Catering to the Bias

Maryam Saeedi Yikang Shen Ali Shourideh

Carnegie Mellon University

July 7, 2023

Maryam Saeedi, Yikang Shen, Ali Shourideh

Personalized Recommender Systems _

- Ubiquitous nowadays
 - eCommerce recommendations: Amazon, Google Shopping, NYT Wirecutter
 - Social Media: Facebook, TikTok, Instagram, Youtube, Twitter
 - News Aggregators: Feedly, Google News, Panda, Techmeme, Flipboard, Youtube, Twitter
- The incentives of the recommender system (principal) and users (agents) are not aligned
 - Principal: Maximize engagemnet
 - Agent: Acquire information, time cost

Overview of Results

There are two major cases

- Principal and agent share the same prior beliefs,
 - The relative curvature of agent payoff function to that of principal determines optimal information structure
 - Convex in time: Poisson revelation with an intensity determined by the agent's payoff function
 - Concave in time: A period of no information followed by an immediate revelation
- When the agent has a biased prior
 - Principal always caters to the biased prior
 - Initially revealing information on the state towards which the agent is biased
 - Gradual revelation is necessary (conjecture).

- Game between an informed principal (committed) and an uninformed agent (uncommitted)
- Payoffs:

• P: *T*, i.e., he values engagement • A: $u(T) = \delta e^{-\delta T} v$ (Info)

$$v(Info) = \begin{cases} 1 & Info = State \\ 1/2 & Info = Prior \end{cases}$$

- Actions:
 - P: reveal the state at $T \in \mathbb{R}_+ \cup \{0\}$
 - A: when to stop listening

• Revelation strategy: reveal at $\delta e^{-\delta T^*} = 1/2$

• Spread revelation time around T*

• Spread revelation time around T^* and increase its mean

• Distribution: exponential at rate δ ; Poisson revelation

- Alternative: $u(T) = (1 T^2/2) v$ (info)
- In this case, a mean preserving contraction of any distribution of *T* benefits *A*

 $\circ \Rightarrow$ its mean can be pushed up!

• Optimal revelation strategy is T^*

$$1 - (T^*)^2 / 2 = 1/2 \to T^* = 1$$

• Concave payoff: Jensen's inequality: $\mathbb{E}[T] < 1$

Maryam Saeedi, Yikang Shen, Ali Shourideh

Model

Agent utility function

$$u_A(T,\omega,a) = D(T) \hat{u}(\omega,a)$$

- Underlying state: $\omega \in \Omega = \{0, 1\}$ more would not make much of a difference
- Action: $a \in A$
- Time spent acquiring information: T
- D(T) is strictly decreasing in T and $\hat{u}(\omega, a) \ge 0$
- Principal payoff : *τ*
- Possibly uncommon priors $\mu_0^A = \mathbb{P}^A (\omega = 1), \mu_0^P = \mathbb{P}^P (\omega = 1) \in (0, 1).$ Common konwledge

Timing

- P chooses an information structure.
- A mapping from the space of history realizations to probability distributions over signals at *t*.

$$\left(S_{\infty} \times \Omega, \mathcal{F}, \mathbb{P}^{P}, \{\mathcal{F}_{t}\}_{t \in \mathbb{R}_{+}}\right)$$

- S_∞ : the set of history of signal realizations,
- Each member is of the form s^{∞} , \mathcal{F} is a σ -algebra over $S_{\infty} \times \Omega$,
- \mathbb{P}^{P} : probability measure from the principal's perspective
- $\circ \ \mathcal{F}_t \subset \mathcal{F}_{t'} \subset \mathcal{F}, \forall t < t' \text{ is a filtration}.$

- A's information is similar except that it does not include $\boldsymbol{\Omega}$ and

$$\mathbb{P}^{A}(S) = \mu_{0}^{A} \cdot \mathbb{P}^{P}(S \times \Omega | \omega = 1) + \left(1 - \mu_{0}^{A}\right) \cdot \mathbb{P}^{P}(S \times \Omega | \omega = 0)$$

• \mathcal{F}_t^A is similarly calculated

- Equilibrium is standard:
 - A cannot commit to exit strategies
 - P can commit to information structure

• Key assumption:

$$u^{P} = T$$
$$u^{A} = D(T) \hat{u}(\omega, a)$$

• This can be mapped to several assumptions about the evolution of time cost for the agent

Example 1. Exponential discounting

Maryam Saeedi, Yikang Shen, Ali Shourideh

• Example 2. Hyperbolic discounting of Loewenstein and Prelec (1992) $u^{A} = (1 + \alpha T)^{-\beta} \hat{u}(\cdot)$ • Set $T = u^{p} \Rightarrow D(T) = \left(1 - \frac{\alpha}{\delta_{p}}\log\left(1 - \delta_{p}T\right)\right)^{-\beta}$ $u(T, a, \omega)$ $\hat{u}(a,\omega)$ $\delta_p > \alpha(1+\beta)$ 0 $1/\delta_D$ Т

Maryam Saeedi, Yikang Shen, Ali Shourideh

Maryam Saeedi, Yikang Shen, Ali Shourideh

• **Example 4.** Habit Formation of Allcott, Gentzkow, and Song (2022) $u^A = e^{\int_0^T g(\tau) d\tau} \hat{u}(\cdot), g' < 0, g'' > 0$

The Model – Characterization

Claim. If A exits after history s_t , then $\mu_t^A = \mathbb{E}^A[\omega|s_t] = 0, 1$ a.e.

• Idea of proof: If not, then split the signal into two fully revealing signals each with probability μ_t^A and $1 - \mu_t^A$. Increases the value of staying at all histories. Allows P to reduce the probability of exit and increase his payoff.

The Model

Assumption. The Payoff function $v(\mu) = \max_{a \in A} \mathbb{E}_{\mu} [\hat{u}(a, \omega)]$ is strictly convex, differentiable and symmetric around $\mu = 1/2$.

- Allows us to take derivatives
- An example is $\hat{u}(a,\omega) = a(\omega 1/2) a^2/2, A = [-1, 1]$
- Does include $|A| < \infty$, since $v(\mu)$ is piecewise linear
 - can approximate with smooth convex functions

The Model

- Can apply Caratheodory theorem
 - $\circ~$ 3 signals in each period is sufficient: $\Omega \cup \{ \text{No News} \}$
- Choice of information structure is equivalent to choice of two D.D.F functions (decumulative distribution functions)

$$G_{1}(t) = \mathbb{P}^{A} (\text{exit} \ge t, \omega = 1)$$

$$G_{0}(t) = \mathbb{P}^{A} (\text{exit} \ge t, \omega = 0)$$

$$\hat{\mu}^{A}(t) = \mathbb{P}^{A} (\omega | \text{stay until } t)$$

$$= \frac{G_{1}(t)}{G_{1}(t) + G_{0}(t)} = \frac{G_{1}(t)}{G(t)}$$

• D.D.F's are decreasing and $G_1(0) = \mu_0^A = 1 - G_0(0)$

Optimal Information Provision

$$\max_{G_0,G_1} \int_0^\infty \left(\hat{\mu}^A(t) + \left(1 - \hat{\mu}^A(t) \right) \ell \right) \left[G_0(t) + G_1(t) \right] dt$$
subject to

$$v(1) D(t) G(t) + v(1) \int_{t}^{\infty} G(s) D'(s) ds \ge G(t) D(t) v\left(\hat{\mu}^{A}(t)\right), \forall t$$
$$G_{\omega}(t) : \text{non-increasing}$$
$$G_{1}(0) = 1 - G_{0}(0) = \mu_{0}^{A}$$

• $\ell = \frac{\mu_0^A}{1-\mu_0^A} / \frac{\mu_0^P}{1-\mu_0^P}$: likelihood ratio; adjustment needed for difference in prior

Maryam Saeedi, Yikang Shen, Ali Shourideh

Solution Method

- Objective is linear in $G_{\omega}(t)$
- Constraint set is convex and has a non-empty interior. We can use standard Lagrangian techniques
 - Guess a Lagrangian
 - Use first order condition
 - Use ironing when necessary
- Somewhat similar to Kleiner, Moldovanu, and Strack (2021) and Saeedi and Shourideh (2023)
 - key difference: it is not a linear program

The Agreement Case

• Suppose that
$$\mu_0^A = \mu_0^P \to \ell = 1$$
.

• First the easy one!

Proposition. Concave Discounting. When D(T) is concave, optimal solution is

$$G_{1}(t) = \mu_{0} \mathbf{1} [t < t^{*}]$$

$$G_{0}(t) = (1 - \mu_{0}) \mathbf{1} [t < t^{*}]$$

$$f(1) D(t^{*}) = v(\mu_{0}) D(0)$$

• Silence until *t** is optimal!

v

- Agent is only indifferent at time $0 \rightarrow \text{Time}$ inconsistency

Maryam Saeedi, Yikang Shen, Ali Shourideh

Proposition. Convex Discounting. When D(T) is convex, optimal solution two phases (if $\mu_0 > 1/2$)

$$t \le t^* : G_1'(t) < 0, \hat{\mu}'(t) < 0, G_0(t) = 1 - \mu_0$$

$$t \ge t^* : \hat{\mu}(t) = 1/2, \frac{G_0'(t)}{G_0(t)} = \frac{G_1'(t)}{G_1(t)} = \frac{D'(t)}{D(t)}$$

The case with $\mu_0 < 1/2$ is symmetric.

Belief-Smoothing

• A's value function $v(\mu)$, i.e., cost of delay, is strictly convex

Agreement: Convex Discounting

Maryam Saeedi, Yikang Shen, Ali Shourideh

Agreement: Convex Discounting

Maryam Saeedi, Yikang Shen, Ali Shourideh

Agreement: Convex Discounting

- Two phases with time-varying Poisson revelation of information
 - Phase 1: Arrival of news about the more likely state at rate $> -\frac{D'(t)}{D(t)}$
 - Phase 2: Arrival of news about both state at rate $-\frac{D'(t)}{D(t)}$
- Phase 1 depends on the curvature of $v(\mu)$
 - The more convex it is, the longer is Phase 1
 - · Belief-smoothing: Agent really hates variation in beliefs

Agreement: Convex-Concave _

- Suppose there exists an inflection point T_i where D(T) is convex below T_i and concave above T_i.
 - Possible under (Quasi-)Hyperbolic discounting:
- **Result.** Optimal information structure has (at most) three phases:
 - Phase 1: More likely state is revealed according to poisson
 - Phase 2: Both states are revleaed at rate -D'(t)/D(t)
 - Phase 3: silence followed by revelation of both states
- Phase 3 often starts before T_i

Agreement: Convex-Concave

Maryam Saeedi, Yikang Shen, Ali Shourideh

Disagreement

• Payoff of P

$$\int_{0}^{\infty} \left(\hat{\mu}^{A}(t) + \left(1 - \hat{\mu}^{A}(t) \right) \ell \right) \left[G_{0}(t) + G_{1}(t) \right] dt$$

where $\ell = \frac{\mu_0^A}{1-\mu_0^A} / \frac{\mu_0^P}{1-\mu_0^P}$ is the relative likelihood ratios.

- We are writing everyone's payoff as a function of beliefs of the agent.
- WLOG, let's say $\ell < 1$ so A is more optimistic about $\omega = 0$.
- Given that P prefers μ closer to 1, wants A to spend the most time strictly above $\hat{\mu} = 1/2$.

Proposition. Convex Discounting and Disagreement. Suppose $D(T) = e^{-\delta T}$ and $\mu_0^A < \mu_0^P$, then optimal solution two phase

$$t \le t^* : G'_0(t) < 0, \hat{\mu}'(t) > 0, G_1(t) = \mu_0^A$$

$$t \ge t^* : \hat{\mu}(t) = \mu^*(t) > \mu_0^A, \frac{G'_0(t)}{G_0(t)} = \frac{G'_1(t)}{G_1(t)} = -\delta$$

- Again two phase:
 - Cater to the bias phase: reveal the A-optimistic state
 - Settle on higher belief

Catering to the Bias

Maryam Saeedi, Yikang Shen, Ali Shourideh

Disagreement: Concave Discounting

- Very Preliminary:
 - Cannot have full revelation in both states at the same time
- Conjecture:
 - Three Phases:
 - A silent phase
 - A cater-to-the-bias phase
 - Full revelation

THANK YOU

Maryam Saeedi, Yikang Shen, Ali Shourideh