
Formalizing O notation in Isabelle/HOL

Jeremy Avigad and Kevin Donnelly

Carnegie Mellon University

Abstract. We describe a formalization of asymptotic O notation using
the Isabelle/HOL proof assistant.

1 Introduction

Asymptotic notions are used to characterize the approximate long-term behavior
of functions in a number of branches of mathematics and computer science,
including analysis, combinatorics, and computational complexity. Our goal here
is to describe an implementation of one important asymptotic notion — “big O
notation” — using the Isabelle/HOL proof assistant.

Developing a library to support such reasoning poses a number of interesting
challenges. First of all, ordinary mathematical practice involving O notation
relies on a number of conventions, some determinate and some ambiguous, so
deciding on an appropriate formal representation requires some thought. Second,
we will see that a natural way of handling the notation is inherently higher-
order ; thus the implementation is a way of putting the higher-order features of
a theorem prover to the test. Finally, O notation is quite general, since many of
the definitions and basic properties make sense for the analysis of any domain
of functions A ⇒ B where B has the structure of an ordered ring (or even, more
generally, a ring with a valuation); in practice, A is often either the set of natural
numbers or an interval of real numbers, and B may be N,Q,R, or C.

On the positive side, uses of O notation can have a very computational flavor,
and making the right simplification rules available to an automated reasoner can
yield effective results. Given the range of applications, then, this particular case
study is a good test of the ability of today’s proof assistants to support an
important type of mathematical analysis.

Section 2 provides a quick refresher course in O notation. Section 3 then
reviews some of the specific features of Isabelle that are required for, and well-
suited to, the task of formalization. In Sections 4 and 5 we describe our im-
plementation. In Section 6 we describe our initial application, that is, deriving
certain identities used in analytic number theory. Future work is described in
Section 7. Piotr Rudnicki has drawn our attention to a similar formalization of
asymptotic notions in Mizar [3, 4], which we also discuss in Section 7.

We are grateful to Clemens Ballarin for help with some of the type declara-
tions in Section 4.

2 O notation

If f and g are functions, the notation f(x) = O(g(x)) is used to express the fact
that f ’s rate of growth is no bigger than that of g, in the following sense:

Definition 1. f(x) = O(g(x)) means ∃c ∀x (|f(x)| ≤ c · |g(x)|).
Here it is assumed that f and g are functions with the same domain and
codomain. The definition further assumes that notions of multiplication and
absolute value are defined on the codomain; but otherwise the definition is very
general.

Henceforth we will assume that the codomain is an ordered ring, giving us
addition and subtraction as well. (We will also assume that rings are nondegen-
erate, i.e. satisfy 0 6= 1.) Absolute value is then defined by

|x| =
{

x if 0 ≤ x

−x otherwise

This covers Z, Q, and R. Here are some examples:

– As functions from the positive natural numbers, N+, to Z, 4x2 + 3x + 12 =
O(x2).

– Similarly, 4x2 + 3x + 12 = 4x2 + O(x).
– If f(n) =

∑n
k=0

(
3n
k

)
is viewed as a function from N+ to Q, we have

f(n) =
(

3n
n

)(
2− 4

n
+ O(

1
n2

)
)

.

This last example is taken from Graham et al. [1, Chapter 9], which is an excellent
reference for asymptotic notions in general.

Some observations are in order. First, the notation in the examples belie the
fact that O notation is about functions; thus, the more accurate rendering of the
first example is

λx. 4x2 + 3x + 12 = O(λx. x2).

The corresponding shorthand is used all the time, even though it is ambiguous;
for the example, the expression

ax2 + bx + c = O(x2)

is not generally true if one interprets the terms as functions of a, b, or c, instead
of x.

The next thing to notice is that we have already stretched the notation well
beyond Definition 1. For example, we read the second example above as the
assertion that for some function f such that f = O(x), 4x2 +3x+12 = 4x2 + f .

The last thing to note is that in these expressions, “=” does not behave like
equality. For example, although the assertion

x2 + O(x) = O(x3)

is correct, the symmetric assertion

O(x3) = x2 + O(x)

is not.
The approach described by Graham et al. [1] is to interpret O(f) as denoting

the set of all functions that have that rate of growth; that is,

O(f) = {g | ∃c ∀x (|g(x)| ≤ c · |f(x)|)}.

Then one reads equality in the expression f = O(g) as the element-of relation,
f ∈ O(g). One can read the sum g + O(h) as

g + O(h) = {g}+ O(h) = {g + k | k ∈ O(h)},

and then interpret equality in the expression

g + O(h) = O(l)

as the subset relation, g + O(h) ⊆ O(l). This is the reading we have followed.
The O operator can be extended to sets as well, by defining

O(S) =
⋃

f∈S

O(f) = {g | ∃f ∈ S (f = O(g))}.

Thus, if f = g + O(h) and h = k + O(l), we can make sense of the expression

f = g + O(k + O(l)).

There are various extensions to O notation, as we have described it. First
of all, one often restricts the domain under consideration to some subset S of
the domain of the relevant functions. For example, if f and g are functions with
domain R, we might say “f = O(g) on the interval (0, 1),” thereby restricting the
quantifier in the definition of O(g). Second, one is often only concerned with the
long-term behavior of functions, in which case one wants to ignore the behavior
on any initial segment of the domain. The relation f = O(g) is therefore often
used instead to express the fact that f ’s rate of growth is eventually dominated by
that of g, i.e. that Definition 1 holds provided the universal quantifier is restricted
to sufficiently large inputs. As an example, notice that the assertion x + 1 ∈
O(x2) is false on our strict reading if x is assumed to range over the natural
numbers, since no constant satisfies the definition for x = 0. The statement is
true, however, on the interval [1,∞), as well as eventually true.

There is an elegant way of modeling these variants in our framework. If A is
any set of functions from σ to τ and S is any set of elements of type σ, define
“A on S” to be the set

{f | ∃g ∈ A ∀x ∈ S (f(x) = g(x))}

of all functions that agree with some function in A on elements of S. The second
variant assumes that there is an ordering on the domain, but when this is the
case, we can define “A eventually” to be the set

{f | ∃k ∃g ∈ A ∀x ≥ k (f(x) = g(x))}
of all functions that eventually agree with some function in A. With these defi-
nitions, “f = O(g) on S” and “f = O(g) eventually” have the desired meanings.

Finally, as noted in the introduction, O notation makes sense for any ring
with a suitable valuation, such as the modulus function | · | : C ⇒ R on the
complex numbers. Such a variation would require only minor changes to the def-
initions and lemmas we give below; conversely, if we define O′(f) = O(λx.|f(x)|),
properties of the more general version can be derived from properties of the more
restricted one. Below, we will only treat the most basic version of O notation,
described above.

3 Isabelle preliminaries

Isabelle [12] is a generic proof assistant developed under the direction of Larry
Paulson at Cambridge University and Tobias Nipkow at TU Munich. The HOL
instantiation [6] provides a formal framework based on Church’s simple type
theory. In addition to basic types like nat and bool and type constructors for
product types, function types, set types, and list types, one can turn any set
of objects into a new type using a typedef declaration. Isabelle also supports
polymorphic types and overloading. Thus, if ′a is a variable ranging over types,
then in the term (x :: ′a) + y it is inferred that y has type ′a, and that ′a ranges
over types for which an operation + has been defined.

Moreover, in Isabelle/HOL types are grouped together into sorts. These sorts
are ordered, and types of a sort inherit properties of any of the sort’s ancestors.
Thus the sorts, also known as type classes, form a hierarchy, with the predefined
logic class, containing all types, at the top. This, in particular, supports subtype
polymorphism; for example, the term

(λx y. x ≤ y)::(′a::order) ⇒ ′a ⇒ bool

represents an object of type ′a ⇒ ′a ⇒ bool, where ′a ranges over types of the
sort order. Here the notation t ::(T ::S) means that the term t has type T, which
is a member of sort S.

Isabelle also allows one to impose axiomatic requirements on a sort; that
is, an axiomatic type class is simply a class of types that satisfy certain ax-
ioms. Axiomatic type classes make it possible to introduce terms, concepts, and
associated theorems at a useful level of generality. For example, the classes

axclass plus < term
axclass zero < term
axclass one < term

are used to define the classes of types, after which polymorphic constants

+::(′a::plus) ⇒ ′a ⇒ ′a
0 ::(′a::zero)
1 ::(′a::one)

can be declared to exist simultaneously for all types ′a in the respective classes.
The following declares the class plus-ac0 to be a class of types for which 0 and
+ are defined and satisfy appropriate axioms:

axclass plus-ac0 < plus, zero
commute: x + y = y + x
assoc: (x + y) + z = x + (y + z)
zero: 0 + x = x

One can then derive theorems that hold for any type in this class, such as

theorem right-zero: x + 0 = x ::(′a::plus-ac0)

One can also define operations that make sense for any member of a class. For
example, the Isabelle HOL library defines a general summation operator

setsum::(′a ⇒ ′b) ⇒ ((′a set) ⇒ (′b::plus-ac0))

Assuming ′b is any type in the class plus-ac0, A is any set of objects of type ′a,
and f is any function from ′a to ′b, setsum A f denotes the sum

∑
x∈A f(x). (This

operator is defined to return 0 if A is infinite.) The assertion

instance nat ::plus-ac0

declares the particular type nat to be an instance of plus-ac0, and requires us to
prove that elements of nat satisfy the defining axioms. Once this is done, however,
we can use operators like setsum and the general results proved for plus-ac0 freely
for nat.

More details on Isabelle’s mechanisms for handling axiomatic type classes
and overloading can be found in [8, 9].

4 The formalization

Our formalization makes use of Isabelle 2003’s HOL-Complex library. This in-
cludes a theory of the real numbers and the rudiments of real analysis (including
nonstandard analysis), developed by Jacques Fleuriot (with contributions by
Larry Paulson). It also includes an axiomatic development of rings by Markus
Wenzel and Gertrud Bauer, which was important to our formalization.

Aiming for generality, we designed our library to deal with functions from
any set into a nondegenerate ordered ring. O sets are defined as described by
Definition 1 in Section 2:

O(g) = {h | ∃c ∀x (|h(x)| ≤ c · |g(x)|)}

When f and g are elements of a function type such that addition is defined on
the codomain, we would like define f + g to be their pointwise sum. Similarly, if

A and B are sets of elements of a type for which addition is defined, we would
like to define the sum A + B to be the set of sums of their elements. The first
step is to declare the appropriate function and set types to be appropriate for
such overloading:

instance set :: (plus)plus
instance fun :: (type,plus)plus

We may then define the corresponding operations:

defs (overloaded)
func-plus: f + g == (λx . f x + g x)
set-plus: A + B == {c. ∃ a∈A. ∃ b∈B . c = a + b}

We can define multiplication and subtraction similarly, assuming these opera-
tions are supported by the relevant types. We can also lift a zero element:

instance fun :: (type,zero)zero
instance set :: (zero)zero
defs (overloaded)

func-zero: 0 ::((′a::type) ⇒ (′b::zero)) == λx . 0
set-zero: 0 ::(′a::zero)set == {0}

In other words, the 0 function is the constant function which returns 0, and the
0 set is the singleton containing 0. Similarly, one can define appropriate notions
of 1.

Now, asssuming the types in question are elements of the sort plus-ac0, we
can show that the liftings to the function and set types are again elements of
plus-ac0.

instance fun :: (type,plus-ac0)plus-ac0
instance set :: (plus-ac0)plus-ac0

This declaration requires justification: we have to show that the resulting ad-
dition operation is associative and commutative, and that the zero element is
an additive identity. Similarly, if the relevant starting type is a ring, then the
resulting function type is a ring:

instance fun :: (type,ring)ring

Similarly, if the underlying type is a ring, multiplication of sets is commutative
and associative, distributes over addition, and has an identity, 1.

We can now define the operation O, which maps a suitable function f to the
set of functions, O(f):

constdefs
bigo :: (′a ⇒ ′b::oring-nd) ⇒ (′a ⇒ ′b) set ((1O ′(- ′)))

O(f ::(′a ⇒ ′b::oring-nd)) == {h. ∃ c. ∀ x . abs (h x) ≤ c ∗ abs (f x)}
bigoset :: (′a ⇒ ′b::oring-nd) set ⇒ (′a ⇒ ′b) set ((1O ′(- ′)))

O(S ::(′a ⇒ ′b::oring-nd) set) == {h. ∃ f ∈S . ∃ c. ∀ x .
abs(h x) ≤ (c ∗ abs(f x))}

Recall that when it comes to O notation we also want to be able to deal with
terms of the form f + O(g), where f and g are functions. Thus we define an
operation “+o” that takes, as argument, an element of a type and a set of
elements of the same type:

constdefs
elt-set-plus :: ′a::plus ⇒ ′a set ⇒ ′a set (infixl +o 70)

a +o B == {c. ∃ b∈B . c = a + b}
The operation ∗o is defined similarly. The following declaration indicates that
these operations should be displayed as “+” and “∗” in all forms of output from
the theorem prover:

syntax (output)
elt-set-plus :: ′a ⇒ ′a set ⇒ ′a set (infix + 70)
elt-set-times :: ′a ⇒ ′a set ⇒ ′a set (infix ∗ 80)

Remember that according to the conventions described in Section 2, we would
like to interpret x = O(f) as x ∈ O(f), and, for example, f + O(g) = O(h) as
f + O(g) ⊆ O(h). Thus we declare symbols “=o” and “=s” to denote these two
“equalities”:

syntax
elt-set-eq :: ′a ⇒ ′a set ⇒ bool (infix =o 50)
set-set-eq :: ′a set ⇒ ′a set ⇒ bool (infix =s 50)

translations
x =o A => x ∈ A
A =s B => A ⊆ B

Because they are translated immediately, the symbols =o and =s are displayed
as ∈ and ⊆, respectively, in the prover’s output. In a slightly underhanded way,
however, we can arrange to have =o, =s, +o, and ∗o appear as =, =, +, and ∗,
respectively, in proof scripts: we introduce new symbols to denote the former,
and then configure our editor, document generator, etc. to display these symbols
as the latter.

The advantage to having these translations in place is that our formalizations
come closer to textbook expressions. The following table gives some examples of
ordinary uses of O notation, paired with our Isabelle representations:

f = g + O(h) f = g + O(h)

x2 + 3x + 1 = x2 + O(x) (λx . xˆ2 + 3 ∗ x + 1) = (λx . xˆ2) + O(λx . x)

x2 + O(x) = O(x2) (λx . xˆ2) + O(λx . x) = O(λx . xˆ2)

The equality symbol should be used to denote ∈ and ⊆, however, only when
the context makes this usage clear. For example, it is ambiguous as to whether
the expression O(f) = O(g) refers to set equality or the subset relation, that is,
whether the equality symbol is the ordinary one or a translation of the equality
symbol we have defined for O notation. For that reason, we will use ∈ and ⊆
when describing properties of the notation in Section 5. However, we resort to the
common textbook uses of equality when we describe some particular identities
in Section 6.

5 Basic properties

In this section we indicate some of the theorems in the library that we have
developed to support O notation. As will become clear in Section 6, a substan-
tial part of reasoning with the notation involves reasoning about relationships
between sets with respect to addition of sets, and addition of elements and sets.
Here are some of the basic properties:

set-plus-intro [|a ∈ C, b ∈ D|] ⇒ a + b ∈ C + D

set-plus-intro2 b ∈ C ⇒ a + b ∈ a + C

set-plus-rearrange (a + C) + (b + D) = (a + b) + (C + D)

set-plus-rearrange2 a + (b + C) = (a + b) + C

set-plus-rearrange3 (a + C) + D = a + (C + D)

set-plus-rearrange4 C + (a + D) = a + (C + D)

set-zero-plus 0 + C = C

Here a and b range of elements of a type of sort plus-ac0, C and D range over
arbitrary sets of elements of such a type, and in an expression like a + C, the
symbol + really denotes the +o operator. The bracket notation in set-plus-intro
means that the conclusion a+ b ∈ C +D follows from the two hypotheses a ∈ C
and b ∈ D. If we use the four rearrangments above to simplify a term built
up from the three types of addition, the result is a term consisting of a sum of
elements on the left “added” to a sum of sets on the right. This makes it easy
verify identities that enable one to rearrange terms in a calculation.

Since reasoning about expressions involving O notation essentially boils down
to reasoning about inclusions between the associated sets, the following mono-
tonicity properties are central:

set-plus-mono C ⊆ D ⇒ a + C ⊆ a + D

set-plus-mono2 [|C ⊆ D, E ⊆ F |] ⇒ C + E ⊆ D + F

set-plus-mono3 a ∈ C ⇒ a + D ⊆ C + D

set-plus-mono4 a ∈ C ⇒ a + D ⊆ D + C

These are declared to the automated reasoner. We will see in Section 6 that, in
conjunction with the properties below, this provides useful support for asymp-
totic calculations.

Analogous lists of properties holds for set multiplication, under the assump-
tion that the multiplication on the underlying type is commutative and associa-
tive, with an identity. Assuming the underlying type is a ring, the distributivity
of multiplication over addition lifts in various ways:

set-times-plus-distrib a ∗ (b + C) = a ∗ b + a ∗ C

set-times-plus-distrib2 a ∗ (C + D) = a ∗ C + a ∗D

set-times-plus-distrib3 (a + C) ∗D ⊆ a ∗D + C ∗D

The following theorem relates ordinary subtraction to element-set addition:

set-minus-plus (a− b ∈ C) = (a ∈ b + C)

Note that equality here denotes propositional equivalence.
Turning now to O notation proper, the following properties follow more or

less from the basic set-theoretic properties of the definitions:

bigo-elt-subset f ∈ O(g) ⇒ O(f) ⊆ O(g)

bigoset-elt-subset f ∈ O(A) ⇒ O(f) ⊆ O(A)

bigoset-mono A ⊆ B ⇒ O(A) ⊆ O(B)

bigo-refl f ∈ O(f)

bigoset-refl A ⊆ O(A)

bigo-bigo-eq O(O(f)) = O(f)

Here, variables like f and g range over functions whose codomain is a nondegen-
erate ordered ring, and A and B range over sets of such functions.

In the definition of O(f), we can assume without loss of generality that c is
strictly positive. (Here we assume 0 6= 1.) It is easier not to have to show this
when demonstrating that the definitions are met; on the other hand, the next
three theorems allow us to use this fact where convenient.

bigo-pos-const (∃c ∀x (|h(x)| ≤ c ∗ |f(x)|)) =

(∃c (0 < c ∧ ∀x (|h(x)| ≤ c ∗ |f(x)|)))
bigo-alt-def O(f) = {h | ∃c (0 < c ∧ ∀x (|h(x)| ≤ c ∗ |g(x)|)}
bigoset-alt-def O(A) = {h | ∃f ∈ A ∃c (0 < c ∧ ∀x

(|h(x)| ≤ c ∗ |g(x)|))}
The following is an alternative characterization of the O operator applied to sets.

bigoset-alt-def2 O(A) = {g | ∃f ∈ A (h ∈ O(f))}
The following properties are useful for calculations. Expressed at this level of

generality, their proofs can only rely on properties, like the triangle inequality,
that are true in every nondegenerate ordered ring.

bigo-plus-idemp O(f) + O(f) = O(f)

bigo-plus-subset O(f + g) ⊆ O(f) + O(g)

bigo-plus-subset2 O(f + A) ⊆ O(f) + O(A)

bigo-plus-subset3 O(A + B) ⊆ O(A) + O(B)

bigo-plus-subset4 [|∀x (0 ≤ f(x)),∀x (0 ≤ g(x))|] ⇒
O(f + g) = O(f) + O(g)

bigo-plus-absorb f ∈ O(g) ⇒ f + O(g) = O(g)

bigo-plus-absorb2 [|f ∈ O(g), A ⊆ O(g)|] ⇒ f + A ⊆ O(g)

To see that the subset relation cannot be replaced by equality in bigo-plus-subset,
consider what happens when g = −f . For most calculations, the subset relation
is sufficient; but when the relevant functions are positive, bigo-plus-subset4 can
simplify matters.

The following group of theorems is also useful for calculations.

bigo-mult O(f) ∗O(g) ⊆ O(f ∗ g)

bigo-mult2 f ∗O(g) ⊆ O(f ∗ g)

bigo-minus f ∈ O(g) ⇒ −f ∈ O(g)

bigo-minus2 f ∈ g + O(h) ⇒ −f ∈ −g + O(h)

bigo-minus3 O(−f) = O(f)

bigo-add-commute (f ∈ g + O(h)) = (g ∈ f + O(h))

Showing that a particular function is in a particular O set is often just a
matter of unwinding definitions. The following theorems offer shortcuts:

bigo-bounded [|∀x (0 ≤ f(x)),∀x (f(x) ≤ g(x))|] ⇒ f ∈ O(g)

bigo-bounded2 [|∀x (g(x) ≤ f(x)),∀x (f(x) ≤ g(x) + h(x))|] ⇒
f ∈ g + O(h)

The next two theorems only hold for ordered rings with the additional prop-
erty that for every nonzero c there is a d such that cd ≥ 1. They are therefore
proved under this hypothesis, which holds for any field, as well as for any archi-
median ring.

bigo-const c 6= 0 ⇒ O(λx.c) = O(1)

bigo-const-mult c 6= 0 ⇒ O((λx.c) ∗ f) = O(f)

bigo-const-mult2 c 6= 0 ⇒ (λx.c) ∗O(f) = O(f)

In all three cases, the ⊆ direction holds more generally for ordered rings, without
the requirement that c 6= 0.

Additional properties of O notation can be shown to hold in more spe-
cialized situations. For example, the HOL-Complex library includes a function
sumr m n f , intended to denote

∑
m≤i<n f(i), where m and n are elements of N

and f is a function from N to R. Using the more perspicuous notation for sums,
we have the following theorems:

bigo-sumr-pos [|∀x (0 ≤ h(x)), f ∈ O(h)|] ⇒
λx.

∑
i<x f(i) ∈ O(λx.

∑
i<x h(i))

bigo-sumr-pos2 [|∀x (0 ≤ h(x)), f ∈ g + O(h)|] ⇒
λx.

∑
i<x f(i) ∈ λx.

∑
i<x g(i) +

O(λx.
∑

i<x h(i))

6 Application: arithmetic functions

In this section, we will describe an initial application of our library. All of the
following facts are used in analytic number theory:

ln(1 + 1/(n + 1)) = 1/(n + 1) + O(1/(n + 1)2) (1)
∑

i<n+1

1
i + 1

= ln(n + 1) + O(1) (2)

∑

i<n+1

ln(i + 1) = (n + 1) ln(n + 1)− n + O(ln(n + 1)) (3)

∑

i<n

ln(i + 1)
i + 1

=
1
2

ln2(n + 1) + O(1) (4)

ln2(n + 2)− ln2(n + 1) = 2
ln(n + 1)

n + 1
+ O

(
ln(n + 1) + 1

(n + 1)2

)
(5)

∑

i<n+1

ln2(i + 1) =
(n + 1) ln2(n + 1)− 2(n + 1) ln(n + 1)+

2n + O(ln2(n + 1))
(6)

∑

i<n+1

ln2(
n + 1
i + 1

) = 2n + O(ln2(n + 1)) (7)

In these identities, the relevant terms are to be viewed as functions f(n) from the
natural numbers N to the real numbers R, and all the sums range over natural
numbers. Keep in mind that here “equality” really means “element of”!

A more natural formulation of the first identity, for example, would be

ln(1 + 1/n) = 1/n + O(1/n2) for n ≥ 1,

and a more natural formulation of the second identity would be

n∑

i=1

1/i = ln(n) + O(1) for n ≥ 1.

We have found it convenient to replace n by n + 1 instead of dealing with the
side condition or using the type of positive natural numbers instead.

All of the identities above have been formalized in Isabelle. Our formaliza-
tions of the first three look as follows:

(λn::nat . ln (1 + 1 / (real n + 1))) = (λn. 1 / (real n + 1)) +
O(λn. 1 / ((real n) + 1)ˆ2)

(λn. sumr 0 (n+1) (λi . 1/(real i + 1))) = (λn. ln(real n + 1)) + O(λn. 1)

(λn. sumr 0 (n+1) (λi . ln(real i + 1))) =
((λn. (real n + 1) ∗ ln(real n + 1)) − (λn. real n)) +
O(λn. ln (real n + 1))

These are reasonable approximations to the usual mathematical notation, but
for readability, we will use the latter below.

In an ordinary mathematical development, the first identity has to be proved,
somehow, from the definition of ln. (It can be seen immediately, for example,
from the Taylor series expansion of ln(1 + x) at x = 0.) The others are typically
derived from this using direct calculation, as well as, sometimes, basic properties
of integration; see, for example, [5, 7]. For example, the second identity reflects
the fact that ln x is equal to

∫ x

1
(1/y)dy and the third reflects the identity

∫
ln x =

x ln x + C, which may be obtained using integration by parts.
Since Isabelle’s current theory of integration was not always robust enough

to handle the standard arguments, we had to replace these arguments by more
direct proofs. This was an illuminating exercising in “unwinding” the methods
of calculus. Thus, (5) above was useful in our low-tech proofs of the (4) and (6).
Even with calculus, however, a good deal of ordinary asymptotic calculations
are involved. To illustrate the use of our library, we will show how the theorems
described in Section 5 are used to obtain (6) from (2), (3), (4), and (5).

To prove (6), first note that it suffices to establish the slightly weaker identity
with O(ln2(n + 1) + 1) in place of O(ln2(n + 1)). The stronger version can then
be obtained by unwinding definitions, using the fact that the terms on each side
of the equation are equal when n = 0, and ln2(n + 1) ≥ ln2 2 when n > 0.

First of all, using the technique of partial summation [5, 7], we have

∑

i<n+1

ln2(i + 1) = (n + 1) ln2(n + 1)−
∑

i<n

(i + 1)(ln2(i + 2)− ln2(i + 1)). (8)

This identity can be verified directly using induction on n. To esimate the second
term on the right side, we start by multipling (5) through by n + 1, and using
set-times-plus-distrib and bigo-mult2 to obtain

(n + 1)(ln2(n + 2)− ln2(n + 1)) = 2 ln(n + 1) + O

(
ln(n + 1) + 1

n + 1

)
.

Using bigo-sumr-pos2, we obtain

∑

i<n

(i + 1)(ln2(i + 2)− ln2(i + 1)) = 2
∑

i<n

ln(i + 1) + O

(∑

i<n

ln(i + 1) + 1
i + 1

)

= 2
∑

i<n

ln(i + 1) + O

(∑

i<n

ln(i + 1)
i + 1

)
+ O

(∑

i<n

1
i + 1

)
(9)

Here, the second “equality” is really set inclusion, and is obtained using proper-
ties of sums, bigo-plus-subset, and set-plus-mono.

Now, let us estimate each of the three terms on the right-hand side, keeping
in mind that we only care about equality up to O(ln2(n + 1) + 1). Considering

the first term, we have
∑

i<n

ln(i + 1) =
∑

i<n+1

ln(i + 1)− ln(n + 1)

= − ln(n + 1) + ((n + 1) ln(n + 1)− n + O(ln(n + 1)))
= ((n + 1) ln(n + 1)− n) + (− ln(n + 1) + O(ln(n + 1)))
= (n + 1) ln(n + 1)− n + O(ln2(n + 1) + 1).

The second equality is obtained by applying set-plus-intro2 to identity (3). In
the third equality, we use set-plus-rearrange2 and ordinary properties of real
addition to group the terms appropriately. The last equality uses the fact that
ln(n + 1) is in O(ln2(n + 1) + 1), and so, by bigo-minus-eq, − ln(n + 1) is in
O(ln2(n + 1) + 1) as well; using bigo-elt-subset and bigo-plus-absorb, the second
parenthetical expression is a subset of O(ln2(n + 1) + 1), and the equality fol-
lows from set-plus-mono. Calculations like these work well with Isabelle/Isar’s
support for calculational reasoning [10], since intermediate identities can often
be verified automatically. For example, the second-to-last equality above is ver-
ified by simplifying terms; the last equality is also confirmed by the automated
reasoner, given only the fact that ln(n + 1) is in O(ln2(n + 1) + 1). Mutiplying
through by 2, and using set-times-plus-distrib and bigo-const-mult2, we obtain

2
∑

i<n

ln(i + 1) = (2(n + 1) ln(n + 1)− 2n) + O(ln2(n + 1) + 1).

Turning to the second term, we have

O

(∑

i<n

ln(i + 1)
i + 1

)
= O

(
ln2(n + 1)/2 + O(1)

)

= O(ln2(n + 1)/2) + O(1)
= O(ln2(n + 1) + 1) + O(ln2(n + 1) + 1)
= O(ln2(n + 1) + 1).

The first equality is obtained by applying bigo-elt-subset to identity (4). The
second equality uses bigo-plus-subset3 and bigo-bigo-eq. Finally, we use bigo-elt-
subset, monotonicity properties of set addition, and bigo-plus-idemp, as before, to
simplify the resulting O set. (Alternatively, one can use (4) to show

∑
i<n ln(i+

1)/(i + 1) = O(ln2(n + 1) + 1), and then use bigo-elt-subset.)
Turning to the third term, we have

O

(∑

i<n

1
i + 1

)
= O

(∑

i<n+1

1
i + 1

+ (−1/(n + 1))

)

= O
(
ln(n + 1) + O(1)

)
+ O(1/(n + 1))

= O(ln(n + 1)) + O(1) + O(1)
= O(ln2(n + 1) + 1)

using reasoning similar to that above.
Returning to equation (9), grouping terms appropriately, and using mononoc-

ity of addition, we obtain
∑

i<n

(i + 1)(ln2(i + 2)− ln2(i + 1)) = 2(n + 1) ln(n + 1)− 2n + O(ln2(n + 1) + 1).

Using bigo-minus2 to negate both sides, substituting the result into (8), and
applying set-plus-intro2, we have
∑

i<n+1

ln2(i+1) = (n+1) ln2(n+1)− 2(n+1) ln(n+1)+2n+O(ln2(n+1)+1),

as required.

7 Future work

The library described here is being used to obtain a fully formalized proof of the
prime number theorem, which states that the the number of primes π(x) less than
or equal to x is asymptotic to x/ ln x. As the development of this proof proceeds,
we intend to improve our library and the interactions with Isabelle’s automated
methods, as well as the interactions with Isar’s calculational reasoning. This
will ensure that calculations using O notation can be carried out smoothly and
naturally. Independently, we still need to formalize the variations on O notation
described in Section 2, as well as other asymptotic notions.

A similar treatment of asymptotic notions has been given in Mizar [3, 4] under
the “eventually” reading of O notation given in Section 2. This implementation
includes Θ and Ω notation as well. But the treatment is less general than the
one described here, in that the notions apply only to eventually nonnegative
sequences of real numbers.

It seems appropriate to mention here a perennial problem with simple type
theory. Our treatment of O notation applies to any type of functions, that is,
any collection of functions whose domain and codomain are also types. Since
Isabelle’s typedef command allows us to turn the real interval (0, 1), say, into a
type, we can use O notation directly for functions defined on this interval. But
simple type theory does not allow one to define types that depend on a parameter,
so, for example, one cannot prove theorems involving O notation for functions
defined more generally on a real interval (x, y), where x and y are variables. To
do so, one has three options:

1. Work around the problem, for example, using the “on S” variant of O nota-
tion described in Section 2.

2. Replace simple type theory with a formalism that allows dependent types.
For example, Coq [11] is based on the Coquand-Huet calculus of construc-
tions.

3. Use locales instead of types to fix the subset and parameters that are of
interest. (See [2].)

Each option has its drawbacks. The first can be notationally cumbersome; the
second involves a more elaborate type theory, with more complex type-theoretic
behavior; the third involves reducing one’s reliance on the underlying type theory,
but giving up the associated notational and computational advantages. We do
not yet have a sense what approach, in the long term, is best suited to developing
complex mathematical theories.

References

1. Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete mathematics:
a foundation for computer science. Addison-Wesley Publishing Company, Reading,
MA, second edition, 1994.

2. F. Kammüller, M. Wenzel, and L. C. Paulson. Locales – a sectioning concept
for Isabelle. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry,
editors, Proceeding of Theorem Proving in Higher Order Logics, 12th International
Conference, TPHOLs’99, Nice, France, September 14 - 17, volume 1690 of LNCS,
1999.

3. Richard Krueger, Piotr Rudnicki, and Paul Shelley. Asymptotic notation. Part I:
theory. Journal of Formalized Mathematics, Volume 11, 1999.
http://mizar.org/JFM/Vol11/asympt 0.html.

4. Richard Krueger, Piotr Rudnicki, and Paul Shelley. Asymptotic notation. Part II:
examples and problems. Journal of Formalized Mathematics, Volume 11, 1999.
http://mizar.org/JFM/Vol11/asympt 1.html.

5. Melvyn B. Nathanson. Elementary Methods in Number Theory. Springer, New
York, 2000.

6. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL. A proof
assistant for higher-order logic, volume 2283 of Lecture Notes in Computer Science.
Springer Verlag, Berlin, 2002.

7. Harold N. Shapiro. Introduction to the theory of numbers. Pure and Applied
Mathematics. John Wiley & Sons Inc., New York, 1983. A Wiley-Interscience
Publication.

8. Markus Wenzel. Using axiomatic type classes in Isabelle, 1995.
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/docs.html.

9. Type classes and overloading in higher-order logic. In E. Gunther and A. Felty,
editors, Proceedings of the 10th international conference on thoerem provings in
higher-order logic (TPHOLs ’97), pages 307-322, Murray Hill, New Jersey, 1997.

10. Markus Wenzel and Gertrud Bauer. Calculational reasoning revisited (an Is-
abelle/Isar experience). In R. J. Boulton and P. B. Jackson, editors, Theorem
Proving in Higher Order Logics: 14th International Conference, TPHOLs 2001,
Edinburgh, Scotland, UK, September 3-6, 2001, Proceedings, volume 2152 of Lec-
ture Notes in Computer Science, pages 75–90, 2001.

11. The Coq proof assistant. Developed by the LogiCal project.
http://pauillac.inria.fr/coq/coq-eng.html.

12. The Isabelle theorem proving environment. Developed by Larry Paulson at Cam-
bridge University and Tobias Nipkow at TU Munich.
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/index.html.

