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Abstract—An advanced simulation framework has recently
been introduced for exploring human perception and visuomo-
tor control. In this context, we investigate locally-connected,
irregular deep neural networks (liNets) for biomimetic active
vision. Like commonly used CNNs, liNets are locally-connected,
forming receptive fields, but unlike CNNs, they are suitable
for spatially irregular photoreceptor distributions inspired by
those found in foveated biological retinas. Compared to fully-
connected deep neural networks, liNets accommodate a much
greater number of retinal photoreceptors to enhance visual acuity
without intractable memory consumption. LiNets serve well in the
biomimetic active vision system embodied in a simulated human
that learns active visuomotor control and active appearance-
based recognition.

I. INTRODUCTION

Visuomotor functionality in biological organisms refers to
the process of continually acquiring and interpreting visual
sensory information necessary to produce appropriate motor
responses that achieve desired goals. In humans, the vision
process begins with binocular optical sensing mediated by
nonuniform retinal photoreceptor topology [1] feeding neural
mechanisms that control eye movements and achieve higher-
level visuomotor control. Biological vision has inspired compu-
tational approaches that mimic the functionality of these neural
mechanisms. Recent breakthroughs in machine learning with
artificial neural networks have proven effective in computer
vision; however, the application of Deep Neural Networks
(DNNs) to embodied biomimetic visuomotor systems has
received little attention in the field.

We have recently introduced a unique human simulation
framework well suited to exploring bio-inspired vision and
visuomotor control [2] [3]. Our framework is unique in that it
features a biomechanically simulated, human musculoskeletal
model, which includes numerous skeletal muscle actuators. The
virtual human perceives its environment with eyes, capable of
eye movements, whose foveated retinas contain photoreceptors
arranged in a nonuniform distribution like that of biological
retinas. Its prototype visuomotor system includes two dozen
automatically-trained, fully-connected DNNs, about half of
which comprise its active vision subsystem while the other half
comprise its neuromuscular motor control subsystem. In this
context, our contributions in the present paper are as follows:

o In conjunction with a more realistic eye model, including

cornea, iris, pupil, lens, and foveated retina (Section III),
we propose locally-connected irregular DNNs (liNets)
for active vision (Section IV). Unlike the common
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Convolutional Neural Networks (CNNs) that are limited
to conventional images and form rectangular receptive
fields on regular pixel arrays, our networks are suitable to
spatially irregular photoreceptor distributions like those
found in foveated biological retinas.

« Relative to the fully-connected DNNs that we used in [2],
which proved manageable for retinas with a few thousand
cone-like photoreceptors, our novel liNets accommodate
a dramatically greater number of photoreceptors. This
substantially enhances visual acuity. We investigate the
memory efficiency and learning performance of liNets
(Section V) applied to active, online visuomotor control
as well as in a novel 3D active face recognition application
(Section VI).

The significance of our work includes how the retinal sampling
is achieved on the hemispherical fundus of an optically-accurate
model of the eye, as well as our deep neural network solution to
irregular visual processing, integrated within a comprehensive
virtual human model, which can hence emulate human active
vision with unprecedented realism, detail, and efficiency.

II. THE VIRTUAL HUMAN MODEL

Our human model [3] includes a large number of the relevant
articular bones and muscles—193 bones connected by joints
comprising 163 articular degrees of freedom, plus a total of
823 muscle actuators. Each skeletal muscle is modeled as a
Hill-type uniaxial contractile actuator that applies forces to the
bones at its points of insertion and attachment. The human
model is numerically simulated as a force-driven articulated
multi-body system. Each muscle actuator is activated by an
independent, time-varying, efferent activation signal, which is
provided by its motor control subsystem.

Fig. 1 illustrates the architecture of our virtual human’s visuo-
motor control system, including its improved, biomimetic eye
models [4]. The system incorporates a set of 24 automatically-
trained DNNs. In the motor subsystem, 12 of these DNNs
comprise 6 recurrent neuromuscular motor controllers that
actuate the muscle groups of the cervicocephalic complex (219
muscles), torso (443 muscles), and four limbs (29 muscles per
leg, 39 muscles per arm), and 2 oculomotor DNNs control the
extraocular muscles (6 muscles per eye). The remaining 10
DNNs implement the sensory subsystem, which is devoted to
visual perception and continuously operates on the retinal
photoreceptor outputs. A pair of foveation DNNs drive a
synergy of eye, head, and torso movements, while 4 pairs
of vision DNNs extract the sensory information necessary to
control the arms and legs.
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Fig. 1: Architecture of the visuomotor system. The neural controllers in the system include a total of 24 DNNs and 4 SNNs.

Vision Subsystem (top): To compute irradiance via ray-tracing, each retinal photoreceptor casts rays through the eye (Fig. 2a,b,c) and into the
virtual world (a). (b) The arrangement of the photoreceptors (black dots) on the right R and left L foveated retinas. Each eye outputs an RGB
Optic Nerve Vector (ONV). This feeds four trained visual accommodation SNNs (1-4); SNNs (¢)R (1) and (d)R (3) control the muscles of
the iris and lens of the right eye (e)R, and SNNs (c)L (2) and (d)L (4) do the same for the left eye (e)L. The ONV also feeds ten trained
vision DNNs (1-10). (f) A pair of foveation DNNs (1,2) produce outputs that drive the movements of the eyes to foveate visual targets. (g)
The eight limb vision DNNs (3—-10) — (g)R (3,5,7,9) for the right eye and (g)R (4,6,8,10) for the left eye — output observed limb-to-target
discrepancy estimates.

Motor Subsystem (bottom): Fourteen trained neuromuscular motor DNNs (11-24) comprise the motor subsystem, including eight voluntary
motor DNNs (11-18) and six reflex motor DNNs (19-24). (h) The oculomotor DNNs (11,12), which are driven by the outputs of the foveation
DNNSs, output muscle activation signals that control the six extraocular muscles of each eye to produce eye movements. Driven by the
averaged responses of the foveation DNNs, along with the current activations of the 216 neck muscles and 443 torso muscles, respectively, the
cervicocephalic (i) voluntary motor DNN (13) and torso (j) voluntary motor DNN (14) each outputs muscle activation signals that contribute
to actuating its associated neuromuscular complex. Driven by the bilaterally pairwise averaged responses of the limb vision DNNs, along with
the current activations of the 29 muscles of each arm or 39 muscles of each leg, respectively, each of the four limb voluntary motor DNNs (k)
(1) (15-18) outputs muscle activation signals that contribute to actuating its associated neuromuscular complex. Each of the six reflex motor
DNNs (19-24) outputs muscle activation signals that contribute by stabilizing the muscle group of its associated musculoskeletal complex.
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Fig. 2: (a),(b) Foveated retinas with 14,400 photoreceptors
(black dots) in noisy log-polar distributions. (c) Rays cast from
the positions of photoreceptors on the retina through the lens
and pupil out into the 3D scene by the ray-tracing procedure
that computes the the irradiance on photoreceptors.

III. THE BIOMIMETIC EYE MODEL

The virtual human’s eyes are modeled in accordance with
human physiological data [5].! We model the virtual eye as
a sphere of radius 12mm that can be rotated with respect to
its center around its vertical y axis by an angle 6 and around
its horizontal = axis by an angle ¢. The eyes are in their
neutral positions looking straight ahead when 6§ = ¢ = 0°. The
horizontal and vertical fields of view are 167.5°. To achieve
dynamic eye control, the six extraocular and the intraocular
(ciliary and sphincter) muscles are modeled as compound Hill-
type contractile actuators [4].

A. Cornea, Iris, and Lens Submodels

The eye model includes a cornea, iris/pupil, lens, and
retina. The cornea refracts incoming light rays. The adjustable
iris/pupil accommodates to the brightness of the scene by
controlling the quantity of light that enters the eye. Actuated by
a ciliary muscle, the deformable lens further refracts incoming
light rays so as to focus them on the hemispherical retinal
surface at the back of the eyeball. Two shallow neural networks
(SNN5s) control the iris and lens accommodation [4].

B. Retina

Unlike the uniform-resolution, Cartesian grid structure of
most artificial imaging sensors, visual sampling in primate
retinas is well known to be strongly nonuniform. The den-
sity of cones decreases radially with eccentricity, from the
foveal center toward the periphery. A log-polar photoreceptor
distribution is often used as a model [6].

To emulate foveated perception, we use a noisy log-polar
distribution to model the nonuniform placement of P photore-
ceptors on the hemispherical retina. Fig. 2a,b illustrates the
placement of P = 14,400 photoreceptors. Due to the additive
Gaussian noise, the photoreceptors are placed in different
positions on each retina.

IThe transverse size of an average eye is 24.2mm and its sagittal size
is 23.7mm. The average mass is 7.5g. The approximate field of view of
an individual eye is 30 degrees to superior, 45 degrees to nasal, 70 degrees
to inferior, and 100 degrees to temporal. When the two eyes are combined,
the field of view becomes about 135 degrees vertically and 200 degrees
horizontally.

C. Ray-Tracing-Based Irradiance Computation

The irradiance at any point on the hemispherical retinal
surface at the back of the eye is computed using the conven-
tional ray-tracing technique of computer graphics rendering
[7]. Sample rays from the positions of photoreceptors on the
hemispherical retinal surface are cast through the eye and out
into the 3D virtual world where they recursively intersect with
the visible surfaces of virtual objects and query the virtual
light sources in accordance with the Phong local illumination
model. The irradiance values returned by these rays determine
the light impinging upon the retina at the position of the
photoreceptors. For our realistic eye model (Fig. 2c), each
photoreceptor gathers light from the 3D environment through
a finite aperture proportional to the area of the pupil. The
irradiance computation by each photoreceptor requires the
weighted sum of multiple cast rays refracted at the surfaces of
the lens and cornea.

D. Optic Nerve Vector (ONV)

The foveated retinal RGB ‘“image” captured by the P
photoreceptors of each eye is output for further processing
down the visual pathway, not as a 2D array of pixels, but
as a 1D Optic Nerve Vector (ONV) of length 3P. The raw
irradiance information encoded in this vector feeds the low-
level perceptual neural networks that directly control pupil size,
focal accommodation and eye movements, intermediate-level
networks that control cervicocephalic, torso, and limb motions,
and higher-level neural networks that enable face recognition.

IV. LOCALLY-CONNECTED IRREGULAR DNNS

The human retina has approximately 5 million cones [8].
Enhancing the visual acuity of the virtual retinas requires the
incorporation of many more photoreceptors than the 3,600
that we employed in [2]. For instance, the ONVs are 3 X
14,400 = 43,200-dimensional for the retinas shown in Fig. 2.
Implementing and training a fully-connected DNN, as we did
in [2], with this many inputs is infeasible due to the exorbitant
memory needed to accommodate the network’s weights. To
overcome this impediment, we introduce locally-connected
irregular DNNs, or liNets, that effectively mitigate memory
consumption, thereby enabling the use of larger numbers of
irregularly distributed photoreceptors.

A. LiNet Architecture

In a fully-connected neural network, each neuron in a
hidden layer is connected globally to all the neurons in the
previous layer, whereas like CNNs [9], each neuronal unit in a
hidden layer of our liNet is connected only locally to a fixed
number of neighboring units in the previous layer. However, the
implementation of a CNN conforms to conventional, regularly-
sampled images, the regular arrangement of units in tensor
data structures, and the sharing of weights and biases across all
the units in each hidden layer (i.e., the convolutional property).
The liNet shares none of these restrictions. Importantly, every
unit of a liNet has its own particular weights and bias, just
like in a fully-connected network.
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Fig. 3: The liNet architecture.

Referring to Fig. 3, suppose that we have a liNet with H
hidden layers, each of which is comprised of N}, neuronal units.
Using a Euclidean-distance k-nearest-neighbor algorithm, each
unit in hidden layer h = 1,..., H forms a receptive field with
R}, nearest neighbor units in the previous hidden layer h — 1,
and it inherits a position in the 2D (p, 6 polar coordinate
system) retinal domain that is the average of the positions
of the units in its receptive field. The receptive fields of the
units in the first hidden layer A~ = 1, are formed from R;
neighboring retinal photoreceptors. Given an irregular, foveated
photoreceptor distribution, the overlapping receptive fields,
which are illustrated by the white circles in the retinal domain
at the left of Fig. 3, naturally increase in size with eccentricity,
from the denser foveal center outward to the sparser periphery.

Our flexible liNet architecture is defined by a set of H
connectivity matrices. Each N, X R;, matrix C}, specifies the
connectivity between units in hidden layer h and R}, units in
hidden layer A — 1. Each row in a connectivity matrix stores
the indexes of the units in its receptive field. The index of a
unit in hidden layer h is 0 < n < N}, while the (ONV) index
of a retinal photoreceptor is 0 < p < P.

Our liNets are implemented in PyTorch. We use Rectified
Linear Units (ReLUs). Each ReLU computes a weighted sum
of the outputs of units (or photoreceptors in the case of units
in hidden layer h = 1) within its receptive field. The weights,
which are stored in a set of weight matrices W}, of size
Ny, x Rj, and the biases, which are stored in bias vectors
of size NNp, are learned from training data using standard
backpropagation learning techniques.

V. LINET EFFICIENCY AND PERFORMANCE

To assess the memory efficiency of the liNet, given P pho-
toreceptors (3P-dimensional ONV), we compare its memory
consumption to that of a fully-connected DNN with the same
numbers of hidden layers and neurons in each hidden layer.

For example, consider setting the number of hidden layers
to H = 4, and the number of units N}, in hidden layer h to the
number N, _1 in the previous layer divided by a constant factor
f =5;ie., Ny = |Np_1/f], such that the only difference
is in the connectivity of the networks. In the liNet, every
neuron in a hidden layer is locally-connected to only Ry =5
nearest neighboring units in the previous layer. Fig. 4 plots the
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Fig. 4: Semi-log plots of (a) memory consumption and (b)
number of trainable parameters versus ONV dimension.
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Fig. 5: Foveation DNN architecture. A liNet backbone is
followed by a fully-connected layer that outputs eye orientation
control signals 6 and ¢.

memory consumption and number of trainable parameters of the
networks with increasing ONV dimensionality. Fig. 4a shows
that the memory consumption of fully-connected networks
increases rapidly as the input dimension increases—8,031 MB
when 3P = 4.0 x 10%, whereas for the liNet it is only 543 MB.
For a 3P = 1.28 x 107 dimensional ONV, the liNet’s memory
consumption is 8,075 MB, comparable to that of the fully-
connected network with a 4.0 x 10* dimensional ONV. Fig. 4b
shows that the rate of increase in the number of trainable
parameters (i.e., the weights and biases) of the fully-connected
network is much faster than that of the liNet.

The above observations indicate that, unlike fully-connected
networks, liNets make it feasible to perform perceptual pro-
cessing on retinal models whose photoreceptor counts are on
the order of the millions of cone photoreceptors in the human
retina [1].

Next, to evaluate the learning effectiveness of the liNet, we
consider the task of executing eye movements to foveate objects
of interest. For this purpose, we employ retinas with P =
14,400 photoreceptors (43,200-dimensional ONVs). Foveation
functionality is accomplished by the foveation DNNs (denoted
DNN 1 and DNN 2 in Fig. 1), each of which inputs the ONV
from the eye and outputs activation signals to its 6 extraocular
muscles to produce eye movements.

We construct the foveation DNNs as illustrated in Fig. 5,
consisting of a liNet backbone with H = 4 hidden layers, a
receptive field size of Ry = 20, and f = 5, followed by a
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Fig. 8: Frames from a simulation of the biomechanically-simulated virtual human sitting on a stool (with immobilized pelvis
and torso) and actively executing left-arm reaching motions to intercept a ball shot by the cannon. The ball is actively perceived
by the eyes (red lines indicate the gaze directions), processed by the liNet vision DNNs, foveated and tracked through eye
movements in conjunction with muscle-actuated head movements controlled by the neck-head motor DNN, and the reactive
reaching motion is muscle-actuated and controlled by the left arm motor DNN.

locally-connected network training loss
= = locally-connected network validation loss |7
fully-connected network training loss

= = fully-connected network validation loss
0025

Mean Squared Error

Fig. 6: Progress of the foveation DNN training process for the
vision liNet (blue) and fully-connected foveation DNN (red)
on the training (solid) and validation (dashed) datasets.
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Fig. 7: Time sequence (a)—(d) of photoreceptor responses in
the left retina during a saccadic eye movement that foveates
and tracks a moving white ball. At time ¢y the ball becomes
visible in the periphery, at ¢; the eye movement is bringing the
ball towards the fovea, and the moving ball is being fixated in
the fovea at times ¢5 and t3.

(d) t3

fully-connected (FC) output layer that produces eye rotation
angles 6 and ¢.

Using a dataset of 20K training ONVs and a batch size of
64, we trained a benchmark fully-connected foveation DNN
as we did in [2], as well as a liNet-based foveation DNN, to
foveate a white ball by stimulating the extraocular muscles to
actuate saccadic eye movements. Fig. 6 plots the progress and
validation losses of the backpropagation training processes. The
fully connected network converges to a small mean-squared
training loss below 0.01 after 47 epochs. The liNet does so

after only 9 epochs with a validation loss smaller than that of
the fully-connected network.

With their trained foveation DNNGs, the eyes perform natural
vergence movements to converge onto visual targets. This is
illustrated in Fig. 7 for a white ball in motion that enters the
eye’s field of view from the lower right, stimulating several
peripheral photoreceptors at the upper left of the retina. The
eye very rapidly foveates the visual target. Fine adjustments
comparable to microsaccades can be observed during fixation.

The above results confirm that our liNets are capable of
learning effective foveation with substantially smaller memory
and time requirements than the fully-connected networks we
employed in [2].

VI. APPLICATIONS
A. Visuomotor Control

Fig. 8 presents a sequence of frames from a simulation
demonstrating the visuomotor system using the trained liNet
foveation DNNs and other vision DNNs (DNNs 3-10 in Fig. 1).

A cannon shoots a ball towards the virtual human, which
actively perceives the ball on its foveated retinas. The ONV
outputs of its eyes are continually processed by the liNet vision
DNNss to perform foveation and visual tracking of the incoming
ball. The motor DNNs control the extension of the arms and
legs to intercept and deflect the approaching ball. Thus, given
just the high level objective of deflecting the incoming ball,
the virtual human successfully controls itself online to perform
this nontrivial dynamic visuomotor task.

While similar to our demonstration in [2], which employed
fully-connected vision DNNs to process retinas with a mere
3,600 photoreceptors, our novel liNets have enabled us to
implement retinas with 14,400 photoreceptors yet effectively
train the vision DNNs to perform foveation and tracking of the
visual target with eye movements and cervicocephalic control.

B. Active Face Recognition

As an example of higher-level visual processing with liNets,
we explore the task of 3D Active Face Recognition (AFR).
Fig. 9 shows the architecture of our AFR DNN. The network
includes a liNet backbone that has H = 5 hidden layers of
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Fig. 9: LiNet architecture for active face recognition. The
network outputs recognized person identity labels p; and
horizontal and vertical pose angle estimates « and f3.

Fig. 10: The virtual human observes a 3D face model.

ReLUs. Every hidden unit forms receptive fields with R = 20
nearest neighbors in the previous layer. The retina has P =
14,400 photoreceptors (a 3P = 43,000 dimensional ONV),
and the number of units in each successive hidden layer is
reduced by a factor of f = 2. The liNet feeds two single-layer,
fully-connected subnets—FCl1 is a classification subnet, whose
output p;, for ¢ = 1,..., N, has dimensionality equal to the
number N of known person identities; FC2 is a regression
net that generates the estimated pose (horizontal and vertical
rotation angles, o and ) of the observed face.

The AFR DNN is trained by minimizing the combined loss
L = Lejass + AMangle, Where Ljags i cross-entropy person
classification loss, L. is mean-squared pose estimation
regression loss, and parameter A trades off between them.

1) Training Data Synthesis: To train our AFR model, we
use the Freiburg 3D face dataset, which comprises scans
of 75 subjects, recorded using a Cyberware™ 3030PS laser
scanner as part of the University of Freiburg 3D morphable
faces database [10]. The virtual human (monocularly) observes
the 3D faces of 50 different scanned subjects (Fig. 10).
Fig. 11 illustrates how we synthesize the training data. Ray-
tracing the textured 3D geometry, the observer’s eye captures
ONV “images” as the subject face is rotated by 2 degree
increments from —30° to 30° horizontally and vertically. Thus,
we synthesize 50 x 30 x 30 = 45,000 ONVs with corresponding
face orientation and person ID labels. We partition the ONV

—-—-Classification loss (train)
—— Classfication loss (val)
—-—-Regression loss (train)
—— Regression loss (val)

Loss
g

Fig. 12: Training and validation loss curves for 3D active face
recognition. Classification loss (blue) is the cross-entropy loss
L 1ass for the classification subnet. Regression loss (red) is the
mean-squared 10ss Ly for the regression subnet.

dataset as follows: 70% training, 10% validation, 20% testing.

2) Training and Validation: To train our network, we use
the Adaptive Moment Estimation (Adam) stochastic optimizer
with a learning rate = 0.01, step size a = 1073, and
forgetting factors 81 = 0.9 for gradients and 2 = 0.999 for
second moments of gradients. Overfitting is avoided by using
a validation split of 0.1 along with an early stopping condition.
We standardized the « and (8 outputs of the regression network
by computing the means and standard deviations over the entire
training dataset.

The hyper-parameter in the aforementioned loss function £
is set to A = 6.0. The model parameters are recorded only
when the model simultaneously attains best regression loss and
classification accuracy on the validation set after each epoch.
Fig. 12 shows the training and validation loss curves. The
training process converged to a small error after 57 epochs,
which triggered the early stopping condition (no improvement
for 30 successive epochs).

3) Accuracy: The testing classification accuracy for the
model was 97.97%, and the testing mean squared errors for
the o and 3 angles were 5.52 x 1073, This corresponds to
an average error of 0.7° (after adjusting for the effect of
standardizing the output angles).?

Note that there exist no other datasets against which to
benchmark the performance of the 3D active face recognition
ability of our virtual human. Futhermore, the biomimetic
retina+liNet combination in its active vision system is not
meaningfully comparable against conventional CNNs trained on
regular, passively-acquired, uniform-resolution, facial images.

2Let at denote the target output and a, the prediction of the network, emse
denote the mean squared error of the angle, eqeg denote the corresponding
error in degrees, and let o and 8 denote the mean and standard deviation of

the target angles in the dataset. We have emse = [(%) - (y)] and

we obtain egeg =| at — ap |= B+/€mse. The standard deviation 3 is 8.96.



Fig. 11: The virtual human foveating a 3D face in several different poses. Irradiance at the retinal photoreceptors is computed
by ray-tracing; the white lines indicate rays cast from the positions of the photoreceptors, through the lens, pupil, and cornea,
and out into the 3D scene. Underneath, the photoreceptor responses comprising the ONV are visualized as retinal “images”.



VII. RELATED WORK

A number of researchers have proposed (locally-connected)
neural network architectures whose neuronal units have recep-
tive fields; the best known are Fukushima’s ‘“Neocognitron”
[11] and the currently popular deep CNNs [9]. CNNs are
characterized by the regular structure of their receptive fields,
enabling the sharing of weights across all units in a hidden
layer (i.e., the convolutional property). Closer to our liNets is
the non-convolutional LCNP [12]. However, unlike the liNet,
the aforecited networks are intended for use in conventional,
regularly-sampled pixel images common to computer vision,
which fundamentally differ from biological retinas.

Our biomimetic, foveated retina model employs a noisy log-
polar photoreceptor distribution. Other placement patterns are
readily created, including more elaborate biomimetic procedural
models [8] or photoreceptor distributions empirically measured
from biological eyes [1], [13], all of which depart fundamentally
from the uniform-resolution, Cartesian images common to
computer vision/graphics. However, foveated sensors have also
been of interest in computer vision and image processing [14].
Recently, Ozimek et al. [15] explored foveated sampling
and log-polar maps [6] to compute regular Cartesian cortical
representations of images to which deep CNNs may be applied
with significant efficiency gains.

In the context of human active vision and visuomotor
control [16], Terzopoulos and Rabie deployed their “animat
vision” framework within a kinematic virtual human capable
of bipedal locomotion, demonstrating active, vision-guided
tracking and pursuit [17], and a similar kinematic virtual
human model, dubbed “Walter”, was employed by Sprague et
al. [18] to study visuomotor control in the context of sidewalk
navigation tasks. The virtual humans demonstrated in [17] were
equipped with crudely-foveated eyes, implemented as coaxial
virtual cameras rendering composite polygon-shaded square
images through the GPU pipeline, quite unlike our biomimetic
ocular model that samples light in the 3D virtual environment
using ray-tracing so as to realistically emulate how irregularly
distributed photoreceptors respond to light irradiating the retina.

VIII. CONCLUSIONS

Within a unique simulation framework for investigating
biomimetic human vision and visuomotor control, we have in-
troduced and evaluated locally-connected, irregular deep neural
networks, or liNets. Unlike CNNs, our novel liNets are well
suited to a bio-inspired retinal model with irregularly distributed
photoreceptors, enabling greater numbers of photoreceptors
resulting in enhanced visual acuity.

We empirically demonstrated the utility, efficiency, and
performance of trained liNets in foveation, visuomotor control,
and in a prototype 3D active facial recognition subsystem
incorporated into the brain of a simulated biomechanical human
musculoskeletal model with biomimetic eyes. Our approach

has been to train the DNNs with large quantities of training

data that are synthesized by the virtual human itself.
Inevitably, our current retinal model is a gross simplification

of the biological human retina. Modeling the retinal ganglion

cells, as well as circular excitatory-inhibitory center-surround
and oriented receptive fields, the M-cell pathway, and the

retinocortical map [6] are worthwhile avenues for future
research with our framework. We believe that our embodied,
biomimetic modeling approach is suitable for such extensions.
Our foveation liNet generates saccadic eye movements to
foveate interesting objects in a variety of different scenarios;
hence, our model can be valuable in human visual attention
research [16], a topic that we wish to explore in future work.
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