Indicator Choice in Pay-for-Performance

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

CMU

May 29, 2023

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Pay-for-Performance Contracts _

- Performance pay is cornerstone of modern employment contracts
 - Executives, Athletes, Teachers, etc.
- Textbook moral hazard: given an indicator of output, how do we design contracts

Pay-for-Performance Contracts _

- Performance pay is cornerstone of modern employment contracts
 - Executives, Athletes, Teachers, etc.
- Textbook moral hazard: given an indicator of output, how do we design contracts
- What if we can choose the indicator
 - Principal's choice: Informativeness Principle a la Holmstrom
 - Agent's choice: this paper

The Model

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Textbook Moral Hazard Model

- A Principal (P or he) is employing an agent to perform a task.
- Agent (A or she) chooses effort $e \in E, |E| < \infty$ to perform the task.
- Effort is costly to the agent: $c: E \to \mathbb{R}_+$
 - $\circ e_1 \in E$ represents the effort with the lowest cost: $c(e_1)=0$

- Effort e generates a performance measure x ∈ X, |X| < ∞
 Distribution: f (x|e) = Pr (x|e) ∈ Δ(X)
- Output: y = g(x)
- Example: Perfect performance technology:

$$X = E, \Pr(x|e) = 1 [x = e]$$

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Model: Information Structure and Contracts

- P cannot observe A's effort
- A can influence the P's information about the output by choosing an information structure (S, π) where π(·|x) : X → Δ(S).
- P only observes the signal generated from this information structure and can thus only offer a contract contingent on this signal.
- P's choice: $w: S \to \mathbb{R}_+$
 - Limited liability: Cannot make the agent pay, $w\left(s
 ight)\geq0$

Model: Payoffs

• P: $u_P = g(x) - w(s)$

• A:
$$u_A = w(s) - c(e)$$

P can always implement e₁ by offering w(s) = 0, ∀s ∈ S.
 P's outside option: U_P = ∑_x g(x)f(x|e₁)

- 1. A chooses an information structure π .
- 2. Observing the information structure π chosen by the A, P offers agent a contract $w: S \to \mathbb{R}_+$.
- 3. Given $w(\cdot)$, A chooses how much effort e to exert.
- 4. x is realized according to f(x|e), signal $s \in S$ is realized according to $\pi(s|x)$, and payoffs are realized.

Timing of the Game

• First stage:

$$\pi^{*} \in \arg\max_{\pi} \mathbb{E}_{\pi}\left[w\left(s; \pi\right) | e^{*}\left(w^{*}\left(\cdot; \pi\right), \pi\right)\right] - c\left(e^{*}\left(w^{*}\left(\cdot; \pi\right), \pi\right)\right)$$

• Second stage:

 $w^{*}(s;\pi) \in \arg\max_{w(s)} \mathbb{E}\left[g(x) | e^{*}(w(\cdot),\pi)\right] - \mathbb{E}_{\pi}\left[w(s) | e^{*}(w(\cdot),\pi)\right]$

Last stage:

$$e^{*}\left(w\left(\cdot
ight),\pi
ight)\inrg\max_{e}\mathbb{E}_{\pi}\left[w\left(s
ight)|e
ight]-c\left(e
ight)$$

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Timing of the Game

• First stage:

$$\pi^{*} \in \arg\max_{\pi} \mathbb{E}_{\pi}\left[w\left(s; \pi\right) | e^{*}\left(w^{*}\left(\cdot; \pi\right), \pi\right)\right] - c\left(e^{*}\left(w^{*}\left(\cdot; \pi\right), \pi\right)\right)$$

Second stage:

 $w^{*}\left(s;\pi
ight)\inrg\max_{w\left(s
ight)}\mathbb{E}\left[g\left(x
ight)\left|e^{*}
ight]-\mathbb{E}_{\pi}\left[w\left(s
ight)\left|e^{*}
ight]
ight]$

• Third stage:

$$e^{*}\left(w\left(\cdot
ight),\pi
ight)\inrg\max_{e}\mathbb{E}_{\pi}\left[w\left(s
ight)\left|e
ight]-c\left(e
ight)$$

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Timing of the Game _

• First stage:

$$\pi^{*} \in rg\max_{\pi} \mathbb{E}_{\pi}\left[w^{*}\left(s;\pi
ight)|e^{*}
ight] - c\left(e^{*}
ight)$$

• Second stage:

$$w^{*}\left(s;\pi
ight)\inrg\max_{w\left(s
ight)}\mathbb{E}\left[g\left(x
ight)\left|e^{*}
ight]-\mathbb{E}_{\pi}\left[w\left(s
ight)\left|e^{*}
ight]
ight]$$

• Third stage:

$$e^{*}\left(w\left(\cdot
ight),\pi
ight)\inrg\max_{e}\mathbb{E}_{\pi}\left[w\left(s
ight)\left|e
ight]-c\left(e
ight)$$

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Interpretations

• Literal interpretation: information

- The agent equivalent of the informativeness principle a la Holmstrom
- Theoretical benchmark
- Contractibility interpretation:
 - A regulator or a union picks the performance measure:
 - It is binding for all parties
 - Examples: Union or regulators choose what is contractible
 - Teachers
 - Athletes
 - Hollywood Writers: the issue of residual payments

Perfect Performance

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Perfect Performance

- Suppose that X = E, f(x|e) = 1 [x = e]
- First best:

$$e_{\textit{FB}}\in\arg\max_{e}g\left(e\right)-c\left(e\right)$$

• What if A chooses a deterministic signal?

•
$$\pi\left(s|e
ight)=0$$
 or 1

- o no information and full information are special cases.
- Payoff of the agent is 0!

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Proposotion. Suppose that $g(e_{FB}) > g(e_1)$. Then, there exists a signal (π, S) such that:

- 1. FB effort, e^* , is implemented,
- 2. $u_A = g(e_{FB}) c(e_{FB}) g(e_1)$, i.e., A gets all the surplus.

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Full Surplus Extraction _____

Proof is by construction – for the sake of presentation g (e₁) = 0:

Full Surplus Extraction _____

• Proof is by construction – for the sake of presentation $g(e_1) = 0$:

$$S = \{L, H\}, \pi(H|e) = \begin{cases} 1 - \frac{c(e_{FB}) - c(e)}{g(e^*)} & c(e) < c(e_{FB}) \\ 1 & c(e) \ge c(e_{FB}) \end{cases}$$

Full Surplus Extraction ____

Proof is by construction – for the sake of presentation g (e₁) = 0:

$$S = \{L, H\}, \pi(H|e) = \begin{cases} 1 - \frac{c(e_{FB}) - c(e)}{g(e^*)} & c(e) < c(e_{FB}) \\ 1 & c(e) \ge c(e_{FB}) \end{cases}$$

• If P wants to implement $\hat{e} : c(\hat{e}) \leq c(e_{FB})$, has to pay

$$w(H) = \max_{e':c(e') \le c(\hat{e})} \frac{c(\hat{e}) - c(e')}{\pi(H|\hat{e}) - \pi(H|e')} = \max_{e':c(e') \le c(\hat{e})} \frac{c(\hat{e}) - c(e')}{\frac{c(\hat{e}) - c(e')}{g(e_{FB})}}$$
$$= g(e_{FB})$$

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Full Surplus Extraction _

• Proof is by construction – for the sake of presentation $g(e_1) = 0$:

$$S = \{L, H\}, \pi(H|e) = \begin{cases} 1 - \frac{c(e_{FB}) - c(e)}{g(e^*)} & c(e) < c(e_{FB}) \\ 1 & c(e) \ge c(e_{FB}) \end{cases}$$

• If P wants to implement $\hat{e} : c(\hat{e}) \leq c(e_{FB})$, has to pay

$$w(H) = \max_{e':c(e') \le c(\hat{e})} \frac{c(\hat{e}) - c(e')}{\pi(H|\hat{e}) - \pi(H|e')} = \max_{e':c(e') \le c(\hat{e})} \frac{c(\hat{e}) - c(e')}{\frac{c(\hat{e}) - c(e')}{g(e_{FB})}}$$
$$= g(e_{FB})$$

• P's payoff

$$g(\hat{e}) - \pi (H|\hat{e}) g(e_{FB}) =$$
$$g(\hat{e}) - c(\hat{e}) - [g(e_{FB}) - c(e_{FB})]$$

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

- When A can choose any π (s|e), she can guarantee a wage of g (e^{*}) for all effort levels
- Cost to P (expected wage) is a shift of c(e)
- e^{*} is optimal for P
- Too much flexibility for choice of off-path information

General Performance

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

General Performance

- General performance: $x \in X, e \in E, f(x|e) \in \Delta(X)$
- A can only choose a garbling of x

$$p(s|e) = \sum_{x} \pi(s|x) f(x|e)$$

- We can think about choice of π as a sender-receiver game
- Complication:
 - P or receiver's choice of $w(\cdot)$ depends on the entire $\{p(s|e)\}$
- Next: Geometric method to deal with it.
- Key assumption:

Assumption. Performance has full support, i.e., $f(x|e) \neq 0, \forall x \in X, e \in E$

 In what follows: what is the best way for the agent to implement e*

- In what follows: what is the best way for the agent to implement e^{*}
- likelihood ratio; $E = \{e_1, \cdots, e_m\}$:

$$\ell_{i}^{p}(s) = 1 - \frac{p(s|e_{i})}{p(s|e^{*})}, I^{p}(s) = \left(\ell_{1}^{p}(s), \ell_{2}^{p}(s), \cdots, \ell_{m}^{p}(s)\right)$$

can be embedded in \mathbb{R}^{m-1} ; $\ell_i(s) = 0, e_i = e^*$.

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Claim.

- 1. Lowest cost of choosing $e_j \in E$ for the principal only depends on $\{I(s)\}_{s \in S}$.
- Choice of w (s) associated with choosing a point in the convex hull of {I(s)}_{s∈S}.
 - Intuition:

$$\sum_{s} p\left(s|e_{j}\right) w\left(s\right) - c\left(e_{j}\right) \geq \sum_{s} p\left(s|e_{i}\right) w\left(s\right) - c\left(e_{i}\right)$$

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Claim.

- 1. Lowest cost of choosing $e_j \in E$ for the principal only depends on $\{I(s)\}_{s \in S}$.
- Choice of w (s) associated with choosing a point in the convex hull of {I(s)}_{s∈S}.
 - Intuition:

$$\sum_{s} p\left(s|e_{j}\right) w\left(s\right) - c\left(e_{j}\right) \geq \sum_{s} p\left(s|e_{i}\right) w\left(s\right) - c\left(e_{i}\right)$$

$$\sum_{s} p\left(s|e^{*}\right) w\left(s\right) \frac{p\left(s|e_{j}\right)}{p\left(s|e^{*}\right)} - c\left(e_{j}\right) \geq \sum_{s} p\left(s|e^{*}\right) w\left(s\right) \frac{p\left(s|e_{j}\right)}{p\left(s|e^{*}\right)} - c\left(e_{j}\right)$$

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Claim.

- 1. Lowest cost of choosing $e_j \in E$ for the principal only depends on $\{I(s)\}_{s \in S}$.
- Choice of w (s) associated with choosing a point in the convex hull of {I(s)}_{s∈S}.
 - Intuition:

$$\underbrace{\sum_{s} p(s|e^{*}) w(s)}_{\overline{w}} \frac{p(s|e_{j})}{p(s|e^{*})} - c(e_{j}) \geq \sum_{s} p(s|e^{*}) w(s) \frac{p(s|e_{j})}{p(s|e^{*})} - c(e_{j})$$

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Claim.

- 1. Lowest cost of choosing $e_i \in E$ for the principal only depends on $\{I(s)\}_{s \in S}$.
- 2. Choice of w(s) associated with choosing a point in the convex hull of $\{I(s)\}_{s \in S}$.
 - Intuition:

$$\underbrace{\sum_{s} p(s|e^{*}) w(s)}_{\overline{w}} \frac{p(s|e_{j})}{p(s|e^{*})} - c(e_{j}) \geq \sum_{s} p(s|e^{*}) w(s) \frac{p(s|e_{j})}{p(s|e^{*})} - c(e_{j})$$

$$\overline{w} \sum_{s} \alpha_{s} \left[1 - \ell_{j}^{p}(s)\right] - c(e_{j}) \geq \overline{w} \sum_{s} \alpha_{s} \left[1 - \ell_{j}^{p}(s)\right] - c(e_{j})$$

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

S

Claim.

- 1. Lowest cost of choosing $e_j \in E$ for the principal only depends on $\{I(s)\}_{s \in S}$.
- Choice of w (s) associated with choosing a point in the convex hull of {I (s)}_{s∈S}.
 - Intuition:

$$\overline{w}\sum_{s}\alpha_{s}\left[1-\ell_{j}^{p}\left(s\right)\right]-c\left(e_{j}\right)\geq\overline{w}\sum_{s}\alpha_{s}\left[1-\ell_{j}^{p}\left(s\right)\right]-c\left(e_{j}\right)$$

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Claim.

- 1. Lowest cost of choosing $e_j \in E$ for the principal only depends on $\{I(s)\}_{s \in S}$.
- Choice of w (s) associated with choosing a point in the convex hull of {I (s)}_{s∈S}.
 - Intuition:

$$\overline{w} \sum_{s} \alpha_{s} \left[1 - \ell_{j}^{p}(s) \right] - c\left(e_{j}\right) \geq \overline{w} \sum_{s} \alpha_{s} \left[1 - \ell_{i}^{p}(s) \right] - c\left(e_{i}\right)$$
$$\overline{w} \left[1 - \ell_{j} \right] - c\left(e_{j}\right) \geq \overline{w} \left[1 - \ell_{i} \right] - c\left(e_{i}\right)$$
$$I = (\ell_{1}, \cdots, \ell_{m}) \in \operatorname{co}(p)$$

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Geometric Representation

• Example: $E = \{e_1, e_2, e_3\}, e^* = e_3.$

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Geometric Representation

• Example: $E = \{e_1, e_2, e_3\}, e^* = e_3.$

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Geometric Representation

• **Example:** $E = \{e_1, e_2, e_3\}, e^* = e_3.$

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Geometry of Indicators

$$\operatorname{co}(\mathsf{f}) = \operatorname{convex}\,\operatorname{hull}\left(\left\{\left[1 - \frac{f(x|e_1)}{f(x|e^*)}, \cdots, 1 - \frac{f(x|e_m)}{f(x|e^*)}\right]\right\}_{x \in X}\right)$$

Proposition.

- 1. For any information structure (S, π) with $|S| < \infty$, its associated co (p) is a subset of co (f) that contains the origin $0 = (0, \dots, 0)$.
- 2. For any convex subset C of co (f) that contains the origin and has a finite set of extreme points, there exists an information structure (S, π) such that co (p) = C.

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Geometric Game

- A chooses a finite set of points L inside the convex set co(f) such that the convex hull of these points conv(L) includes the origin.
- 2. Principal chooses an effort level $e_i \in E$ and a point $I \in \text{conv}(L) \cap \Omega_i$.
- 3. Agent chooses the effort level e_i.

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Geometric Game

- A chooses a finite set of points L inside the convex set co(f) such that the convex hull of these points conv(L) includes the origin.
- 2. Principal chooses an effort level $e_i \in E$ and a point $I \in \text{conv}(L) \cap \Omega_i$.
- 3. Agent chooses the effort level e_i.

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Binary Information Structures _

Proposition. If e^* is implementable by some information structure (S, π) and delivers expected wage $W(e^*, \pi)$ to the agent, then e^* is also implementable by a binary information structure $(\hat{S}, \hat{\pi})$, $|\hat{S}| = 2$ and $W(e^*, \hat{\pi}) = W(e^*, \pi)$.

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Full Surplus Extraction

• First-best level of effort: $e^* \in \arg \max_{e \in E} \mathbb{E}[g(x)|e] - c(e)$

• Let
$$\ell_i^* = \frac{c(e^*) - c(e_i)}{\mathbb{E}[g(x)|e^*] - \mathbb{E}[g(x)|e_1]}$$

Proposition. Suppose that $I^* \in co(f)$. Then e^* is implementable and there exists an information structure for which the agent can capture the entire surplus.

Lower Bound on Information

- Alternative constraint on (π, S) :
 - P observes $x \sim f(x|e)$
 - A chooses what to show more

$$\pi \succcurlyeq_{\mathsf{Blackwell}} f$$

• Similar geometric representation

Continuous Effort and Output

•
$$x \in X = [0,1], \ e \in E = [0,1], \ c'(e) \ge 0, \ c''(e) > 0, \ c(0) = 0$$

Assumption.

- 1. Given any effort $e \in E$, the likelihood $\frac{f_e(x|e)}{f(x|e)}$ is strictly monotone in output x and its derivative $\frac{\partial}{\partial e} \frac{f_e(x|e)}{f(x|e)}$ is a convex function of the likelihood $\frac{f_e(x|e)}{f(x|e)}$.
- 2. First order approach is valid

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Continuous Effort and Output

Proposition. The equilibrium information structure is characterized by at most two thresholds in the output space. If the equilibrium information structure has a single threshold, say x^* , then $\pi(H|x) = 1$ if and only if $x \ge x^*$. If the equilibrium information structure has two thresholds, say (x_1^*, x_2^*) , then $\pi(H|x) = 1$ if and only if $x \in [x_1^*, x_2^*]$.

Majid Mahzoon, Ali Shourideh, and Ariel Zetlin-Jones

Concluding Remarks

- Developed the theoretical tool in the design of indicators for contracts in principal-agent settings.
- Geometric approach allows us to significantly simplify the problem and check optimality

Related Literature

Back

- Moral Hazard: Innes (1990), Poblete & Spulber (2012), Carrol (2015), Walton & Carroll (2022)
- Information in Moral Hazard HolmstrĶm (1979), Chaigneau et al. (2019), Garrett et al. (2020), Georgiadis & Szentes (2020), Barron et al. (2020)
- Incentives in Bayesian Persuasion: Boleslavsky and Kim (2018), Rosar (2017), Perez-Richet and Skreta (2022), Ball (2019), Saeedi and Shourideh (2020), Zapechelnyuk (2020)