Optimal Rating Design

Maryam Saeedi and Ali Shourideh

Carnegie Mellon University

ASU Annual Economic Theory Conference December 2022

Introduction _

- Rating design is central to markets with asymmetric information
 - o eBay, college grades, security rating, Google Ranking

Introduction

- Rating design is central to markets with asymmetric information
 - o eBay, college grades, security rating, Google Ranking

- Key Elements:
 - Ratings are often used to incentivize quality provision
 - Grades motivate students
 - Potentially incentivizes design of securities
 - o Ratings often involve manipulation: USNews, ESG

Introduction .

- Rating design is central to markets with asymmetric information
 - o eBay, college grades, security rating, Google Ranking

• Key Elements:

- Ratings are often used to incentivize quality provision
 - Grades motivate students
 - Potentially incentivizes design of securities
- o Ratings often involve manipulation: USNews, ESG

Questions:

- How should we think about rating design when it provides incentives?
- What to do about manipulation?

What do we do? _

- Rating design with moral hazard
 - DM takes action that leads to an outcome
 - Market cares about action and/or outcome
 - Intermediary observes outcome and designs a disclosure policy
 - Market pays expected value to the DM

Main Findings ... _

- Map this mechanism design problem without transfers into a problem with transfers (interim prices)
- Key mathematical result: provide a simple characterization of feasible transfers
 - Interim prices are mean-preserving contraction of market values conditional on the outcome
- Study various applications (with productive effort and manipulation):
 - Highlights the importance of rating uncertainty

Related Literature

- Bayesian Persuasion: Kamenica and Gentzkow (2011), Rayo and Segal (2010), Gentzkow and Kamenica (2016), Dworczak and Martini (2019), Mathevet, Perego and Taneva (2019), ...
 - Characterize second order expectations + endogenous state; no incentives for receiver
- Certification and disclosure: Lizzeri (1999), Ostrovsky and Schwartz (2010), Harbough and Rasmusen (2018), Hopenhayn and Saeedi (2019), Vellodi (2019), ...
 - Information design as mechanism design
- Falsification and muddled information: Perez-Richet and Skreta (2020), Frankel and Kartik (2020), Ball (2020)
 - General characterization of feasible mechanisms under moral hazard

Roadmap _

- The Model
- Characterization for arbitrary rating system
- Two Applications more in the paper:
 - Optimal ratings absent input manipulation
 - Optimal ratings with input manipulation

- DM chooses an action $a \in A \subset \mathbb{R}^N$
- Induces $y \in Y \subset \mathbb{R}^M$ with $\sigma(\cdot|a) \in \Delta(Y)$
- Market value: v(a, y); paid to the DM conditional on available information
- Intermediary observes y and sends a signal to the market: $(S, \pi(\cdot|y))$ with $\pi(\cdot|y) \in \Delta(S)$

- Cost of effort for DM: $c(a, \theta)$, $\theta \sim F(\theta)$
- Payoff of DM

$$\int_{Y} \int_{S} \mathbb{E}\left[v|s\right] d\pi \left(s|y\right) d\sigma \left(y|a\right) - c\left(a,\theta\right) \tag{\star}$$

- Cost of effort for DM: $c(a, \theta)$, $\theta \sim F(\theta)$
- Payoff of DM

$$\int_{Y} \int_{S} \mathbb{E}\left[v|s\right] d\pi \left(s|y\right) d\sigma \left(y|a\right) - c\left(a,\theta\right) \tag{\star}$$

Information:

- (a, θ) : private to the DM
- *y* observed by Int.
- o s observed by market

- Cost of effort for DM: $c(a, \theta)$, $\theta \sim F(\theta)$
- Payoff of DM

$$\int_{Y} \int_{S} \mathbb{E}\left[v|s\right] d\pi\left(s|y\right) d\sigma\left(y|a\right) - c\left(a,\theta\right) \tag{*}$$

• Information:

- (a, θ) : private to the DM
- y observed by Int.
- s observed by market
- Equilibrium: Perfect Bayesian Nash Equilibrium
 - Given π and market beliefs, $a(\theta)$ maximizes (\star)
 - Market beliefs are consistent with π , $a(\theta)$, and prior according to Bayes' rule

Some Examples

- DM: Seller of a good on a platform: Airbnb, eBay
- Grading of a student's (DM) effort; Difficulty of exams
- Rating agency determining how to rate a corporate bond
- Manipulation:
 - Two actions:
 - ex-ante productive effort
 - ex-post costly manipulation of feedback
 - Intermediary observes manipulated feedback

First Step a la Revelation Principle

- Mechanism design without transfers
- First question: What allocations of effort $a(\theta)$ are affordable for an arbitrary information structure $(S, \pi(\cdot|y))$?
- Sufficient statistic for DM's decision

$$\int_{Y} \underbrace{\int_{S} \mathbb{E} \left[v|s \right] d\pi \left(s|y \right)}_{p(y)} d\sigma \left(y|a \right) - c \left(a, \theta \right)$$

• p(y): Interim price or second-order expectation

First Step a la Revelation Principle

Incentive compatibility:

$$\int p(y) d\sigma(y|a(\theta)) - c(a(\theta), \theta) \ge \int p(y) d\sigma(y|a) - c(a, \theta), \forall a \in A$$

• Interpretation: $p(\cdot)$ are monetary transfers; need to figure out feasibility imposed by

$$p(y) = \int \mathbb{E}[v|s] d\pi(s|y)$$

• Useful to define market values as, i.e., when $\pi(\{y\}|y) = 1$

$$\overline{v}(y) = \mathbb{E}[v|y]$$

Lemma

Lemma

For any information structure (S, π) and p(y) defined above, $p(\cdot)$ second order stochastically dominates $\overline{v}(\cdot)$, i.e., for all concave and increasing function $u : \mathbb{R} \to \mathbb{R}$,

$$\sum_{Y} \mu_{y}(y) u(\overline{v}(y)) \leq \sum_{Y} \mu_{y}(y) u(p(y))$$
$$\sum_{Y} \mu_{y}(y) \overline{v}(y) = \sum_{Y} \mu_{y}(y) p(y)$$

Example

- Is that also sufficient? Not necessarily
- Suppose $A = Y = \{0, 1, 3\},\$
- $v(a, y) = \overline{v}(a) = a$,
- $\sigma(Y'|a) = \mathbf{1}[a \in Y'],$
- $\mu(\{a\}) = 1/3$.
- Set of mean-preserving contractions of $Y: A \cup B$,
- Set of interim prices *B*

First Step a la Revelation Principle.

• Main result:

Theorem. Let $\overline{v}(y) = \mathbb{E}[v|y]$. Then,

- 1. If $p(\cdot)$ is derived from (S, π) , then $p \succcurlyeq_{SOSD} \overline{v}$.
- 2. If $p \succcurlyeq_{\text{SOSD}} \overline{v}$ and $p(\cdot)$ and $\overline{v}(\cdot)$ are co-monotone, i.e., $p(y) > p(y') \Rightarrow \overline{v}(y) > \overline{v}(y')$, then there exists (S, π) that induces $p(\cdot)$.

Main Result: Idea of Proof

- One direction is obvious: existence of $\pi \to \text{stochastic}$ dominance
- For the other direction: a geometric approach similar to Strassen's theorem
- Suppose *Y* is finite, |Y| = m.
- Let

$$S = \left\{ \hat{p} \in \mathbb{R}^{m} | \exists (S, \pi), \hat{p}(y) = \mathbb{E} [\overline{v}|y] \right\}$$

• Convex and closed set of probability measures

Main Result: Idea of Proof

• Separating Hyperplane Theorem:

$$p \in S \iff \forall \lambda \in \mathbb{R}^m, \exists \hat{p} \in S, \lambda \cdot p \leq \lambda \cdot \hat{p}$$

- If p and \overline{v} are comonotone and $p \succcurlyeq_{SOSD} \overline{v}$, we can construct an information structure for each λ .
 - Depends on the comonotonicity of λ with p
 - In general, construct inductively by pooling two states appropriately

Remark on Theorem

- Our result is reminiscent of the result of Blackwell (1953), Rothschild and Stiglitz (1970) and Strassen (1965)
- What's the difference
 - It is stated for the second order conditional expectation
 - The key intricacy is that the same signal structure that generates the random variable $\mathbb{E}\left[\overline{v}|s\right]$ must be used to generate $\mathbb{E}\left[\mathbb{E}\left[\overline{v}|s\right]|y\right]$.
 - The equivalent of Blackwell's result does not hold in general and can only be shown when \overline{v} and p are co-monotone.

Implication of the Theorem

- When the comonotonicity of $p(\cdot)$ and $\overline{v}(\cdot)$ is without loss of generality, we can solve the mechanism design problem by solving for p(y) and $a(\theta)$ that satisfy:
 - 1. Incentive compatibility: $a(\theta) \in \arg\max_{a \in A} \int p(y) d\sigma(y|a) c(a, \theta)$
 - 2. Stochastic dominance: $p(y) \succcurlyeq_{SOSD} \overline{v}(y)$
- We'll show two applications of this

Majorization _

- Instead of using the conditions for second order stochastic dominance we will be using majorization conditions
- Helps to use a Lagrangian method to solve for the optimal rating systems
- When $Y = \mathbb{R}$, we can write

$$p \succcurlyeq_{SOSD} \overline{v} \iff \int_{-\infty}^{y} p\left(\hat{y}\right) d\mu_{y}\left(\hat{y}\right) \geq \int_{-\infty}^{y} \overline{v}\left(\hat{y}\right) d\mu_{y}\left(\hat{y}\right), \forall y \in \mathbb{R}.$$

• With equality at the top.

Application 1: Rating Design Under Productive Effort

- Market values $v(a, y) = y, y \in [0, 1]$
- $\Theta = \{\theta_1, \cdots, \theta_n\}$
- Objective: pareto optimality

$$\sum_{\theta \in \Theta} f(\theta) \lambda(\theta) \left[\int p(y) dG(y|a(\theta)) - c(a(\theta), \theta) \right]$$

 Monopolist intermediary is a special case. Full weight on lowest participating type

Application 1: Rating Design Under Productive Effort

- Market values $v(a, y) = y, y \in [0, 1]$
- $\Theta = \{\theta_1, \cdots, \theta_n\}$
- Objective: pareto optimality

$$\sum_{\theta \in \Theta} f(\theta) \lambda(\theta) \left[\int p(y) dG(y|a(\theta)) - c(a(\theta), \theta) \right]$$

 Monopolist intermediary is a special case. Full weight on lowest participating type

Proposition. Under productive effort, pareto optimal rating systems are monotone partitions.

A Two-Type Case

- Suppose $\Theta = \{\theta_1 < \theta_2\}$.
- Objective: Maximize revenue of a monopolist intermediary
- Two key forces:
 - Market size effect: pooling states lead to reshuffling profits to θ_1 and allows the intermediary to charge a higher fee
 - Incentive effect: pooling leads to reduced incentive for both types

A Two-Type Case

Proposition. Suppose that Assumption 3 holds. If at the optimum $a_2 \ge a_1$, then there exists two thresholds $y_1 < y_2$ where optimal monopoly rating system is fully revealing for values of y below y_1 and above y_2 while it is pooling for values of $y \in (y_1, y_2)$.

A Two-Type Case

Proposition. Suppose that Assumption 3 holds. If at the optimum $a_2 \ge a_1$, then there exists two thresholds $y_1 < y_2$ where optimal monopoly rating system is fully revealing for values of y below y_1 and above y_2 while it is pooling for values of $y \in (y_1, y_2)$.

- Roughly speaking assumption 3 says that likelihood ratio function g_a/g is concave and increasing enough
- Holds for:
 - Power distributions: $G(y|a) = y^{\alpha \cdot a}$, $G(y|a) = 1 (1 y)^{\alpha/a}$
 - Exponential distribution: $G(y|a) = \frac{e^{\lambda(a)y}-1}{e^{\lambda(a)}-1}$

Separable Distributions

Proposition. Suppose that $g(\cdot|a)$ satisfies the following separability assumption

$$g(y|a) = \alpha(a) + \beta(a) m(y)$$

Then optimal monopoly rating system is full disclosure.

Application 2: Rating Design Under Manipulation

- Market valuation: $y \sim G(y|a), y \in [0, 1]$; Only one type of DM
- After realization of *y*, DM reports *x* to intermediary at cost

$$c_m(x, y) = k \frac{(x - y)^2}{2} + \tau |x - y|, k \ge 0, \tau \in [0, 1]$$

• Objective: maximize payoff of DM

- How does our theorem apply here?
- Equilibrium:
 - Manipulation strategy $\hat{x}(y)$
 - o productive effort: *a*
- Market is smart and has correct beliefs about $\hat{x}(y)$
- Interim price

$$p(y) = \mathbb{E}\left[\mathbb{E}\left[\hat{x}^{-1}(x)|s\right]|\hat{x}(y)\right]$$

- Incentive compatibility of manipulation strategy plus single-crossing for $c_m(\cdot,\cdot)$:
 - p(y) and $\hat{x}(y)$ have to be increasing in y.
- Our Theorem says: Existence of π is equivalent to
 p(y) ≽_{SOSD} y

Orduous manipulation

Proposition. There exists $\overline{\tau}$ such if $1 \ge \tau > \overline{\tau}$, then for optimal rating:

- 1. There is no manipulation in equilibrium: $\hat{x}(y) = y$,
- 2. Optimal rating satisfies

$$\pi\left(\left\{s\right\}|y\right) = \begin{cases} \tau & s = y\\ 1 - \tau & s = N \end{cases}$$

- When manipulation is costly no point in trying to let people manipulate
 - Note: p(y) = y is the solution absent manipulation
- An interpretation of optimal rating:
 - Involves rating uncertainty
 - It is as if the intermediary hides features of the rating system from the DM
 - Some evidence for value of this in Nosko and Tadelis
 (2015) based on an experiment in eBay

- Let's make manipulation effortless: $\tau = 0$;
- Trade-off between manipulation and ex-ante incentives
 - Marginal cost of manipulation is 0 at $\hat{x} = y$
 - Need variation in p(y) for ex-ante incentives, i.e., a or productive effort

Assumption. The distribution function satisfies

1. $\frac{G_a}{g}$ is convex in *y* for all values of *a*.

Theorem. When $\tau = 0$, optimal rating satisfies

- 1. If $k \ge \hat{k}_1$, then optimal rating involves randomization and is non-separating.
- 2. If $k \in [\hat{k}_2, \hat{k}_1]$, then optimal rating involves three regions:
 - 2.1 For high and low values of *y* optimal rating involves randomization and non-separation
 - 2.2 For mid-values of *y*, the optimal rating is fully revealing.

• Interim prices for $k \in [\hat{k}_1, \hat{k}_2]$

Maryam Saeedi and Ali Shourideh

Conclusion _

- Studied optimal rating design in presence of incentives
- Characterization of feasible outcomes
- Optimal rating design under productive and unproductive effort, i.e., manipulation