigid term), and
projection (when h is one of the bound variables x1 . . . xn). However, there are
two problems in our setting. First, we do not eagerly unfold f r1 . . . rn when
f is a constant. For example, assume that sub a b (subtraction for integers) is
defined as add a (uminus b). Then, ⟨?m (uminus a) ≈ sub b a, j⟩ has a solution
?m = λx, add b x, but we would miss it if we did not unfold sub before trying to
imitate. Second, we have recursors in our language, and even if f is an opaque
constant, it is not the only constant that can be used for h. For example, given
the constraints ⟨?m zero ≈ true, j⟩, ⟨?m (succ zero) ≈ false, j⟩, a possible
solution is ?m = λx, nat.rec (λn, bool) true (λn r, false) x, where nat.rec
is the recursor for the type nat (of the natural numbers). We cope with the first
problem using an approach similar to the one used for delta-constraints when
f is a reducible constant. The idea is to have two imitation steps, one where
f is not unfolded, and another one where the term f r1 . . . rn is put into weak
head normal form before performing the imitation. In our implementation, it
is currently infeasible to consider the extra imitation step (after whnf ) for all
constants. Even using non-chronological backtracking, the search space becomes
too big. The main problem is that the system may spend a huge amount of time
traversing the whole search space when the user provides an incorrect partial
construction. As to the second issue, we currently simply ignore this possiblity,
since the search space would become too big if we considered recursors for h.
Moreover, if h is a recursor, the constraint obtained after replacing ?m would be
a stuck-recursor.

As in most higher-order unification procedures, we try first the projection
case splits because they generate more general solutions. We also remark that
the number of case splits can usually be greatly reduced for quasi-patterns,
which is the case the arises most commonly in practice. In this case, if f is a
constant (not marked as reducible), then we do not need to consider any pro-
jections. Any projection would fail immediately: if we take h to be ℓi and sub-
stitute (*) for ?m in the original constraint, we obtain an unsolvable constraint
⟨ℓi (?m1 ℓ) . . . (?mp ℓ) ≈ f r1 . . . rn, j′⟩. Finally, if f is a free variable ℓ, then
we only need to consider the projection where h is xi if ℓi = ℓ. For flex-rigid
constraints ⟨?m s1 . . . sn ≈ t, j⟩, we only consider the case h is xi when si is a
free variable ℓ, or si is convertible to t. In the second case, where si is convertible
to t, we simply assign λx1 . . . xn, xi to ?m. This is a heuristic for reducing the
size of the state, and minimizing the number of instances the procedure exhibits
nonterminating behavior. We remark, that in the second-order case, the solver
does not miss solutions by using this heuristic. Finally, our solver has a threshold
on the number of steps that can be performed.

We also use an approximate solution for recursor constraints ⟨t ≈ s, j⟩. If
the head of t and s is the same recursor C.rec, then we try to solve the constraint



14 de Moura, Avigad, Kong, and Roux

by treating C.rec as a regular opaque constant which has no computational
behavior associated with it. If t or s is of the form ?m r, then we treat it
as a flex-rigid constraint. When the recursor C.rec is stuck because of a term
?m r, we previously tried to perform a case split for each constructor C.mki of C,
assigning ?m to terms of the form λx, C.mki (?m1 x) . . . (?mn x). However, this
provides only a minor improvement on the usability of the system: only three
theorems in our library broke after we removed this feature, and all of them
could be easily fixed by providing implicit arguments explicitly.

4 Related work

We attempt to put our work in the context of recent work on elaboration in
dependent type theories. Abel and Pientka present an extension of Miller-style
pattern unification [1] which can handle a larger class of problems (in addition
to Σ-types) by a method they call pruning, which intuitively removes arguments
to metavariables which fall outside of the Miller pattern fragment, allowing for
more solutions to be found. They also give a bi-directional inference system for
a dependently typed λ-calculus, which together with the unification algorithm
yields an outline for a practical implementation. They show the soundness of the
unification algorithm with respect to this type system. They do not, however,
treat the case of defined constants, with or without recursion.

Building upon this is recent work by Ziliani and Sozeau [29] that describes
a unification algorithm for the Coq theorem prover which features defined con-
stants and recursively defined functions. They attempt to describe the practical-
ities of such an algorithm for a realistic dependently typed language, outlining
the heuristics and efficiency compromises inherent in this task. In that respect,
their motivations are very similar to ours.

In addition to Abel and Pientka’s pruning, Ziliani and Sozeau add a more
aggressive form of dependency erasure for metavariables, in an attempt to solve
more unification problems at the cost of uniqueness of solutions. One example
is the problem {?t true ≈ nat, ?t false ≈ nat}. This problem is solved in their
framework by dropping the dependency of ?t on its argument, and returning the
constraint ?t′ ≈ nat which gives the solution ?t 7→ λx, nat. They also add a reso-
lution rule called first order approximation, in which for example the constraint
?f ?y ≈ S 0 is solved with the assignment ?f 7→ S, ?y 7→ 0

Since we have no qualms about allowing multiple solutions and backtracking
search our algorithms can handle both of these problems easily, in the first case
by a special case of projection and in the second, by an imitation step. Our
approach to free variables in metavariables is delightfully simple: there are none.
In contrast, Ziliani and Sozeau carry around a suspended substitution with every
metavariable, that needs to be managed in each resolution step. The heuristics
outlined in this paper for constant unfolding are similar to ours: constants are
unfolded only after an attempt has been made to apply type-class resolution,
and constants are unfolded to a pattern match or fixpoint only in last resort.
More study is needed to examine the trade-offs of these various choices. Finally,



Elaboration in Dependent Type Theory 15

their system does not allow postponement of constraints, relying on pruning and
dependency erasure to treat most cases up-front. They argue that great efficiency
gains are obtained in this manner. Again, more study is required to assess the
trade-offs of this approach.

Various algebraic developments in Coq make use of type classes [24, 25, 13]
and canonical structures [23, 11, 17]; see also [2] for the use of unification hints in
Matita. Many of the features we have described are also implemented in systems
based on simple type theory. For example, Isabelle uses axiomatic typeclasses [28]
and parameterized contexts (locales) [4] to deal with algebraic structures. It also
has mechanisms to insert coercions [26]. The reliance on simple type theory,
however, makes the elaboration problem quite different from ours. For exam-
ple, an algebraic structure that depends on a parameter, such as the integers
modulo m, cannot be represented as a type, and so cannot be an instance of
an axiomatic type class. In contrast to Lean, Isabelle uses different languages
to construct expressions and assertions, build proofs, and express relationships
between structures.

In a different vein, recent work by Brady on the dependently typed language
Idris [7] describes the elaboration process by analogy with theorem proving (and
in the context of pure functional programming). Our work is in stark contrast
with his, as our tactic language is completely disjoint from the methods with
which we specify the constraint resolution for the unification problems. in Lean,
the problems are quite different: in unification, metavariables can be very non-
local, appearing in disparate contexts and the solutions can be an infinite stream
rather than a simple finite case split.

5 Conclusions

We have described the elaboration procedure used in the new open source in-
teractive theorem prover Lean [9]. Our procedure uses methods found in state-
of-the-art constraints solvers, such as non-chronological backtracking, indexing,
and justification tracking. We have also described how coercions, type classes and
ad-hoc polymorphism can be smoothly integrated in our framework using choice
constraints. Our procedure has been tested on more than 25k lines of formalized
mathematics, including a standard library with basic datatypes and algebraic
structures, a library for homotopy type theory, rudimentary category theory,
and elements of non-abelian topology developed in homotopy type theory.

References

1. A. Abel and B. Pientka. Higher-order dynamic pattern unification for dependent
types and records. In TLCA, volume 6690 of LNCS. Springer, 2011.

2. A. Asperti, W. Ricciotti, C. Sacerdoti Coen, and E. Tassi. Hints in unification. In
TPHOLs 2009, volume 5674 of LNCS, pages 84–98. Springer, Berlin, 2009.

3. A. Asperti, W. Ricciotti, C. Sacerdoti Coen, and E. Tassi. The Matita Interactive
Theorem Prover. In CADE-23, volume 6803 of LNCS. Springer, 2011.



16 de Moura, Avigad, Kong, and Roux

4. C. Ballarin. Locales and locale expressions in Isabelle/Isar. In Types for Proofs
and Programs, pages 34–50. Springer, 2004.

5. B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliatre, E. Gimenez, H. Her-
belin, G. Huet, C. Munoz, C. Murthy, et al. The Coq proof assistant reference
manual: Version 6.1. 1997.

6. A. Bove, P. Dybjer, and U. Norell. A brief overview of Agda–a functional language
with dependent types. In TPHOL, pages 73–78. Springer, 2009.

7. E. Brady. Idris, a general-purpose dependently typed programming language: De-
sign and implementation. Journal of Functional Programming, 23:552–593, 9 2013.

8. T. Coquand and G. Huet. The calculus of constructions. Information and Com-
putation, 76(2):95–120, 1988.

9. L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer. The Lean
Theorem Prover, 2015. submitted.

10. P. Dybjer. Inductive families. Formal aspects of computing, 6(4):440–465, 1994.
11. F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging Mathematical

Structures. In TPHOL, volume 5674 of LNCS. Springer, 2009.
12. W. D. Goldfarb. The undecidability of the second-order unification problem. The-

oretical Computer Science, 13(2):225–230, 1981.
13. J. Gross, A. Chlipala, and D. I. Spivak. Experience implementing a performant

category-theory library in Coq. In ITP, pages 275–291, 2014.
14. C. V. Hall, K. Hammond, S. L. Peyton Jones, and P. L. Wadler. Type classes in

Haskell. TOPLAS, 18(2):109–138, 1996.
15. G. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer

Science, 1:27–57, 1975.
16. Z. Luo. ECC, an extended calculus of constructions. In LICS, pages 386–395.

IEEE, 1989.
17. A. Mahboubi and E. Tassi. Canonical Structures for the working Coq user. In

ITP, volume 7998 of LNCS, pages 19–34, Rennes, France, July 2013. Springer.
18. P. Martin-Löf. An intuitionistic theory of types. Twenty-five years of constructive

type theory, 36:127–172, 1998.
19. C. McBride and J. McKinna. Functional pearl: I am not a number–I am a free

variable. In Haskell’04, pages 1–9. ACM, 2004.
20. D. Miller and G. Nadathur. Programming with Higher-Order Logic. Cambridge,

2012.
21. C. Paulin-Mohring. Inductive definitions in the system Coq rules and properties.

Typed Lambda Calculi and Applications, pages 328–345, 1993.
22. F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint programming. Else-

vier, 2006.
23. A. Saïbi. Typing algorithm in type theory with inheritance. In POPL ’97, pages

292–301. ACM Press, 1997.
24. M. Sozeau and N. Oury. First-Class Type Classes. In TPHOLs 2008, volume 5170

of LNCS, pages 278–293. Springer, August 2008.
25. B. Spitters and E. van der Weegen. Type classes for mathematics in type theory.

Mathematical Structures in Computer Science, 21(4):795–825, 2011.
26. D. Traytel, S. Berghofer, and T. Nipkow. Extending Hindley-Milner type inference

with coercive structural subtyping. In APLAS, pages 89–104, 2011.
27. T. Univalent Foundations Program. Homotopy Type Theory: Univalent Founda-

tions of Mathematics. Institute for Advanced Study, 2013.
28. M. Wenzel. Using axiomatic type classes in Isabelle. 2005.
29. B. Ziliani and M. Sozeau. A predictable unification algorithm for Coq featuring

universe polymorphism and overloading. submitted.


