On the Relationship Between ATR_0 and $\hat{I}\hat{D}_{<\omega}$ *

Jeremy Avigad

April 2, 1996

Abstract

We show that the theory ATR_0 is equivalent to a second-order generalization of the theory $\widehat{ID}_{<\omega}$. As a result, ATR_0 is conservative over $\widehat{ID}_{<\omega}$ for arithmetic sentences, though proofs in ATR_0 can be much shorter than their $\widehat{ID}_{<\omega}$ counterparts.

1 Introduction

Let Γ_0 denote the least impredicative ordinal, as defined in [9] or [12]. Work of Feferman and Schütte in the sixties demonstrated that this is the proof-theoretic ordinal corresponding to theories embodying "predicative mathematics." In more recent years a number of classical theories without direct predicative justification have been discovered, whose proof-theoretic strength is also Γ_0 . The aim of this paper is to clarify the relationship between two such theories, namely $\widehat{ID}_{\leq\omega}$ and Friedman's ATR_0 .

The \widehat{ID}_n are theories in the language of Peano Arithmetic augmented by new constants representing fixed points of arithmetic formulas involving positive occurences of a unary predicate. Each theory \widehat{ID}_n allows *n* iterations of this inductive definition schema, while the theory $\widehat{ID}_{<\omega}$ allows arbitrarily many. Feferman [2] shows that the proof-theoretic ordinal of each \widehat{ID}_n is γ_n , where the γ_n form a canonical fundamental sequence for Γ_0 . As a result, the prooftheoretic ordinal of $\widehat{ID}_{<\omega}$ is Γ_0 .

On the other hand, there are two methods currently in the literature for showing that the proof-ordinal of ATR_0 is Γ_0 : a model-theoretic argument appears in [3], and a proof-theoretic argument which involves embedding ATR_0 into a fragment of set theory and carrying out a series of cut-eliminations is described in [6].

In Section 3 we show that ATR_0 is in fact a "limit" of the theories \hat{ID}_n , in the sense that its key axiom is equivalent to a second-order schema asserting the existence of fixed points of positive arithmetic formulas. In Section 4 we use a

^{*}This paper comprises a part of the author's Ph.D. dissertation [1].

cut-elimination argument to show that this implies that ATR_0 is in fact a conservative extension of $\widehat{ID}_{<\omega}$ for arithmetic sentences. (A model-theoretic proof is also possible.) This result, combined with the analysis in [2], represents what is perhaps the most direct determination of ATR_0 's proof-theoretic strength.

Because the conservation argument mentioned above involves a cutelimination, it allows for the possibility that short ATR_0 proofs may translate to proofs requiring superexponentially many fixed points. In Section 5 we show that this possibility is unavoidable by showing that ATR_0 has short proofs of the consistency of \widehat{ID}_n for superexponentially large n. (Perhaps this fact may explain some of the difficulties encountered in analyzing ATR_0 .)

2 Preliminaries

In what follows we'll assume that some method of coding ordered pairs of natural numbers has been chosen, and we'll use $\langle x, y \rangle$ to represent the code of the pair consisting of x and y. If $z = \langle x, y \rangle$ we'll write $z_0 = x$ and $z_1 = y$.

The theory \widehat{ID}_1 is a first-order theory in the language of Peano Arithmetic (PA), with an additional predicate P_{φ} for each arithmetic formula $\varphi(x, X)$ in which the unary predicate X occurs only positively. We'll sometimes refer to such an arithmetic formula as a "positive arithmetic operator" since it defines the monotone function

$$\Gamma_{\varphi}: P(\omega) \to P(\omega)$$

given by

$$\Gamma_{\varphi}(X) = \{ x | \varphi(x, X) \}.$$

(The monotonicity means that for any sets A and B, $A \supset B$ implies $\Gamma_{\varphi}(A) \supset \Gamma_{\varphi}(B)$.) The axioms of \widehat{ID}_1 consist of the axioms of PA with induction extended to formulas involving the new constants, together with the fixed point axioms

$$\forall x(P_{\varphi}(x) \leftrightarrow \varphi(x, P_{\varphi})).$$

In other words, these axioms assert that P_{φ} represents a fixed point of the operator Γ_{φ} , though not necessarily the least one. Similarly each theory \widehat{ID}_{n+1} adds new constants for positive arithmetic formulas in the language of \widehat{ID}_n , and the corresponding fixed point axioms. $\widehat{ID}_{<\omega}$ is the union of the theories \widehat{ID}_n . See [2] for more details. ¹

 ATR_0 is the second-order theory consisting of the weak base theory RCA_0 together with a schema (ATR) allowing for definitions by arithmetic transfinite recursion along any well ordering. RCA_0 consists of the basic quantifier-free

¹Note that the presentation in [2] adds only one new predicate at each stage, so that each \widehat{ID}_n has only *n* new predicates. This difference is inessential, since in any proof in our version of \widehat{ID}_n one can "collapse" all the fixed point predicates of each iterative depth to a single one.

axioms of PA; induction for Σ_1^0 formulas, possibly involving set parameters; and a recursive comprehension schema

$$(RCA) \quad \forall x(\varphi(x) \leftrightarrow \psi(x)) \to \exists X \forall x(x \in X \leftrightarrow \varphi(x)),$$

where φ and ψ are Σ_1^0 and Π_1^0 respectively.

To describe (ATR) we need some definitions. In order to code countable sequences of sets as a single set, we'll use the notation Y_b to denote

$$\{x | \langle b, x \rangle \in Y\}$$

In other words, Y_b codes the b^{th} set in the sequence. Given a binary relationship \prec we'll use Y^b to denote

$$\{\langle a, x \rangle \in Y | a \prec b\},\$$

i.e. Y^b codes $\bigoplus_{a \prec b} Y_a$. Finally, we use the abbreviation $WO(\prec)$ to represent the Π_1^1 assertion that the set \prec codes a well-ordering. With these definitions in place, we can write the (ATR) schema as

$$(ATR) \quad WO(\prec) \to \exists Y \forall b, x (x \in Y_b \leftrightarrow \varphi(x, Y^b))$$

where φ ranges over arithmetic formulas (again, possibly involving set parameters). In words, (ATR) asserts we can build a hierarchy of sets by iterating an arithmetic comprehension along any well-ordering.

The choice of RCA_0 as the base theory is not crucial. Since over RCA_0 (ATR) easily proves arithmetic comprehension, we could equivalently have taken ACA_0 (the stronger system based on arithmetic comprehension) as our base theory instead.

In Section 5 we'll use the fact that ATR_0 proves the Σ_1^1 choice schema,

$$(\Sigma_1^1 - AC) \quad \forall x \exists Y \varphi(x, Y) \to \exists Y \forall x \varphi(x, Y_x),$$

where φ is Σ_1^1 . For more information on ATR_0 and its capabilities, see [15, 16, 17, 3, 18].

We'll use the abbreviation (FP) to represent the second-order axiom schema asserting the existence of arbitrary fixed points of positive arithmetic operators,

$$(FP) \quad \exists Y \forall x (x \in Y \leftrightarrow \varphi(x, Y)),$$

where $\varphi(x, Y)$ is an arithmetic formula in which Y occurs only positively. Note that once again, φ can have number and set parameters. Note also that if Y does not appear in φ , (FP) simply reduces to arithmetic comprehension. Let FP_0 represent the system consisting of (FP), the basic quantifier-free axioms of PA, and Σ_1^0 induction.

In the system $ID_{<\omega}$ neither the predicates $P_{\varphi}(x)$ nor the formulas $\varphi(x, X)$ are allowed to have parameters other than the ones shown. However, if $\varphi(x, X, \vec{y})$ has parameters \vec{y} , we can define the formula

$$\varphi'(\langle x, \vec{y} \rangle, X) \equiv \varphi(x, \lambda x. X(\langle x, \vec{y} \rangle), \vec{y}),$$

where atomic formulas $(\lambda x. X(\langle x, \vec{y} \rangle))(t)$ are interpreted as $X(\langle t, \vec{y} \rangle)$. Then we have that

$$\begin{array}{rcl} P_{\varphi'}(\langle x, \vec{y} \rangle) & \leftrightarrow & \varphi'(\langle x, \vec{y} \rangle, P_{\varphi'}) \\ & \leftrightarrow & \varphi(x, \lambda x. P_{\varphi'}(\langle x, \vec{y} \rangle), \vec{y}) \end{array}$$

In Section 4 it will be convenient to allow the fixed-point predicates of $\widehat{ID}_{<\omega}$ to have parameters, taking the axioms of $\widehat{ID}_{<\omega}$ to be of the form

$$P_{\varphi}(x,\vec{y}) \leftrightarrow \varphi(x,\lambda x.P_{\varphi}(x,\vec{y}),\vec{y}). \tag{1}$$

By the above considerations, these axioms and predicates can be replaced by the parameter-free ones via coding of pairs and sequences.

3 The Equivalence of (ATR) and (FP)

The goal of this section is to prove the following

Theorem 3.1 ATR_0 and FP_0 are equivalent.

Proof. First, reasoning in FP_0 , we'll use (FP) to derive (ATR). Let \prec be a well-ordering and let $\varphi(n, X)$ be an arithmetic formula. We need to show the existence of a set Y such that

$$\forall b, n(n \in Y_b \leftrightarrow \varphi(n, Y^b)).$$

Rather than show the existence of Y directly we'll show the existence of its characteristic function Z, defined by

$$\langle n, 0 \rangle \in Z \leftrightarrow n \notin Y$$

$$\langle n, 1 \rangle \in Z \leftrightarrow n \in Y.$$

Given our coding scheme for hierarchies note that this amounts to saying that we want Z to satisfy

$$\langle \langle b, m \rangle, 0 \rangle \in Z \leftrightarrow m \not\in Y_b$$

and

and

$$\langle \langle b, m \rangle, 1 \rangle \in Z \leftrightarrow m \in Y_b$$

where the hierarchy coded by Y satisfies the conclusion of (ATR). The idea is to write down an arithmetic formula describing the inductive buildup of Z and then take a fixed point, although some care has to be taken to insure positivity.

Starting with the formula $\varphi(n, X)$ construct the formula $\widehat{\varphi}(n, Z, b)$ as follows. First put φ into negation-normal form, so that all negations appear in front of atomic formulas. Then replace formulas of the form $t \in X$ by

$$(t_0 \prec b \land \langle t, 1 \rangle \in Z),$$

and formulas of the form $t \notin X$ by

$$(t_0 \not\prec b \lor \langle t, 0 \rangle \in Z).$$

Note that Z occurs only positively in $\hat{\varphi}$. The meaning behind the above substitutions is this: if Z represents the characteristic function of a set Y, we have that for all n and b

$$\widehat{\varphi}(n, Z, b) \leftrightarrow \varphi(n, Y^b).$$

Do the same to $\neg \varphi$ to obtain a formula $\widehat{\neg \varphi}$ in which Z occurs postively and so that whenever Z represents the characteristic function of Y we have

$$\widehat{\neg \varphi}(n, Z, b) \leftrightarrow \neg \varphi(n, Y^b).$$

Now consider the formula $\psi(n, X)$ given by

$$\begin{split} \psi(\langle \langle b, m \rangle, k \rangle, X) &\equiv \\ (\forall c \prec b \forall l(\langle \langle c, l \rangle, 0 \rangle \in X \lor \langle \langle c, l \rangle, 1 \rangle \in X) \land \\ ((k = 0 \land \widehat{\neg \varphi}(m, X, b)) \lor (k = 1 \land \widehat{\varphi}(m, X, b)))). \end{split}$$

Since X occurs only positively in ψ , by (FP) there is a set Z such that for any triple $\langle \langle b, n \rangle, k \rangle$ we have that

$$\langle \langle b, n \rangle, k \rangle \in Z \leftrightarrow \psi(\langle \langle b, n \rangle, k \rangle, Z).$$

We claim that Z represents the characteristic function of the set Y we seek. Under this interpretation, the inductive definition given by ψ can be paraphrased as follows: we can decide whether or not to put an element m into Y_b only after all the elements of Y^b have been decided; at that point, we put m into Y_b if $\varphi(n, Y^b)$ holds and keep it out otherwise.

Of course, there's no immediate guarantee that the set Z obtained from the fixed point definition even defines a characteristic function at all; that is, there is nothing per se to assure us that for any element n we have

$$\langle n, 0 \rangle \in Z \leftrightarrow \langle n, 1 \rangle \notin Z.$$

This is where the fact that \prec is a well-ordering comes in. Assume that for some *n* the above fails. By arithmetic comprehension, we can consider the set of elements *b* such that for some *m* we have

$$\neg(\langle\langle b, m \rangle, 0 \rangle \in Z \leftrightarrow \langle\langle b, m \rangle, 1 \rangle \notin Z).$$

Since \prec is a well-ordering we can find the \prec -least such b, i.e. the first place where "things go wrong." Then Z up until this point *does* represent the characteristic function of a set Y^b ; but then, referring back to ψ , we see that for each m exactly one of $\langle \langle b, m \rangle, 0 \rangle$ or $\langle \langle b, m \rangle, 1 \rangle$ is in Z, which gives us a contradiction.

Letting Y be the set whose characteristic function is Z, the reader can verify that the definition of ψ again guarantees that

$$\forall m, b(m \in Y_b \leftrightarrow \varphi(m, Y^b))$$

as desired. Thus we've proven the left to right direction of our theorem.

To prove the converse direction, we use the method of "pseudohierarchies" described in [18]. Working in ATR_0 , we want to show how to define a fixed point of any positive arithmetic formula $\varphi(n, Z)$. Consider the usual way of building such a fixed point: one starts with the empty set and then iterates the process

$$\emptyset, \Gamma_{\varphi}(\emptyset), \Gamma_{\varphi}(\Gamma_{\varphi}(\emptyset)), \ldots$$

through the ordinals, taking unions at limit stages. This hierarchy has the property that it is increasing; and any number that enters the union of the sets along this hierarchy enters at a successor stage.

Now, for any well-ordering \prec , ATR_0 proves the existence of the hierarchy defined by this process along \prec . The only problem is that it may not necessarily have a well-ordering long enough for the procedure to terminate. But we will show that ATR_0 can iterate the process "too" long, i.e. along a linear ordering that is *not* well-ordered. Dividing the hierarchy beneath a non-well-ordered part will give us our result.

The details are as follows. First, we need the following

Lemma 3.2 For any Σ_1^1 formula $\psi(\prec)$, ACA₀ proves

$$\neg \forall X(\psi(X) \leftrightarrow WO(X)).$$

Proof. This amounts to showing that ACA_0 can carry out the usual proof that WO is a complete Π_1^1 predicate, and hence not equivalent to any Σ_1^1 formula.

More specifically, if T is a tree on $\omega \times \{0,1\}$ and X is a set, let X[m] denote the initial segment of the characteristic function of X of length m, let T^X be the tree on ω given by

$$\sigma \in T^X \leftrightarrow \langle \sigma, X[length(\sigma)] \rangle \in T,$$

and let $KB(T^X)$ be its Kleene-Brouwer ordering. By the usual reductions (see [8, 7]), for each Π_1^1 formula $\theta(X)$ ACA_0 proves the existence of a tree T on $\omega \times \{0, 1\}$ so that for any set X,

$$\theta(X) \leftrightarrow "T^X$$
 is well-founded" $\leftrightarrow WO(KB(T^X)).$

Given a Σ_1^1 formula $\psi(X)$, we diagonalize by letting T be the tree corresponding to the Π_1^1 formula $\theta(X)$ given by

$$\theta(X) \equiv "X$$
 is a tree on $\omega \times \{0,1\}" \land \neg \psi(KB(X^X)).$

Then we have

$$WO(KB(T^T)) \leftrightarrow \theta(T) \leftrightarrow \neg \psi(KB(T^T))$$

so $KB(T^T)$ is a set witnessing the conclusion of the lemma.

Let $LO(\prec)$ be the arithmetic assertion that \prec is a linear ordering. Define $\psi(\prec)$ as follows:

$$\begin{split} \psi(\prec) &\equiv LO(\prec) \land \exists Y \\ & (Y_0 = \emptyset \land \\ & \forall \alpha (Y_{\alpha+1} = \{n | \varphi(n, Y_\alpha)\}) \land \\ & \forall \alpha (\lim(\alpha) \to Y_\alpha = \bigcup_{\beta \prec \alpha} Y_\beta) \land \\ & \forall \alpha, \beta(\alpha \prec \beta \to Y_\alpha \subseteq Y_\beta) \land \\ & \forall \alpha, n(n \in Y_\alpha \to \exists \beta(n \notin Y_\beta \land n \in Y_{\beta+1})). \end{split}$$

In words, $\psi(\prec)$ says that \prec is a linear order and there is a hierarchy along \prec starting with the empty set, applying Γ_{φ} at successor stages, and taking unions at limit stages, with the following additional properties: the hierarchy is increasing (we'll call this condition *) and any number to enter the hierarchy enters at some successor stage (we'll call this property **).

As already remarked above, ATR_0 proves $WO(\prec) \to \psi(\prec)$. By Lemma 3.2 we can conclude, in ATR_0 , that there is some set \prec such that $\psi(\prec)$ but \prec is not a well ordering. Then \prec is a linear ordering, and there is pseudohierarchy Y satisfying the conditions set down by ψ . Let W be a set with no \prec -least element (without loss of generality we can assume W is closed upwards), and let $W' = \{c | \forall b \in W(c \prec b)\}$. So W is an ill-founded part of our linear ordering, and W' contains the elements beneath W. By arithmetic comprehension let $Z = \bigcap_{b \in W} Y_b$, and let $Z' = \bigcup_{c \in W'} Y_c$; that is, Z is the intersection of the top part, and Z' is the union of the bottom part. We claim that Z = Z', and that this is the fixed point we're looking for.

The fact that $Z' \subset Z$ follows from property (*), since every set in the bottom part is contained in every set in the top part. Conversely, the fact that $Z \subset Z'$ follows from property (**). Suppose $n \in Y_b$ for some b in W. By (**) take d so that $n \notin Y_d$ but $n \in Y_{d+1}$. If d is in W' we have that n is in both Z and Z'; if d is in W then n is in neither.

But clearly $Z' \subset \Gamma_{\varphi}(Z')$: since each Y_c in the bottom part (i.e. for $c \in W'$) is a subset of Z', $Y_c \subset Y_{c+1} = \Gamma_{\varphi}(Y_c) \subset \Gamma_{\varphi}(Z')$, and so $\bigcup_{c \in W'} Y_c \subset \Gamma_{\varphi}(Z')$. Similar reasoning applies to show that $\Gamma_{\varphi}(Z) \subset Z$, so Z = Z' is the desired fixed point.

This completes the proof of Theorem 3.1.

4 The Conservation Result

The aim of this section is to prove the following

Theorem 4.1 ATR_0 is conservative over $\widehat{ID}_{<\omega}$ for arithmetic formulas with no fixed-point predicates. In other words, if φ is a formula in the language of Peano Arithmetic such that ATR_0 proves φ , then $\widehat{ID}_{<\omega}$ proves φ as well.

Proof. By the previous section, we can take FP_0 as our axiomatization of ATR_0 . The model-theoretic proof is straightforward: given a model M of $\widehat{ID}_{<\omega}$ one can convert it to a second-order model M' of FP_0 by interpreting the second-order part of M' by the "projections" of the denotations of the fixed-point predicates of M (see axiom (1) at the end of Section 2). The proof-theoretic analog is not much more difficult. We present it below.

First we introduce the auxilliary system FP'_0 with terms naming the fixed points guaranteed to exist by (FP). In other words, for every arithmetic formula $\varphi(x, X, \vec{y}, \vec{Y})$ in which X occurs positively we introduce a term $F_{\varphi}(\vec{y}, \vec{Y})$ with the free variables shown. FP'_0 then contains axioms

$$(FP') \quad \forall x (x \in F_{\varphi}(\vec{y}, \vec{Y}) \leftrightarrow \varphi(x, F_{\varphi}(\vec{y}, \vec{Y}), \vec{y}, \vec{Y})),$$

as well as FP_0 's induction and quantifier-free axioms. Note that (FP') easily implies (FP) in a standard axiomatization of two-sorted predicate logic.

We assume that the reader is familiar with cut-elimination arguments as they appear in [13, 9, 14]. To formalize second-order deductions we use a two-sorted Tait-style system with equality. If T is a set of axioms, we use T^c to denote the universal closure of these axioms, and $\neg T^c$ to denote their negations. The notation [T] denotes some finite subset of T.

Suppose ATR_0 proves φ in a standard Hilbert-style proof system. Then by the deduction theorem there is a proof of $\bigwedge[FP_0^{\prime c}] \to \varphi$. By cut-elimination, there is a cut-free proof of $[\neg FP_0^{\prime c}], \varphi$ in a Tait-style system.

Note that second-order universal quantifiers in the closed axioms of $FP_0^{\prime c}$ become existential quantifiers in $[\neg FP_0^{\prime c}]$. To eliminate these we use a second-order version of Herbrand's theorem:

Lemma 4.2 Suppose there is a cut-free proof of Γ , $\exists X \varphi(X)$ in which the formulas in Γ , $\varphi(X)$ are arithmetic. Then there are terms $T_i(\vec{y_i})$ and a cut-free proof of

$$\Gamma,\ldots,\exists \vec{y}_i\varphi(T_i(\vec{y}_i)),\ldots$$

Proof. As in the proof of Herbrand's theorem, inductively replace inferences of the form

$$\frac{\Delta,\varphi(T(\vec{y}))}{\Delta,\exists X\varphi(X)}$$

by inferences

$$\frac{\Delta,\varphi(T(\vec{y}))}{\Delta,\exists\vec{y}\varphi(T(\vec{y}))}$$

(Note that Δ may already contain the formula $\exists X \varphi(X)$, so that the elimination of the existential set quantifier may require several terms.)

By (a suitable generalization of) the previous lemma, we can now translate the proof of

 $[\neg FP_0^{\prime c}], \varphi$

to a proof of

 $[\neg FP_0^*], \varphi$

where FP_0^* consists of first-order universal closures of substitution instances of axioms of FP'_0 . If there are any free second-order variables in FP_0^* , by the substitution lemma (see [13]) we can replace them by arbitrary closed terms. As a result, we can assume that the formulas in the deduction are arithmetic and contain no second-order variables.

Now go through the proof and replace each formula φ by a formula $\hat{\varphi}$ in the language of $\widehat{ID}_{<\omega}$, by iteratively replacing atomic formulas

$$s \in F_{\psi(x,X,\vec{y},\vec{Y})}(\vec{t}(\vec{z}),\vec{T}(\vec{z}))$$

by $\widehat{ID}_{<\omega}$ -terms

 $P_{\hat{\psi}(x,X,\vec{t}(\vec{z}),\vec{T}(\vec{z}))}(s,\vec{z}).$

This has the net effect of replacing the fixed-point axioms of FP_0^* by fixedpoint axioms (1) of $\widehat{ID}_{<\omega}^c$, and induction axioms of FP_0^* by induction axioms of $\widehat{ID}_{<\omega}^c$, while leaving the rules of inference sound. The result then is a proof of

$$[\neg \widehat{ID}_{<\omega}^{c}], \varphi$$

which can be converted back to a Hilbert-style proof if desired.

5 The Speedup Result

Because the argument of the previous section involves a cut-elimination, it allows for a possibly superexponential increase in length when translating an ATR_0 proof to one in $\widehat{ID}_{<\omega}$. We aim to show that this increase is unavoidable, in that ATR_0 has short proofs of the sentences $Con(\widehat{ID}_{2_n^0})$, where 2_y^0 is a formalization of the stack-of-twos function, i.e. the function $f(x) = 2^x$ iterated y times starting with 0. To that end we will use the following theorem, due to Solovay (see [11, 4]):

Theorem 5.1 Let I(x) be a cut in the theory T, i.e. a formula such that T proves I(0) and $I(x) \rightarrow I(x+1)$. Then for every natural number n there is a cut J_n such that T proves

$$\forall x(J_n(x) \to I(2^x_{\bar{n}})).$$

This has the following important corollary (see [10, 5]):

Corollary 5.2 If I is a cut in T, then there is a polynomial p such that for each numeral \bar{n} T proves $I(2^0_{\bar{n}})$ with a proof of length at most p(n).

In this section we'll demonstrate a cut I such that ATR_0 proves

$$\forall x(I(x) \to Con(\widehat{ID}_x))$$

This, combined with the results just cited, will give us the following:

Theorem 5.3 There is a polynomial p such that for each numeral \bar{n} ATR₀ has a proof of $Con(\widehat{ID}_{2_{2}^{0}})$ with length at most p(n).

Our cut I(x) will say, roughly, that there exists an ω -model of \widehat{ID}_x . To that end, we need to make some definitions from within ATR_0 . Assuming that the language and axioms of \widehat{ID}_n have been formalized uniformly in ATR_0 , let $Sent(\widehat{ID}_x)$ be the set of (Gödel codes) of sentences in the language of \widehat{ID}_x . We'll say that M is an ω -model for the language of \widehat{ID}_x if it is a sequence of sets S_{φ} (coded as a single set), one for each set constant P_{φ} . A valuation for Mis a map

$$f: Sent(\widehat{ID}_x) \to \{0,1\}$$

such that

$$f(\lceil \bar{n} \in P_{\varphi} \rceil) = 1 \leftrightarrow n \in S_{\varphi},$$

f assigns 1 to true atomic formulas in the language of PA and 0 to false ones, and f obeys Tarski's truth conditions for the other logical connectives. Note that for any ω -model M ATR_0 easily proves there is a unique valuation for M, by iterating comprehension along a well-ordering of length ω . We'll say that $M \models \varphi$ if this unique valuation assigns φ the value 1, and we'll say M is an ω -model for \widehat{ID}_x if M models each axiom of \widehat{ID}_x . (The reason we are calling M an ω -model is that we are implicitly assuming that its first-order universe is the same as that of ATR_0 .)

Let I(x) represent the statement

"There exists an ω -model of \widehat{ID}_x ."

We claim I(x) is the desired cut. It isn't difficult to show, by a standard soundness argument, that $\forall x(I(x) \to Con(\widehat{ID}_x))$. \widehat{ID}_0 is simply PA, and it is easy to show that the empty sequence is an ω -model of PA. (That is, there is a valuation that assigns a value of 1 to the axioms of PA; just use an iteration of length ω to define a truth-predicate for arithmetic sentences, as in [18].) This gives I(0). And so we are reduced to showing from within ATR_0 that $I(x) \to I(x+1)$, i.e. that the existence of an ω -model for \widehat{ID}_x implies the existence of an ω -model for \widehat{ID}_{x+1} .

One approach to this is as follows. Feferman [2] sketches Aczel's proof that each \widehat{ID}_{n+1} can be interpreted in $\Sigma_1^1 - AC(\widehat{ID}_n)$, where the latter represents the second-order theory obtained by adding $(\Sigma_1^1 - AC)$ and the scheme of full induction to \widehat{ID}_n . Simpson [17, 18] shows that ATR_0 proves that any countable sequence of sets can be expanded to an ω -model of $(\Sigma_1^1 - AC)$. So given an ω model of \widehat{ID}_x , we can first expand it to a model of $(\Sigma_1^1 - AC)$ and use that to determine the interpretations of the constants of \widehat{ID}_{x+1} . The method we present here is more direct. We reduce the proof to two lemmas.

Lemma 5.4 ATR_0 proves the following: Suppose M is an ω -model of \widehat{ID}_n , and for every positive arithmetic formula $\varphi(z, Y)$ in the language of \widehat{ID}_x there is a set S_{φ} so that when P_{φ} is interpreted as S_{φ} ,

$$M \cup \{S_{\varphi}\} \models \forall z (z \in P_{\varphi} \leftrightarrow \varphi(z, P_{\varphi})).$$

Then there is an ω -model of \widehat{ID}_{x+1} .

In other words, if we can interpret each new P_{φ} individually, we can obtain a model of \widehat{ID}_{x+1} . The proof is straightforward: since ATR_0 proves $(\Sigma_1^1 - AC)$, we can combine all the S_{φ} with M to obtain a new model M' (and also combine the valuations for each model $M \cup \{S_{\varphi}\}$ into a sequence of valuations $\langle f_{\varphi} \rangle$). Let f' be a valuation for M'; it isn't hard to show that f' has to agree with f_{φ} on the language involving just the one new constant P_{φ} , so f validates all the new fixed-point axioms of \widehat{ID}_{x+1} .

We've now reduced the proof of Theorem 5.3 to the following

Lemma 5.5 ATR_0 proves the following: Let M be an ω -model of \widehat{ID}_x , and let $\varphi(z, Y)$ be a positive arithmetic formula in the language of \widehat{ID}_x . Then there is a set S_{φ} such that

$$M \cup \{S_{\varphi}\} \models \forall z (z \in P_{\varphi} \leftrightarrow \varphi(z, P_{\varphi}))$$

when P_{φ} is interpreted as S_{φ} .

Proof. We'll use the axiom (FP) to prove this; but rather than define the set S_{φ} alone we'll define both it *and* a partial evaluation F for the language with the new constant at the same time. In other words, we'll present a formula $\psi(n, Y)$ for which a fixed point Y will represent an ordered pair $\langle F, S \rangle$, where S is the set S_{φ} and F is an evaluation for sentences of the new language in which the constant P_{φ} occurs positively.

It will be convenient to assume that all formulas are identified with their negation-normal-form equivalents, in which all negations have been pushed down to the atomic level. As such, a sentence in which P_{φ} occurs positively is one in which there are no occurences of subformulas of the form $\neg t \in P_{\varphi}$.

To code pairs of sets we'll write $Y = Y_0 \oplus Y_1$, where $Y_0 = \{n | \langle 0, n \rangle \in Y\}$ and $Y_1 = \{n | \langle 1, n \rangle \in Y\}$. Without further ado, we define $\psi(n, Y)$ as follows.

$$\begin{split} \psi(n,Y) &\equiv n = \langle 0, \langle \ulcorner \bar{m} \in P_{\varphi} \urcorner, 1 \rangle \rangle \land m \in Y_{1} \\ &\lor n = \langle 0, \langle \ulcorner \theta \urcorner, 1 \rangle \rangle \land ``\theta \text{ is atomic and true in } M'' \\ &\lor n = \langle 0, \langle \ulcorner \theta \land \nu \urcorner, 1 \rangle \rangle \land (\langle \ulcorner \theta \urcorner, 1 \rangle \in Y_{0} \land \langle \ulcorner \nu \urcorner, 1 \rangle \in Y_{0}) \\ &\lor \dots \\ &\lor n = \langle 1, m \rangle \land \langle \ulcorner \varphi(\bar{m}, P_{\varphi}) \urcorner, 1 \rangle \in Y_{0}. \end{split}$$

In other words, a sentence gets assigned a truth value of 1 by Y_0 (our putative valuation) if it is either of the form $\bar{m} \in P_{\varphi}$ and m is in Y_1 , or if it is inductively true by the clauses of Tarski's truth definition. An element m makes it into Y_1 (our attempt at building S_{φ}) if and only if $\varphi(\bar{m}, P_{\varphi})$ has been assigned a truth value of 1 by Y_0 .

Since Y occurs only positively in the above formula, by (FP) there is a fixed point Z. Let $S_{\varphi} = Z_1$ and $F = Z_0$. Let $M' = M \cup \{S_{\varphi}\}$ and let f' be an evaluation for M' (in the language of \widehat{ID}_x plus the new constant P_{φ}). We claim that for every sentence θ in which P_{φ} occurs only positively, $f'(\ulcorner θ \urcorner) = 1$ if and only if $F(\ulcorner θ \urcorner) = 1$; that is, the partial evaluation F is correct for these sentences. This is easy to verify by induction on the complexity of θ . (Recall that we only have to deal with negations at the atomic level, and no negated instances of $t \in P_{\varphi}$.) But then f' satisfies

$$f'(\lceil \bar{n} \in P_{\varphi} \rceil) = 1 \leftrightarrow f'(\lceil \varphi(\bar{n}, P_{\varphi}) \rceil) = 1,$$

since F does, and so,

$$f'(\ulcorner \forall x (x \in P_{\varphi}) \leftrightarrow \varphi(n, P_{\varphi})\urcorner) = 1.$$

So M' is a model of \widehat{ID}_x together with the new fixed point axiom, proving the lemma. This also completes the proof of Theorem 5.3.

6 Comments and Acknowledgements

In Section 5 we used the fact that ATR_0 proves the Σ_1^1 axiom of choice in our proof of Lemma 5.4. Solomon Feferman has pointed out that one can avoid the use of $(\Sigma_1^1 - AC)$ and still obtain the speedup result, say, by defining the cut I(x) to mean "there is an ω -model of any x fixed-point axioms of $\widehat{ID}_{<\omega}$." I am grateful to him for this observation as well as a suggestion simplifying the proof of Theorem 3.1.

I'd also like to thank Stephen Simpson for sending me a preprint of his manuscript, and my advisor, Jack Silver, whose support has been invaluable to me.

References

- Avigad, Jeremy, Proof-Theoretic Investigations of Subsystems of Second-Order Arithmetic, Ph.D. Dissertation, U. C. Berkeley, 1995.
- [2] Feferman, Solomon, "Iterated Inductive Fixed-Point Theories: Application to Hancock's Conjecture", in G. Metakides ed. *Patras Logic Symposium*, North-Holland Publishing Company, 1982.
- [3] Friedman, Harvey, Kenneth McAloon, and Stephen Simpson, "A Finite Combinatorial Principle Which is Equivalent to the 1-Consistency of Predicative Analysis," in G. Metakides ed. *Patras Logic Symposium*, North-Holland Publishing Company, 1982.
- [4] Hájek, Petr and Pavel Pudlak, Metamathematics of First-Order Arithmetic, Springer Verlag, 1991.
- [5] Ignjatovic, Aleksandar, Fragments of First and Second Order Arithmetic and Length of Proofs, Ph.D. Dissertation, U. C. Berkeley, 1990.
- [6] Jäger, Gerhard, Theories for Admissible Sets: A Unifying Approach to Proof Theory, Bibliopolis, 1986.
- [7] Jech, Thomas, Set Theory, Academic Press, 1978.
- [8] Martin, Donald, "Descriptive set theory: Projective sets," in Jon Barwise ed., *The Handbook of Mathematical Logic*, North-Holland, 1991.
- [9] Pohlers, Wolfram, Proof Theory: An Introduction, Springer Verlag Lecture Notes in Mathematics 1407, 1989.
- [10] Pudlák, Pavel, "On the length of proofs of finitistic consistency statements in first order theories," in Paris et al. editors, *Logic Colloqium '84*, North Holland, 1986.
- [11] Pudlák, Pavel, "Cuts, Consistency Statements, and Interpretations," Journal of Symbolic Logic, 50:423-441, 1985.
- [12] Schutte, Kurt, Proof Theory, Springer-Verlag, 1977.
- [13] Schwichtenberg, Helmut, "Proof theory: Some applications of cutelimination," in Jon Barwise ed., The Handbook of Mathematical Logic, North-Holland, 1991.
- [14] Sieg, Wilfried, "Herbrand Analysis," Archive for Mathematical Logic, 30:409-441, 1991.
- [15] Simpson, Stephen G., " Σ_1^1 and Π_1^1 Transfinite Induction," in D. van Dalen et al. eds. *Logic Colloqium '80*, North-Holland, 1982.

- [16] Simpson, Stephen G., "Subsystems of Z_2 and Reverse Mathematics," appendix to Gaisi Takeuti, *Proof Theory* (second edition), North-Holland, 1987.
- [17] Simpson, Stephen G., "On the strength of König's duality theorem of countable bipartite graphs," Journal of Symbolic Logic, 59:113-123, 1994.
- [18] Simpson, Stephen G., Subsystems of Second Order Arithmetic, preprint.