Inequality, Redistribution, and Optimal Trade Policy: A Public Finance Approach

Roozbeh Hosseini University of Georgia

Ali Shourideh Carnegie Mellon University

March 23, 2022

Redistributing Gains from Trade

- Globalization has aggregate, but unequal, gains
 - It can potentially create winners and losers
- ► How do we distribute gains from trade?

Redistributing Gains from Trade

- Globalization has aggregate, but unequal, gains
 - It can potentially create winners and losers
- ► How do we distribute gains from trade?
- **• Obvious answer:** take from winners (lump sum) and give to losers (lump sum)

Redistributing Gains from Trade

- Globalization has aggregate, but unequal, gains
 - It can potentially create winners and losers
- ► How do we distribute gains from trade?
- **• Obvious answer:** take from winners (lump sum) and give to losers (lump sum)
- **Problems:** Unrealistic, impractical, requires a lot of information
- Need to use distortionary (2nd best) instruments

How? What margins to distort? Are tariffs optimal?

- Competitive (static) model of trade
 - Roy model of labor supply (sector choice)
 - Labor produces value added
 - Government policy: Income tax + VAT

- Competitive (static) model of trade
 - Roy model of labor supply (sector choice)
 - Labor produces value added \leftarrow paper: Input-Output linkages in production
 - Government policy: Income tax + VAT \leftarrow paper: richer set of consumption/production tax

- Competitive (static) model of trade
 - Roy model of labor supply (sector choice)
 - Labor produces value added \leftarrow paper: Input-Output linkages in production
 - Government policy: Income tax + VAT \leftarrow paper: richer set of consumption/production tax
- Key friction:
 - Income taxes cannot depend on workers characteristics and sector

- Competitive (static) model of trade
 - Roy model of labor supply (sector choice)
 - Labor produces value added \leftarrow paper: Input-Output linkages in production
 - Government policy: Income tax + VAT \leftarrow paper: richer set of consumption/production tax

• Key friction:

- Income taxes cannot depend on workers characteristics and sector
- Study the optimal tax system for SOE government that
 - Takes prices as given
 - Minimizes cost while delivering certain level of welfare to each group of individuals

- Competitive (static) model of trade
 - Roy model of labor supply (sector choice)
 - Labor produces value added \leftarrow paper: Input-Output linkages in production
 - Government policy: Income tax + VAT \leftarrow paper: richer set of consumption/production tax

• Key friction:

- Income taxes cannot depend on workers characteristics and sector
- \blacktriangleright Study the optimal tax system for SOE government that \leftarrow paper: world planner
 - Takes prices as given \leftarrow paper: GE
 - Minimizes cost while delivering certain level of welfare to each group of individuals

- \blacktriangleright Production must be efficient \Rightarrow Tariffs are not optimal
- ▶ Optimal policy: Value Added Tax (VAT) differentiated by sector

- Production must be efficient \Rightarrow Tariffs are not optimal \leftarrow in paper
- \blacktriangleright Optimal policy: Value Added Tax (VAT) differentiated by sector \leftarrow in paper

- ▶ Production must be efficient ⇒ Tariffs are not optimal ← in paper
- \blacktriangleright Optimal policy: Value Added Tax (VAT) differentiated by sector \leftarrow in paper
- Derive formula for optimal VAT system
 - Can be easily computed using moments in data
 - Important: Patterns of comparative/absolute advantage
 - Also important: Elasticity of sector choice

- ▶ Production must be efficient ⇒ Tariffs are not optimal ← in paper
- Optimal policy: Value Added Tax (VAT) differentiated by sector \leftarrow in paper
- Derive formula for optimal VAT system
 - Can be easily computed using moments in data
 - Important: Patterns of comparative/absolute advantage
 - Also important: Elasticity of sector choice
- Quantitative exercise (preliminary): How should taxes react to the rise of China?
 - Main insight: VATs are much more powerful than income taxes

Related Literature

- Optimal commodity/intermediate good taxation: Diamond and Mirrlees (1971), Atkinson and Stiglitz (1976), Deaton (1980), Naito (1999)
- Optimal taxation in trade/spatial models: Dixit and Norman (1986), Costinot and Werning (2018), Lyon and Waugh (2017), Fajgelbaum and Gaubert (2018), Ales and Sleet (2018)
- Optimal non-cooperative trade policy: Bagwell and Staiger (1999), Costinot, Donaldson, Vogel, and Werning (2015), Beshkar and Lashkaripour (2017)
- Interplay between distortions and production networks: Caliendo, Parro and Tsyvinsky (2017), Baqaee and Farhi (2017)
- Measuring gains/loses from trade: Autor, Dorn, and Hanson (2013), Caliendo, Dvorkin, and Parro (2019), Waugh and Lyon (2019), Carrol and Hur (2019)

Plan of the Talk

Theory

- Simple SOE model (GE model in the paper)
- Optimal VAT and Income Tax (more general policy instruments in the paper)
- Study the properties of optimal VAT
- Simple examples
 - When there is "pure comparative advantage"
 - When there is "pure absolute advantage"
- Preliminary quantitative results (if there is time)
 - Impact of the rise of China
 - Optimal policy response

Theoretical Framework

Production

- ▶ There are *N* sectors, indexed by *i* or *j*
- Each produce a differentiated good, using

$$Y_i = L_i$$

- Price of good *i* is $p_i \leftarrow$ exogenous in the talk
- \blacktriangleright L_i is labor input in sector i

Production

- ▶ There are *N* sectors, indexed by *i* or *j*
- Each produce a differentiated good, using

$$Y_i = L_i$$

- ▶ Price of good *i* is $p_i \leftarrow$ exogenous in the talk
- \blacktriangleright L_i is labor input in sector i
- Firms pay wage w_i per unit of labor services

$$w_i = (1 - \frac{t_i}{p_i}) p_i$$

where t_i is value added tax in sector i

Workers – Preferences

Continuum of workers

 \blacktriangleright Have preference over consumption $\mathbf{x} \in \mathbb{R}^{N}$ and leisure

 $u = U(\mathbf{x}) - v(\ell)$

Workers – Preferences

- Continuum of workers
- \blacktriangleright Have preference over consumption $\mathbf{x} \in \mathbb{R}^{N}$ and leisure

$$u = U(\mathbf{x}) - v(\ell)$$

Assumptions

- $U(\mathbf{x})$ is homothetic in $\mathbf{x} \Rightarrow$ indirect utility is linear in income

-
$$v(\ell) = rac{\ell^{1+1/arepsilon}}{1+1/arepsilon}$$

Workers – Preferences

- Continuum of workers
- \blacktriangleright Have preference over consumption $\mathbf{x} \in \mathbb{R}^{N}$ and leisure

$$u = U(\mathbf{x}) - v(\ell)$$

Assumptions

- $U(\mathbf{x})$ is homothetic in \mathbf{x} \Rightarrow indirect utility is linear in income

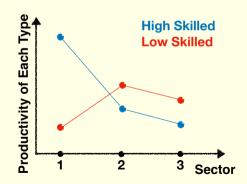
-
$$v(\ell) = rac{\ell^{1+1/arepsilon}}{1+1/arepsilon}$$

• Workers have heterogenous type θ , with p.d.f $\mu(\theta)$

• Worker of type θ who works in sector *j* has labor productivity: $a_j(\theta)\eta_j$

• Worker of type θ who works in sector j has labor productivity: $a_j(\theta)\eta_j$

 $a_j(\theta)$: individual specific – determines degree of specialization

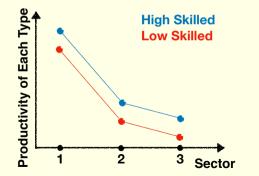


• Worker of type θ who works in sector j has labor productivity: $a_j(\theta)\eta_j$

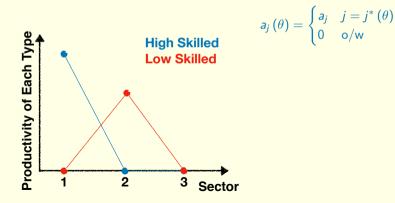
 $a_j(\theta)$: individual specific – determines degree of specialization

Example 1: absolute advantage - no specialization

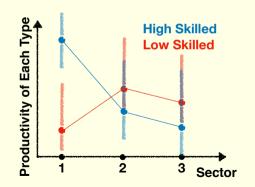
 $a_j(heta) = a(heta) imes b_j$



Worker of type θ who works in sector j has labor productivity: a_j(θ)η_j
 a_j(θ): individual specific – determines degree of specialization
 Example 2: perfect specialization



Worker of type θ who works in sector j has labor productivity: a_j(θ)η_j a_j(θ): individual specific – determines degree of specialization η = (ε₁,..., ε_N): idiosyncratic – generates heterogeneity within types



Worker of type θ who works in sector j has labor productivity: a_j(θ)η_j
 a_j(θ): individual specific – determines degree of specialization
 η = (ε₁,..., ε_N): idiosyncratic – generates heterogeneity within types
 Parametric example: each η_j is *i.i.d* and Frechet:

$$\mathsf{Pr}(\eta_j \leq \eta) = e^{-\eta^-} \frac{\sigma}{\sigma}$$

Worker of type θ who works in sector j has labor productivity: a_j(θ)η_j
 a_j(θ): individual specific – determines degree of specialization
 η = (ε₁,..., ε_N): idiosyncratic – generates heterogeneity within types
 Parametric example: each η_j is *i.i.d* and Frechet:

$$\Pr(\eta_j \leq \eta) = e^{-\eta^{-\sigma}}$$

 σ : determines elasticity of sector choice

Worker of type θ who works in sector j has labor productivity: a_j(θ)η_j
 a_j(θ): individual specific – determines degree of specialization
 η = (ε₁,..., ε_N): idiosyncratic – generates heterogeneity within types
 Parametric example: each η_j is *i.i.d* and Frechet:

$$\mathsf{Pr}(\eta_j \leq \eta) = e^{-\eta^{-c}}$$

Supply of labor services in sector j

$$L_{j} = \sum_{\theta} \mu\left(\theta\right) \int_{\mathbb{R}^{N}_{+}} a_{j}\left(\theta\right) \eta_{j} \ell_{j}\left(\theta,\eta\right) \mathbf{1} \left[w_{j} a_{j}\left(\theta\right) \eta_{j} \geq w_{i} a_{i}\left(\theta\right) \eta_{i}\right] dF\left(\eta;\theta\right)$$

What does the model give us?

► A general labor supply framework

(Heterogeneous workers decide where and how much to work)

 \blacktriangleright A value added tax in sector *j*, affect wages of workers in sector *j*

What does the model give us?

► A general labor supply framework

(Heterogeneous workers decide where and how much to work)

- ▶ A value added tax in sector *j*, affect wages of workers in sector *j*
- But workers are heterogenous, i.e. we have different θ s
- Question: What role does this tax play in income redistribution (besides income tax)?
- The analysis is analog to commodity taxation framework (Heterogenous consumers decide what to buy and how much)

Government Policies

 \blacktriangleright Value added tax on producers: t_i

- Nonlinear income tax on workers: T(y)
 - Income tax cannot depend on workers' type and/or sectors

Government Policies

• Value added tax on producers: t_i

- Nonlinear income tax on workers: T (y)
 - Income tax cannot depend on workers' type and/or sectors

▶ In the paper – GE model with I/O network – we show

- It is optimal not to tax intermediate inputs (under some conditions)
- Uniform comm. taxation results hold \Rightarrow can set consumption tax to zero
- Also WLOG

taiff on i = consumption tax on i = intermediate input tax on i = -sales tax on i

 \Rightarrow optimal to set tariffs to zero

Government Objective

Let

-
$$\mathbf{p^{SQ}} = \left(p_1^{SQ}, \ldots, p_N^{SQ}
ight)$$
 be status quo vector of prices

-
$$\mathbf{w^{SQ}} = \left(w_1^{SQ}, \ldots, w_N^{SQ}
ight)$$
 be status quo vector of wages, and $w_j^{SQ} = p_j^{SQ}$

- $u^{SQ}(\theta)$ be welfare of worker of type θ under status quo prices and wages

For any price vector **p**, government seeks to maximize its surplus subject to

- Restrictions on policy, i.e. VAT and income tax
- No type θ is worse off under price vector **p**, relative to **p**^{SQ}
- Abstract from any motive for terms of trade manipulation

A useful change of variable

- Let's define effective wage as $z \equiv \max_{j} w_{j} a_{j}(\theta) \eta_{j}$ and define
 - $h(z, \theta)$: distribution of z among type θ
 - $h_j(z)$: distribution of z in sector j
 - h(z): distribution of z in the economy

A useful change of variable

- Let's define effective wage as $z \equiv \max_{j} w_{j} a_{j}(\theta) \eta_{j}$ and define
 - $h(z, \theta)$: distribution of z among type θ
 - $h_j(z)$: distribution of z in sector j
 - h(z): distribution of z in the economy
- Let $y(z) = z\ell(z)$ be labor income

A useful change of variable

- Let's define effective wage as $z \equiv \max_{j} w_{j} a_{j}(\theta) \eta_{j}$ and define
 - $h(z, \theta)$: distribution of z among type θ
 - $h_j(z)$: distribution of z in sector j
 - h(z): distribution of z in the economy
- Let $y(z) = z\ell(z)$ be labor income
- The contribution of a z worker in production of good j is $\frac{y(z)}{w_i}$

A useful change of variable

- Let's define effective wage as $z \equiv \max_{j} w_{j} a_{j}(\theta) \eta_{j}$ and define
 - $h(z, \theta)$: distribution of z among type θ
 - $h_j(z)$: distribution of z in sector j
 - h(z): distribution of z in the economy
- Let $y(z) = z\ell(z)$ be labor income
- The contribution of a z worker in production of good j is $\frac{y(z)}{w_i}$
- We can write value added in sector j as

$$p_{j}\int_{0}^{\infty}\frac{y\left(z\right)}{w_{j}}h_{j}\left(z\right)dz=\int_{0}^{\infty}\frac{y\left(z\right)}{1-t_{j}}h_{j}\left(z\right)dz$$

Optimal Taxation Problem

$$\max_{t_j, T(y)} \sum_{j=1}^{N} \frac{t_j}{1 - t_j} \int_0^\infty y(z) h_j(z) dz + \int_0^\infty T(y(z)) h(z) dz$$
$$U'(z) = \frac{1}{z} \left(\frac{y(z)}{z}\right)^{1 + 1/\varepsilon}$$
$$U(z) = y(z) - T(y(z)) - \frac{(y(z)/z)^{1 + 1/\varepsilon}}{1 + 1/\varepsilon}$$
$$\int_0^\infty U(z) h(z; \theta) dz \ge u^{SQ}(\theta) \leftarrow \text{Pareto Improving (PI) constraint}$$

s.t.

Optimal Taxation Problem

$$\max_{t_j, T(y)} \sum_{j=1}^{N} \frac{t_j}{1 - t_j} \int_0^\infty y(z) h_j(z) dz + \int_0^\infty T(y(z)) h(z) dz$$
$$U'(z) = \frac{1}{z} \left(\frac{y(z)}{z}\right)^{1 + 1/\varepsilon}$$
$$U(z) = y(z) - T(y(z)) - \frac{(y(z)/z)^{1 + 1/\varepsilon}}{1 + 1/\varepsilon}$$
$$\int_0^\infty U(z) h(z; \theta) dz \ge u^{SQ}(\theta) \leftarrow \text{Pareto Improving (PI) constraint}$$

Question: where is the vector of price?

Answer: in $h_j(z; \theta)$, via $w_i = (1 - t_i) p_i$.

s.t.

Approximation around status quo

▶ Instead of full non-linear set of FOC) \rightarrow linear approximation around status quo

Let

- δp_j : percent deviation of prices relative to status quo (suppose $\sum_i \frac{\delta p_i}{p_i} = 0$)
- $\gamma(\theta)$: deviation of multiplier (on PI constraint) from status quo
- $\tau(z)$: optimal marginal income tax for worker with effective wage z

Approximation around status quo

▶ Instead of full non-linear set of FOC) \rightarrow linear approximation around status quo

Let

- δp_j : percent deviation of prices relative to status quo (suppose $\sum_j \frac{\delta p_j}{p_i} = 0$)
- $\gamma\left(\theta\right)\!:$ deviation of multiplier (on PI constraint) from status quo
- $au\left(z
 ight)$: optimal marginal income tax for worker with effective wage z
- Question:
 - What is the optimal policy response to a price shock δp_j ?
 - What is the optimal mix of VAT and income tax?

Approximation around status quo

▶ Instead of full non-linear set of FOC) \rightarrow linear approximation around status quo

Let

- δp_j : percent deviation of prices relative to status quo (suppose $\sum_j \frac{\delta p_j}{p_i} = 0$)
- $\gamma\left(\theta\right)\!:$ deviation of multiplier (on PI constraint) from status quo
- $au\left(z
 ight)$: optimal marginal income tax for worker with effective wage z
- Question:
 - What is the optimal policy response to a price shock δp_j ?
 - What is the optimal mix of VAT and income tax?
- \blacktriangleright Note: We observe data in status quo \rightarrow can estimate moments/elasticities

$$-t_{j}+\sum_{i=1}^{N}\mathbb{E}_{Y_{j}}\left[\xi_{j,i}\right]t_{i}-\varepsilon\sum_{i=1}^{N}\mathbb{E}_{Y_{j}}\left[\frac{h_{i}\left(z\right)}{h\left(z\right)}\right]t_{i}=\sum_{\theta}\left[\mathbb{E}_{Y_{j}}\left[\left(1+\varepsilon\right)\left(\frac{1-H\left(z;\theta\right)}{zh\left(z\right)}\right)\right]-\frac{Y_{j}\left(\theta\right)}{Y_{j}}\right]\gamma\left(\theta\right)$$

- $\xi_{j,i}(z)$: elasticity of labor supply in sector j w.r.t w_i
- $Y_j(\theta)$: income earned in sector *j* by type θ
- ► *Y_j*: income earned in sector *j*

•
$$\mathbb{E}_{Y_j}[g(z)] = \int \frac{z^{1+\varepsilon}h_j(z)}{Y_j}g(z) dz$$
: income weighted mean of $g(z)$ in sector j

$$-t_{j}+\sum_{i=1}^{N}\mathbb{E}_{Y_{j}}\left[\xi_{j,i}\right]t_{i}-\varepsilon\sum_{i=1}^{N}\mathbb{E}_{Y_{j}}\left[\frac{h_{i}\left(z\right)}{h\left(z\right)}\right]t_{i}=\sum_{\theta}\left[\mathbb{E}_{Y_{j}}\left[\left(1+\varepsilon\right)\left(\frac{1-H\left(z;\theta\right)}{zh\left(z\right)}\right)\right]-\frac{Y_{j}\left(\theta\right)}{Y_{j}}\right]\gamma\left(\theta\right)$$

- $\xi_{j,i}(z)$: elasticity of labor supply in sector j w.r.t w_i
- $Y_j(\theta)$: income earned in sector *j* by type θ
- ► *Y_j*: income earned in sector *j*

•
$$\mathbb{E}_{Y_j}[g(z)] = \int \frac{z^{1+\varepsilon}h_j(z)}{Y_j}g(z) dz$$
: income weighted mean of $g(z)$ in sector j

$$-t_{j}+\sum_{i=1}^{N}\mathbb{E}_{Y_{j}}\left[\xi_{j,i}\right]t_{i}-\varepsilon\sum_{i=1}^{N}\mathbb{E}_{Y_{j}}\left[\frac{h_{i}\left(z\right)}{h\left(z\right)}\right]t_{i}=\sum_{\theta}\left[\mathbb{E}_{Y_{j}}\left[\left(1+\varepsilon\right)\left(\frac{1-H\left(z;\theta\right)}{zh\left(z\right)}\right)\right]-\frac{Y_{j}\left(\theta\right)}{Y_{j}}\right]\gamma\left(\theta\right)$$

- $\xi_{j,i}(z)$: elasticity of labor supply in sector j w.r.t w_i
- $Y_j(\theta)$: income earned in sector *j* by type θ
- ► *Y_j*: income earned in sector *j*

•
$$\mathbb{E}_{Y_j}[g(z)] = \int \frac{z^{1+\varepsilon} h_j(z)}{Y_j} g(z) dz$$
: income weighted mean of $g(z)$ in sector j

$$-t_{j}+\sum_{i=1}^{N}\mathbb{E}_{Y_{j}}\left[\xi_{j,i}\right]t_{i}-\varepsilon\sum_{i=1}^{N}\mathbb{E}_{Y_{j}}\left[\frac{h_{i}\left(z\right)}{h\left(z\right)}\right]t_{i}=\sum_{\theta}\left[\mathbb{E}_{Y_{j}}\left[\left(1+\varepsilon\right)\left(\frac{1-H\left(z;\theta\right)}{zh\left(z\right)}\right)\right]-\frac{Y_{j}\left(\theta\right)}{Y_{j}}\right]\gamma\left(\theta\right)$$

- $\xi_{j,i}(z)$: elasticity of labor supply in sector j w.r.t w_i
- $Y_j(\theta)$: income earned in sector *j* by type θ
- ► *Y_j*: income earned in sector *j*

•
$$\mathbb{E}_{Y_j}[g(z)] = \int \frac{z^{1+\varepsilon}h_j(z)}{Y_j}g(z) dz$$
: income weighted mean of $g(z)$ in sector j

▶ Suppose we are only interested in "top of the Laffer curve" and impose zero income tax

- Suppose we are only interested in "top of the Laffer curve" and impose zero income tax
- ► The formula collapses to

$$-t_{j} + \sum_{i=1}^{N} \mathbb{E}_{Y_{j}}\left[\xi_{j,i}\right] t_{i} - \varepsilon \sum_{i=1}^{N} \mathbb{E}_{Y_{j}}\left[\frac{h_{i}\left(z\right)}{h\left(z\right)}\right] t_{i} = \sum_{\theta} \left[\mathbb{E}_{Y_{j}}\left[\left(1 + \varepsilon\right)\left(\frac{1 - H\left(z;\theta\right)}{zh\left(z\right)}\right)\right] - \frac{Y_{j}\left(\theta\right)}{Y_{j}}\right]\gamma\left(\theta\right)$$

- Suppose we are only interested in "top of the Laffer curve" and impose zero income tax
- ► The formula collapses to

$$-t_j + \sum_{i=1}^N \mathbb{E}_{Y_j} \left[\xi_{j,i}\right] t_i = 1$$

- Suppose we are only interested in "top of the Laffer curve" and impose zero income tax
- The formula collapses to

$$-t_j + \sum_{i=1}^N \mathbb{E}_{Y_j} \left[\xi_{j,i}\right] t_i = 1$$

- "inverse elasticity rule" in matrix form: for labor supply elasticity
- ▶ The relevant elasticity is the "extensive margin elasticity" $\mathbb{E}_{Y_i}[\xi_{j,i}]$

- ▶ Suppose we are only interested in "top of the Laffer curve" w/ VAT+Income tax
- The formula collapses to

- ▶ Suppose we are only interested in "top of the Laffer curve" w/ VAT+Income tax
- ► The formula collapses to

$$-t_{j} + \sum_{i=1}^{N} \mathbb{E}_{Y_{j}}\left[\xi_{j,i}\right]t_{i} - \varepsilon \sum_{i=1}^{N} \mathbb{E}_{Y_{j}}\left[\frac{h_{i}\left(z\right)}{h\left(z\right)}\right]t_{i} = \sum_{\theta} \left[\mathbb{E}_{Y_{j}}\left[\left(1 + \varepsilon\right)\left(\frac{1 - H\left(z;\theta\right)}{zh\left(z\right)}\right)\right] - \frac{Y_{j}\left(\theta\right)}{Y_{j}}\right]\gamma\left(\theta\right)$$

- ▶ Suppose we are only interested in "top of the Laffer curve" w/ VAT+Income tax
- The formula collapses to

$$-t_{j} + \sum_{i=1}^{N} \mathbb{E}_{Y_{j}}\left[\xi_{j,i}\right] t_{i} - \varepsilon \sum_{i=1}^{N} \mathbb{E}_{Y_{j}}\left[\frac{h_{i}\left(z\right)}{h\left(z\right)}\right] t_{i} = 1 - \sum_{\theta} \mu\left(\theta\right) \mathbb{E}_{Y_{j}}\left[\left(1 + \varepsilon\right)\left(\frac{1 - H\left(z;\theta\right)}{zh\left(z\right)}\right)\right]$$

- ▶ Suppose we are only interested in "top of the Laffer curve" w/ VAT+Income tax
- The formula collapses to

$$-t_{j} + \sum_{i=1}^{N} \mathbb{E}_{Y_{j}}\left[\xi_{j,i}\right] t_{i} - \varepsilon \sum_{i=1}^{N} \mathbb{E}_{Y_{j}}\left[\frac{h_{i}\left(z\right)}{h\left(z\right)}\right] t_{i} = 1 - \sum_{\theta} \mu\left(\theta\right) \mathbb{E}_{Y_{j}}\left[\left(1 + \varepsilon\right)\left(\frac{1 - H\left(z;\theta\right)}{zh\left(z\right)}\right)\right]$$

- Again, standard formula
- Needs to be adjusted for "fiscal externality terms"

Optimal VAT

$$\sum_{i=1}^{N} \left(\mathbb{E}_{Y_{i}} \left[(1+\varepsilon) \left(\frac{1-H(z;\theta)}{zh(z)} \right) \right] - \frac{Y_{i}\left(\hat{\theta}\right)}{Y_{i}} \right) \frac{Y_{i}}{Y} t_{i} + \sum_{\theta} \mathbb{E}_{Y} \left[\frac{(1+\varepsilon)^{2}}{\varepsilon} \left(\frac{1-H\left(z;\hat{\theta}\right)}{zh(z)} \right) \left(\frac{1-H(z;\theta)}{zh(z)} \right) \right] \gamma\left(\theta\right) + \frac{\delta u_{0}}{Y} = -\sum_{i=1}^{N} \frac{Y_{i}\left(\hat{\theta}\right)}{Y} \frac{\delta p_{i}}{p_{i}}$$

In general, optimal taxes depends also on welfare effects

- That is how difficult it is to keep a type θ at their status quo welfare captured by $\gamma(\theta)$
- Important determinant of $\gamma(\theta)$: correlation between price shock in sector *i* and income earned by type θ in that sector

Optimal Income Tax Formula

• Once we know t_i and $\gamma(\theta)$ we can find optimal income tax

$$\tau(z) = -\sum_{i=1}^{N} \frac{h_i(z)}{h(z)} t_i - \frac{1+\varepsilon}{\varepsilon} \sum_{\theta} \gamma(\theta) \frac{(1-H(z;\theta))}{zh(z)}$$

Parametric assumption: Frechet distribution

- \blacktriangleright Suppose sector productivity shocks are i.i.d and Frechet with shape parameter σ
- Share of type θ who work in sector *j* is

$$egin{aligned} & egin{aligned} & egi$$

> Distributions of z are also Frechet with shape parameter σ

$$H(z, \theta) = e^{-\Phi(\theta)z^{-\sigma}}, \quad H_j(z, \theta) = \Lambda_j(\theta) e^{-\Phi(\theta)z^{-\sigma}}$$

The extensive margin elasticity becomes

$$\mathbb{E}_{Y_{j}}\left[\xi_{j,i}\right] = \sigma - \left(\sigma - 1 - \varepsilon\right) \sum_{\theta} \mu\left(\theta\right) \frac{Y_{j}\left(\theta\right)}{Y_{j}} \Lambda_{i}\left(\theta\right)$$

Suppose

$$a_{j}\left(heta
ight)=a\left(heta
ight) imeslpha_{j}$$

► Types make identical sector choice

$$\Lambda_{j}\left(\theta\right)=\Lambda_{j}$$

Suppose

$$a_{j}\left(heta
ight) =a\left(heta
ight) imes lpha_{j}$$

► Types make identical sector choice

$$\Lambda_{j}\left(\theta\right)=\Lambda_{j}$$

Optimal VAT formula collapses to

$$-t_{j}+\sum_{i=1}^{N}\mathbb{E}_{Y_{j}}\left[\xi_{j,i}\right]t_{i}-\varepsilon\sum_{i=1}^{N}\mathbb{E}_{Y_{j}}\left[\frac{h_{i}\left(z\right)}{h\left(z\right)}\right]t_{i}=0$$

Suppose

$$a_{j}\left(heta
ight)=a\left(heta
ight) imeslpha_{j}$$

► Types make identical sector choice

$$\Lambda_{j}\left(\theta\right)=\Lambda_{j}$$

Optimal VAT formula collapses to

$$\Rightarrow t_i = 0$$

Suppose

$$a_{j}\left(heta
ight) =a\left(heta
ight) imes lpha_{j}$$

► Types make identical sector choice

$$\Lambda_{j}\left(\theta\right)=\Lambda_{j}$$

Optimal VAT formula collapses to

$$\Rightarrow t_i = 0$$

Only income tax responds to price shock

$$\tau(z) = -\frac{1+\varepsilon}{\varepsilon} \sum_{\theta} \gamma(\theta) \frac{(1-H(z;\theta))}{zh(z)}$$

Special Case 2: pure comparative advantage

Suppose distribution of income is identical across types

A simple example: two sectors, two types

 $a_1(heta_1) w_1 = a_2(heta_2) w_2 \ a_2(heta_1) w_2 = a_1(heta_2) w_1$

Then

$$\Phi(\theta_1) = \Phi(\theta_2) = \Phi$$
$$Y(\theta_1) = Y(\theta_2) = Y$$
$$H(z, \theta_1) = H(z, \theta_2) = H(z)$$

Income distribution identical across types, but sector choices are different

Hosseini & Shourideh

Special Case 2: comparative advantage

Pareto Improving constraint collapses to

$$\sum_{i=1}^{N} \left(\Lambda_{i}\left(\theta_{2}\right) - \Lambda_{i}\left(\theta_{1}\right) \right) t_{i} = \sum_{i=1}^{N} \left(\Lambda_{i}\left(\theta_{2}\right) - \Lambda_{i}\left(\theta_{1}\right) \right) \frac{\delta p_{i}}{p_{i}}$$

Special Case 2: comparative advantage

Pareto Improving constraint collapses to

$$\sum_{i=1}^{N} \left(\Lambda_{i}\left(\theta_{2}\right) - \Lambda_{i}\left(\theta_{1}\right) \right) t_{i} = \sum_{i=1}^{N} \left(\Lambda_{i}\left(\theta_{2}\right) - \Lambda_{i}\left(\theta_{1}\right) \right) \frac{\delta p_{i}}{p_{i}}$$

► A simple policy can restore status quo welfare

$$t_i = \frac{\delta p_i}{p_i}$$

Special Case 2: comparative advantage

Pareto Improving constraint collapses to

$$\sum_{i=1}^{N} \left(\Lambda_{i}\left(\theta_{2}\right) - \Lambda_{i}\left(\theta_{1}\right) \right) t_{i} = \sum_{i=1}^{N} \left(\Lambda_{i}\left(\theta_{2}\right) - \Lambda_{i}\left(\theta_{1}\right) \right) \frac{\delta p_{i}}{p_{i}}$$

► A simple policy can restore status quo welfare

$$t_i = \frac{\delta p_i}{p_i}$$

Since distribution of income is identical across types

$$\tau(z) = -\sum_{i=1}^{N} \frac{h_i(z)}{h(z)} t_i - \frac{1+\varepsilon}{\varepsilon} \sum_{\theta} \gamma(\theta) \frac{(1-H(z;\theta))}{zh(z)}$$
$$= 0$$

Quantitative Exercise: Optimal Policy Response to *the Rise of China* (Preliminary)

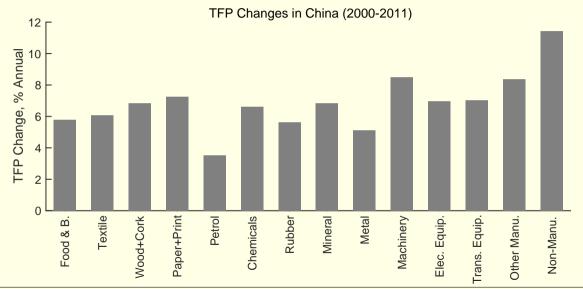
Quantitative Model

- Multi-sector trade model similar to Galle, Rodriguez-Clare, Yi (2020)
- ▶ 14 sectors (ISIC Rev 3):
 - 13 manufacturing + an aggregate non-manufacturing

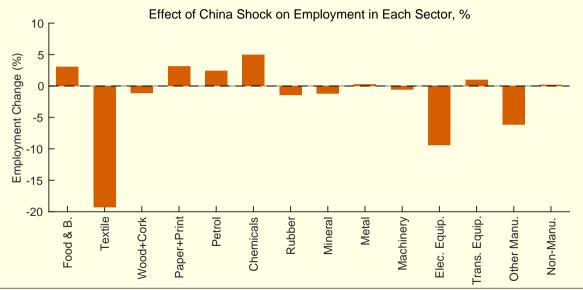
Types

- Each type is an education/location in the U.S.
- Education: No-college vs. some college (associate degrees)
- Location: 722 Commuting Zones (as in Autor, Dorn and Hanson (2013))
- $a_j(\theta)$: calibrate to match employment and earning data from 2000 ACS
- China shock: increase in sector TFPs in China (between 2000 and 2011)

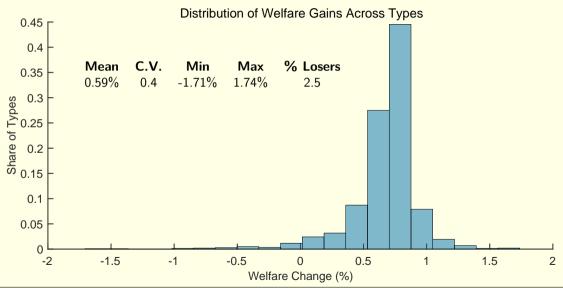
Implied Rise of TFP in China



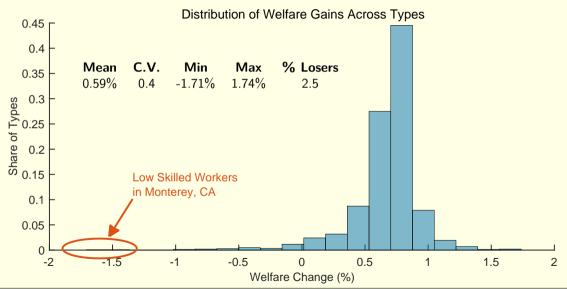
Employment Effect of the Rise of China



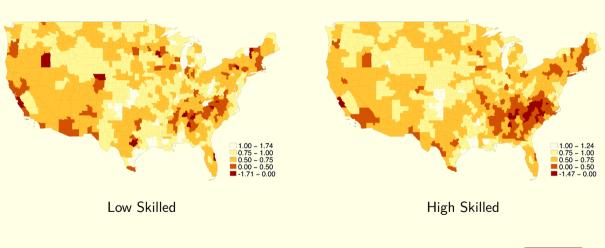
Welfare Effect of the Rise of China



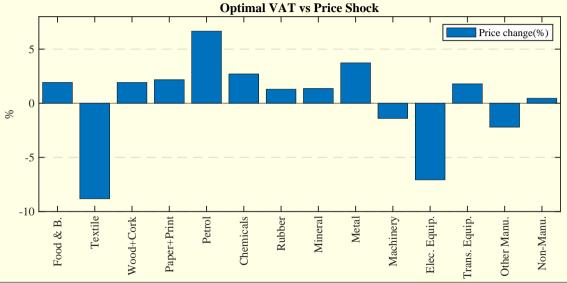
Welfare Effect of the Rise of China



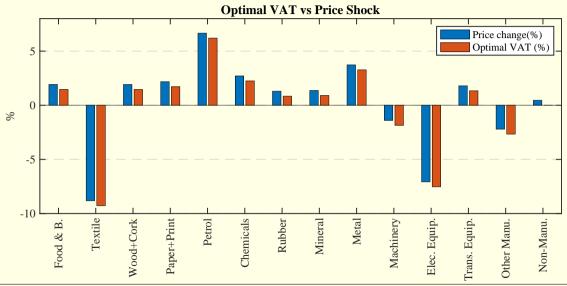
Geographic Distribution of Welfare Changes



Implied Price Shock

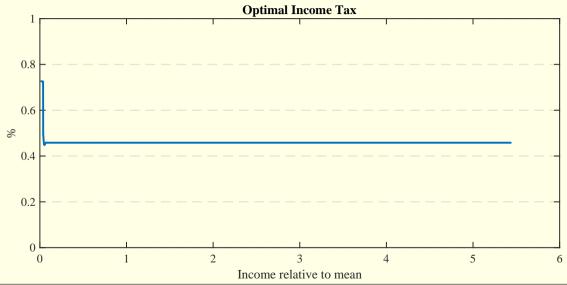


Optimal Policy Response: VAT



Hosseini & Shourideh

Optimal Policy Response: Income Tax



A Difficulty with Frechet

- The discussion above highlights key determinants of optimal tax system
 - 1 Extensive elasticity of labor supply (sector choice margin)
 - 2 Tail of the income distribution among each type
 - **③** Patterns of comparative/absolute advantage
- ▶ An issue with Frechet: 1 and 2 are tightly connected
 - Both are determined by shape parameter
- ▶ To make tighter connection to data we need a more flexible distribution
 - We have developed a flexible semi-parametric Roy model that can match any income distribution but the extensive elasticity of labor supply is given by a parameter and can be estimated.
 - Not fully done yet.