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Personalized Recommender Systems

• Ubiquitous nowadays

◦ eCommerce recommendations: Amazon, Google

Shopping, NYT Wirecu�er

◦ Social Media: Facebook, TikTok, Instagram, Youtube,

Twi�er

◦ News Aggregators: Feedly, Google News, Panda,

Techmeme, Flipboard, Youtube, Twi�er

• The incentives of the recommender system (principal)

and users (agents) are not aligned

◦ Principal: Maximize engagemnet

◦ Agent: Acquire information, time cost
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Overview of Results

There are two major cases

• Principal and agent share the same prior beliefs,

◦ The relative curvature of agent payo� function to that of

principal determines optimal information structure

◦ Convex in time: Poisson revelation with an intensity

determined by the agent’s payo� function

◦ Concave in time: A period of no information followed by

an immediate revelation

• When the agent has a biased prior

◦ Principal always caters to the biased prior

◦ Initially revealing information on the state towards which

the agent is biased

◦ Gradual revelation is necessary (conjecture).
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Simple Example

• Game between an informed principal (commi�ed) and an

uninformed agent (uncommi�ed)

• Payo�s:

◦ P: T , i.e., he values engagement

◦ A: u (T ) = δe−δT v (Info)

v (Info) =

{
1 Info = State

1/2 Info = Prior

• Actions:

◦ P: reveal the state at T ∈ R+ ∪ {0}
◦ A: when to stop listening
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Simple Example
• Revelation strategy: reveal at δe−δT

∗
= 1/2

T

u(T )

δe−δT

1

2

1

0 log 2δ
δ

Maryam Saeedi, Yikang Shen, Ali Shourideh Catering to the Bias



Simple Example
• Spread revelation time around T∗

T

u(T )

δe−δT

1

2

1

0 log 2δ
δ
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Simple Example
• Spread revelation time around T∗ and increase its mean

T

u(T )

δe−δT

1

2

1

0 log 2δ
δ
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Simple Example
• Distribution: exponential at rate δ; Poisson revelation

T

u(T )

δe−δT

1

2

1

0 log 2δ
δ

1

δ
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Simple Example

• Alternative: u (T ) =
(
1− T2/2

)
v
(
info

)
• In this case, a mean preserving contraction of any

distribution of T benefits A

◦ ⇒ its mean can be pushed up!

• Optimal revelation strategy is T∗

1−
(
T∗
)

2

/2 = 1/2→ T∗ = 1
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Simple Example
• Concave payo�: Jensen’s inequality: E [T ] < 1

T

u(T )

1− T2/2

1

10

1

2

E[T ]
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Model

• Agent utility function

uA (T , ω, a) = D (T ) û (ω, a)

• Underlying state: ω ∈ Ω = {0, 1} – more would not make

much of a di�erence

• Action: a ∈ A

• Time spent acquiring information: T

• D (T ) is strictly decreasing in T and û (ω, a) ≥ 0

• Principal payo� : T

• Possibly uncommon priors

µA
0

= PA (ω = 1) , µP
0

= PP (ω = 1) ∈ (0, 1). Common

konwledge
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Timing

t t + dt

t + dt

P: send st ; A: decide with {sτ}; stay

quit A: choose at+dt .
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The Model

• P chooses an information structure.

• A mapping from the space of history realizations to

probability distributions over signals at t.(
S∞ × Ω,F ,PP , {Ft}t∈R+

)
◦ S∞: the set of history of signal realizations,

◦ Each member is of the form s∞, F is a σ-algebra over

S∞ × Ω,

◦ PP
: probability measure from the principal’s perspective

◦ Ft ⊂ Ft′ ⊂ F , ∀t < t ′ is a filtration.
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The Model

• A’s information is similar except that it does not include

Ω and

PA (S) = µA
0
· PP (S × Ω|ω = 1) +

(
1− µA

0

)
· PP (S × Ω|ω = 0)

◦ FA
t is similarly calculated

• Equilibrium is standard:

◦ A cannot commit to exit strategies

◦ P can commit to information structure
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Some Examples

• Key assumption:

uP = T

uA = D (T ) û (ω, a)

• This can be mapped to several assumptions about the

evolution of time cost for the agent
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Some Examples
Example 1. Exponential discounting

uP =

∫ T̂

0

e−δP tdt

uA = δAe
−δAT̂ û (·)

→ T = uP ⇒ D (T ) = (1− δPT )
δA
δP

T

u(T , a, ω)

δP < δA

δP > δA

û(a, ω)

1/δP
0
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Some Examples
• Example 2. Hyperbolic discounting of Loewenstein and

Prelec (1992) uA = (1 + αT )−β û (·)

◦ Set T = uP ⇒ D (T ) =
(

1− α
δp

log
(
1− δpT

))−β

T

u(T , a, ω)

δp < α(1 + β)

δp > α(1 + β)

û(a, ω)

1/δp
0
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Some Examples
• Example 3. �asi-Hyperbolic discounting of Harris and

Laibson (2013) uA =
[
(1− β) e−δ1T̂ + βe−δ2T̂

]
û (·)

◦ Set T = uP ⇒
D (T ) = (1− β)

(
1− δpT

)δ1/δp + β
(
1− δpT

)δ2/δp

T

u(T , a, ω)

δp < δ
2
< δ

1
δ
2
< δp < δ

1

δp > δ
1
> δ

2

û(a, ω)

1/δp
0

Maryam Saeedi, Yikang Shen, Ali Shourideh Catering to the Bias



Some Examples

• Example 4. Habit Formation of Allco�, Gentzkow, and

Song (2022) uA = e
∫ T

0
g(τ)dτ û (·) , g′ < 0, g′′ > 0

T

u(T , a, ω) D(T ) = e−δaT
2

û(a, ω)

0
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The Model – Characterization

Claim. If A exits a�er history st , then µAt = EA [ω|st ] = 0, 1 a.e.

• Idea of proof: If not, then split the signal into two fully

revealing signals each with probability µAt and 1− µAt .

Increases the value of staying at all histories. Allows P to

reduce the probability of exit and increase his payo�.
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The Model

Assumption. The Payo� function v (µ) = maxa∈A Eµ [û (a, ω)] is

strictly convex, di�erentiable and symmetric around µ = 1/2.

• Allows us to take derivatives

• An example is û (a, ω) = a (ω − 1/2)− a2/2,A = [−1, 1]

• Does include |A| <∞, since v (µ) is piecewise linear

◦ can approximate with smooth convex functions
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The Model

• Can apply Caratheodory theorem

◦ 3 signals in each period is su�icient: Ω ∪ {No News}
• Choice of information structure is equivalent to choice of

two D.D.F functions (decumulutive distribution

functions)

G
1

(t) =PA (exit ≥ t, ω = 1)

G
0

(t) =PA (exit ≥ t, ω = 0)

µ̂A (t) =PA
(
ω|stay until t

)
=

G
1

(t)
G

1
(t) + G

0
(t)

=
G

1
(t)

G (t)

• D.D.F’s are decreasing and G
1

(0) = µA
0

= 1− G
0

(0)
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Optimal Information Provision

max
G0,G1

∫ ∞
0

(
µ̂A (t) +

(
1− µ̂A (t)

)
`
)

[G
0

(t) + G
1

(t)] dt

subject to

v (1)D (t)G (t) + v (1)

∫ ∞
t

G (s)D′ (s) ds ≥ G (t)D (t) v
(
µ̂A (t)

)
,∀t

Gω (t) : non-increasing

G
1

(0) = 1− G
0

(0) = µA
0

• ` =
µA

0

1−µA
0

/
µP

0

1−µP
0

: likelihood ratio; adjustment needed for

di�erence in prior
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Solution Method

• Objective is linear in Gω (t)

• Constraint set is convex and has a non-empty interior.

We can use standard Lagrangian techniques

◦ Guess a Lagrangian

◦ Use first order condition

◦ Use ironing when necessary

• Somewhat similar to Kleiner, Moldovanu, and Strack

(2021) and Saeedi and Shourideh (2023)

◦ key di�erence: it is not a linear program
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The Agreement Case

• Suppose that µA
0

= µP
0
→ ` = 1.

• First the easy one!

Proposition. Concave Discounting. When D (T ) is concave,

optimal solution is

G
1

(t) = µ
0
1
[
t < t∗

]
G

0
(t) = (1− µ

0
) 1
[
t < t∗

]
v (1)D

(
t∗
)

= v (µ
0
)D (0)

• Silence until t∗ is optimal!

• Agent is only indi�erent at time 0 → Time inconsistency
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The Agreement Case

Proposition. Convex Discounting. When D (T ) is convex,

optimal solution two phases (if µ
0
> 1/2)

t ≤ t∗ : G′
1

(t) < 0, µ̂′ (t) < 0,G
0

(t) = 1− µ
0

t ≥ t∗ : µ̂ (t) = 1/2,
G′

0
(t)

G
0

(t)
=

G′
1

(t)

G
1

(t)
=

D′ (t)
D (t)

The case with µ
0
< 1/2 is symmetric.

• Belief-Smoothing
◦ A’s value function v (µ), i.e., cost of delay, is strictly

convex
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Agreement: Convex Discounting

µ

u(T , a, ω)

µ
0

µ̂(t)

û(a, 0) û(a, 1)

0 10.5
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Agreement: Convex Discounting

t

Gω(t)

µ
0

t∗

1− µ
0

G
1
(t)

G
0
(t)
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Agreement: Convex Discounting

• Two phases with time-varying Poisson revelation of

information

◦ Phase 1: Arrival of news about the more likely state at

rate > −D′(t)
D(t)

◦ Phase 2: Arrival of news about both state at rate −D′(t)
D(t)

• Phase 1 depends on the curvature of v (µ)

◦ The more convex it is, the longer is Phase 1

◦ Belief-smoothing: Agent really hates variation in beliefs
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Agreement: Convex-Concave

• Suppose there exists an inflection point Ti where D (T ) is

convex below Ti and concave above Ti .

◦ Possible under (�asi-)Hyperbolic discounting:

• Result. Optimal information structure has (at most)

three phases:

◦ Phase 1: More likely state is revealed according to poisson

◦ Phase 2: Both states are revleaed at rate −D′ (t) /D (t)
◦ Phase 3: silence followed by revelation of both states

• Phase 3 o�en starts before Ti
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Agreement: Convex-Concave

t

Gω(t)

µ
0

t∗
3

t∗
1

t∗
2

1− µ
0

G
1
(t)

G
0
(t)

Ti

D(t)

Maryam Saeedi, Yikang Shen, Ali Shourideh Catering to the Bias



Disagreement

• Payo� of P∫ ∞
0

(
µ̂A (t) +

(
1− µ̂A (t)

)
`
)

[G
0

(t) + G
1

(t)] dt

where ` =
µA

0

1−µA
0

/
µP

0

1−µP
0

is the relative likelihood ratios.

• We are writing everyone’s payo� as a function of beliefs

of the agent.

• WLOG, let’s say ` < 1 so A is more optimistic about ω = 0.

• Given that P prefers µ closer to 1, wants A to spend the

most time strictly above µ̂ = 1/2.
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Disagreement: Convex Discounting

Proposition. Convex Discounting and Disagreement.
Suppose D (T ) = e−δT and µA

0
< µP

0
, then optimal solution two

phase

t ≤ t∗ : G′
0

(t) < 0, µ̂′ (t) > 0,G
1

(t) = µA
0

t ≥ t∗ : µ̂ (t) = µ∗ (t) > µA
0
,
G′

0
(t)

G
0

(t)
=

G′
1

(t)

G
1

(t)
= −δ

• Again two phase:

◦ Cater to the bias phase: reveal the A-optimistic state

◦ Se�le on higher belief
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Catering to the Bias

t

Gω(t)

µA
0

1− µA
0

G
1
(t)

G
0
(t)

t∗
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Disagreement: Concave Discounting

• Very Preliminary:

◦ Cannot have full revelation in both states at the same

time

• Conjecture:

◦ Three Phases:

- A silent phase

- A cater-to-the-bias phase

- Full revelation
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Thank You
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