Retirement Financing: An Optimal Reform Approach

Roozbeh Hosseini

University of Georgia

Ali Shourideh

Carnegie Mellon University

April 6, 2018 Seoul National University

Motivation

- U.S. government has a major role in financing retirement social security benefits ≈ 40 percent of all elderly income main source of income for almost half of them
- A significant part of federal budget

social security benefits \approx 20 percent of federal expenditures FICA taxes \approx 30 percent of federal tax receipts

• Demographic changes pose serious fiscal challenge

 \rightarrow reform needed

What Kind of Reform

• Proposed reforms are of two varieties:

Cut taxes, cut benefits \rightarrow move towards a "privatized" system Raise taxes \rightarrow expand the current system as need in response to demog.

• Typically, these proposals

are limited to the payroll tax reform,

focus on gains to future generations – with rare exceptions, have winners and losers within generations

• Can we find Pareto-improving policy reforms?

so that no current/future generation and no income level is hurt

This Paper Makes Three Points

- We develop a methodology to study Pareto optimal policy reform
 - Test Pareto optimality of any status quo policy
 - Characterize Pareto optimal policies

This Paper Makes Three Points

- We develop a methodology to study Pareto optimal policy reform
 - Test Pareto optimality of any status quo policy
 - Characterize Pareto optimal policies

- Progressive asset subsidies are important:
 - To correct for inefficiencies due to imperfect annuity markets
 - To reduce the distortionary cost of redistribution

This Paper Makes Three Points

- We develop a methodology to study Pareto optimal policy reform
 - Test Pareto optimality of any status quo policy
 - Characterize Pareto optimal policies

- Progressive asset subsidies are important:
 - To correct for inefficiencies due to imperfect annuity markets
 - To reduce the distortionary cost of redistribution

• Reforming earnings tax schedule is not so important

• Pareto-improvement is possible *iff*

status quo tax/transfer is inefficient within each generation

• Pareto-improvement is possible *iff*

status quo tax/transfer is inefficient within each generation

 \Rightarrow possible to collect same revenue at lower distortionary cost

• Pareto-improvement is possible *iff*

status quo tax/transfer is inefficient within each generation

 \Rightarrow possible to collect same revenue at lower distortionary cost

• A tax system is more likely to be inefficient if

lower tax rates does not result in lower tax revenues

• Pareto-improvement is possible *iff*

status quo tax/transfer is inefficient within each generation

 \Rightarrow possible to collect same revenue at lower distortionary cost

• A tax system is more likely to be inefficient if

lower tax rates does not result in lower tax revenues i.e., there is a *Laffer* effect

• Pareto-improvement is possible *iff*

status quo tax/transfer is inefficient within each generation

 \Rightarrow possible to collect same revenue at lower distortionary cost

• A tax system is more likely to be inefficient if

lower tax rates does not result in lower tax revenues i.e., there is a *Laffer* effect

- This is more likely to be the case when
 - elasticity of labor supply is high
 - earning tax is regressive (e.g., earnings cap on FICA tax)

Review of Findings efficiency of asset taxes/subsidies

 If there is heterogeneity in mortality, asset taxes can improve efficiency high ability has higher valuation for old age consumption taxing old consumption for low income, discourages shirking
 ⇒ effort can be induced at lower distortionary cost

Review of Findings efficiency of asset taxes/subsidies

- If there is heterogeneity in mortality, asset taxes can improve efficiency high ability has higher valuation for old age consumption taxing old consumption for low income, discourages shirking
 ⇒ effort can be induced at lower distortionary cost
- If there is no annuity market, assets must be subsidized absence of annuity market is effectively a tax on surviving individuals an asset subsidy can correct this tax

Review of Findings efficiency of asset taxes/subsidies

- If there is heterogeneity in mortality, asset taxes can improve efficiency high ability has higher valuation for old age consumption taxing old consumption for low income, discourages shirking
 ⇒ effort can be induced at lower distortionary cost
- If there is no annuity market, assets must be subsidized absence of annuity market is effectively a tax on surviving individuals an asset subsidy can correct this tax
- When both features are present,

the interaction determines the nature of the optimal policy

- To implement these ideas we use quantitative model with
 - workers: heterogeneous in their ability, mortality and discount factor
 - markets: non-existent annuity market
 - policies: status quo US policies (US tax code, SS payroll tax/transfer, etc)
- Calibrate to the US data, and calculate status quo welfare

- To implement these ideas we use quantitative model with
 - workers: heterogeneous in their ability, mortality and discount factor
 - markets: non-existent annuity market
 - policies: status quo US policies (US tax code, SS payroll tax/transfer, etc)
- Calibrate to the US data, and calculate status quo welfare
- Find policies that
 - minimize cost to government
 - deliver the status quo welfare (or higher) to each individual

• Earning tax reforms are not a major source of efficiency gains

• Earning tax reforms are not a major source of efficiency gains

- Efficient asset taxes are negative and progressive
 - \circ average marginal subsidy on asset post retirement = 5%
 - o subsidy rates are higher for poorer individuals

• Earning tax reforms are not a major source of efficiency gains

- Efficient asset taxes are negative and progressive
 - \circ average marginal subsidy on asset post retirement = 5%
 - o subsidy rates are higher for poorer individuals
- Optimal policies lower PDV of net transfers to each cohort by 5%

• Earning tax reforms are not a major source of efficiency gains

- Efficient asset taxes are negative and progressive
 - average marginal subsidy on asset post retirement = 5%
 - o subsidy rates are higher for poorer individuals
- Optimal policies lower PDV of net transfers to each cohort by 5%
- Ignoring asset subsidies (and only reform payroll tax/transfers) does not improve efficiency

Related Literature

- **Retirement reform:** Conesa-Carriga (2008), Nishiyama-Smetters (2007), Kitao (2005), McGrattan-Prescott (2016), Blandin (2016),... study reforms in limited set of instruments, not necessarily optimal
- **Optimal taxation: (Ramsey approach)** Conesa-Krueger (2006), Heathcote et al. (2014), ... (Mirrlees approach:) Huggett-Parra (2010), Fukushima (2011), Heathcote-Tsujiyama (2015), Weinzierl (2011), Golosov et al. (forthcoming), Farhi-Werning (2013), Golosov-Tsyvinski (2006), Shourideh-Troshkin (2015), Bellofatto (2015)

maximize social welfare \Rightarrow mix redistribution with improving efficiency

• Pareto efficient taxation: Werning (2007)

theoretical framework, static model

• Imperfect annuity market and the effect of social security: Hubbard-Judd (1987), Hong and Rios-Rull (2007), Hosseini (2015), Caliendo et al. (2014), ...

social security does not provide large efficiency gains

Plan of the Talk

- Basic framework
 - Two-period OLG model
 - Theoretical results
- Quantitative life cycle model
- Calibration
- Quantitative exercise
- Conclusion

BASIC FRAMEWORK

Individuals

- A cohort is born each period
 - people are alive for at most 2 periods
 - draw ability type θ from distribution $F(\theta)$
- Individual of type θ
 - produces $y = \theta \cdot l$ if puts in *l* units of effort
 - $\circ~$ survives to second period with probability $P(\theta)$
- Assumption: $P'(\theta) > 0$

Individuals

- A cohort is born each period
 - people are alive for at most 2 periods
 - draw ability type θ from distribution $F(\theta)$
- Individual of type θ
 - produces $y = \theta \cdot l$ if puts in *l* units of effort
 - survives to second period with probability $P(\theta)$
- Assumption: $P'(\theta) > 0$
- Important: government policies cannot depend on θ

Individual Optimization Problem

• Individual θ solves

$$\max u(c_1) + \beta P(\theta)u(c_2) - v\left(\frac{y}{\theta}\right)$$

s.t.

$$c_{1} + a = w_{t}y - T_{y}(w_{t}y)$$

$$c_{2} = (1 + r_{t+1})a - T_{a}((1 + r_{t+1})a, w_{t}y)$$

- $T_y(\cdot)$ and $T_a(\cdot, \cdot)$ are increasing smooth tax functions
- There is no annuity market

 \Rightarrow individuals may die with positive assets

• These assets are redistributed among those who are alive

Hosseini & and Shourideh(UGA & CMU)

Pareto Optimal Reform

Feasibility and Equilibrium Allocation

• Allocation $\left\{c_{1}^{t}\left(\theta\right), c_{2}^{t}\left(\theta\right), y^{t}\left(\theta\right), a^{t}\left(\theta\right)\right\}_{\theta \in \Theta}$ is feasible, if

$$C_{1,t} + C_{2,t} + K_{t+1} = f\left(K_t, N_t \int y^t(\theta) \, dF(\theta)\right)$$

$$C_{1,t} = N_t \int c_1^t(\theta) \, dF(\theta)$$

$$C_{2,t} = N_{t-1} \int P(\theta) \, c_2^{t-1}(\theta) \, dF(\theta)$$

$$K_t = N_t \int a^t(\theta) \, dF(\theta)$$

• Any tax policy $T_{y}(\cdot)$, $T_{a}(\cdot, \cdot)$ induces

allocations {c₁^t (T_y, T_a; θ), c₂^t (T_y, T_a; θ), y^t (T_y, T_a; θ), a^t (T_y, T_a; θ)}_{θ∈Θ}
welfare W^t (T_y, T_a; θ)

No Free Lunch

Proposition Status quo policy $\left\{T_{y}^{SQ}(\cdot), T_{a}^{SQ}(\cdot, \cdot)\right\}$, is Pareto efficient iff it solves $\min_{T_{y}(\cdot), T_{a}(\cdot, \cdot)} \int \left(c_{1}^{t}\left(T_{y}, T_{a}; \theta\right) + P\left(\theta\right) \frac{c_{2}^{t}\left(T_{y}, T_{a}; \theta\right)}{1 + r_{t+1}} - w_{t}y^{t}\left(T_{y}, T_{a}; \theta\right)\right) dF\left(\theta\right)$ s.t. $W^{t}\left(T_{y}, T_{a}; \theta\right) \geq W^{t}\left(T_{y}^{SQ}, T_{a}^{SQ}; \theta\right), \quad \forall \theta$

for all t.

No Free Lunch

Proposition Status quo policy $\{T_{y}^{SQ}(\cdot), T_{a}^{SQ}(\cdot, \cdot)\}$, is Pareto efficient iff it solves $\min_{T_{y}(\cdot), T_{a}(\cdot, \cdot)} \int \left(c_{1}^{t}(T_{y}, T_{a}; \theta) + P(\theta) \frac{c_{2}^{t}(T_{y}, T_{a}; \theta)}{1 + r_{t+1}} - w_{t}y^{t}(T_{y}, T_{a}; \theta)\right) dF(\theta)$ s.t. $W^{t}(T_{y}, T_{a}; \theta) \geq W^{t}(T_{y}^{SQ}, T_{a}^{SQ}; \theta), \quad \forall \theta$

for all t.

If Status quo policy $\left\{T_{y}^{SQ}(\cdot), T_{a}^{SQ}(\cdot, \cdot)\right\}$ is not pareto efficient, then a Pareto-improving reform exits

- Example 1: classic Diamond (1965)
 - \circ no heterogeneity in ability (*F*(θ) is degenerate)
 - no survival risk ($P(\theta)=1$)
 - $\circ T_y^{SQ}$ and T_a^{SQ} are lump-sum taxes

- Example 1: classic Diamond (1965)
 - no heterogeneity in ability ($F(\theta)$ is degenerate)
 - no survival risk ($P(\theta)$ =1)
 - $\circ T_y^{SQ}$ and T_a^{SQ} are lump-sum taxes
 - \Rightarrow Status quo policies are Pareto efficient

- Example 2: Conesa and Garriga (2008)
 - \circ no heterogeneity in ability (*F*(θ) is degenerate)
 - ∘ no survival risk ($P(\theta)$ =1)

•
$$T_y^{SQ}(y) = T_0 + \tau_y y$$
 and T_a^{SQ} is lump-sum

- Example 2: Conesa and Garriga (2008)
 - no heterogeneity in ability ($F(\theta)$ is degenerate)
 - no survival risk ($P(\theta)$ =1)
 - $\circ T_y^{SQ}(y) = T_0 + \tau_y y$ and T_a^{SQ} is lump-sum
 - \Rightarrow Replacing distortionary taxes by lump-sum improves efficiency

- Example 2: Conesa and Garriga (2008)
 - no heterogeneity in ability ($F(\theta)$ is degenerate)
 - no survival risk ($P(\theta)$ =1)
 - $\circ T_y^{SQ}(y) = T_0 + \tau_y y$ and T_a^{SQ} is lump-sum
 - \Rightarrow Replacing distortionary taxes by lump-sum improves efficiency

Important: there are no distributional concerns

- Example 3: this paper
 - heterogeneity in ability and mortality ($F(\theta)$ is not degenerate)
 - $\circ~$ there is survival risk ($P(\theta) < 1$)
 - $T_y^{SQ}(y)$ and T_a^{SQ} are non-linear functions (distortionary taxes)

- Example 3: this paper
 - heterogeneity in ability and mortality ($F(\theta)$ is not degenerate)
 - there is survival risk ($P(\theta) < 1$)
 - $\circ T_y^{SQ}(y)$ and T_a^{SQ} are non-linear functions (distortionary taxes)
- It is not clear reducing distortions will improve efficiency
Examples

- Example 3: this paper
 - heterogeneity in ability and mortality ($F(\theta)$ is not degenerate)
 - $\circ~$ there is survival risk ($P(\theta) < 1$)
 - $T_y^{SQ}(y)$ and T_a^{SQ} are non-linear functions (distortionary taxes)
- It is not clear reducing distortions will improve efficiency
- There is efficiency vs. equity trade off

$$\min_{T_y(\cdot),T_a(\cdot,\cdot)} \int \left(c_1(\theta) + \frac{P(\theta)c_2(\theta)}{1+r_{t+1}} - w_t y(\theta) \right) dF(\theta)$$

s.t.

 $(c_{1}(\theta), c_{2}(\theta), y(\theta)) \text{ is solution to}$ $V(\theta) = \max u(c_{1}) + \beta P(\theta)u(c_{2}) - v\left(\frac{y}{\theta}\right)$ s.t. $c_{1} + a = w_{t}y - T_{y}(w_{t}y)$ $c_{2} = (1 + r_{t+1})a - T_{a}((1 + r_{t+1})a, w_{t}y)$

$$V(\theta) \ge W^t\left(T_y^{SQ}, T_a^{SQ}; \theta\right)$$

Hosseini & and Shourideh(UGA & CMU)

$$\min_{T_y(\cdot),T_a(\cdot,\cdot)} \int \left(c_1(\theta) + \frac{P(\theta)c_2(\theta)}{1+r_{t+1}} - w_t y(\theta) \right) dF(\theta)$$

s.t.

 $(c_{1}(\theta), c_{2}(\theta), y(\theta)) \text{ is solution to}$ $V(\theta) = \max u(c_{1}) + \beta P(\theta)u(c_{2}) - v\left(\frac{y}{\theta}\right)$ s.t. $c_{1} + a = w_{t}y - T_{y}(w_{t}y)$ $c_{2} = (1 + r_{t+1})a - T_{a}((1 + r_{t+1})a, w_{t}y)$

$$V(\theta) \ge W^t\left(T_y^{SQ}, T_a^{SQ}; \theta\right)$$

Hosseini & and Shourideh(UGA & CMU)

$$\min_{c_1(\theta), c_2(\theta), y(\theta)} \int \left(c_1(\theta) + \frac{P(\theta)c_2(\theta)}{1 + r_{t+1}} - w_t y(\theta) \right) dF(\theta)$$

s.t.

 $(c_{1}(\theta), c_{2}(\theta), y(\theta)) \text{ is solution to}$ $V(\theta) = \max u(c_{1}) + \beta P(\theta)u(c_{2}) - v\left(\frac{y}{\theta}\right)$ s.t. $c_{1} + a = w_{t}y - T_{y}(w_{t}y)$ $c_{2} = (1 + r_{t+1})a - T_{a}((1 + r_{t+1})a, w_{t}y)$

$$V(\theta) \ge W^t\left(T_y^{SQ}, T_a^{SQ}; \theta\right)$$

Hosseini & and Shourideh(UGA & CMU)

$$\min_{c_1(\theta), c_2(\theta), y(\theta)} \int \left(c_1(\theta) + \frac{P(\theta)c_2(\theta)}{1 + r_{t+1}} - w_t y(\theta) \right) dF(\theta)$$

 $(c_{1}(\theta), c_{2}(\theta), y(\theta)) \text{ is solution to}$ $V(\theta) = \max u(c_{1}) + \beta P(\theta)u(c_{2}) - v\left(\frac{y}{\theta}\right)$ s.t. $c_{1} + a = w_{t}y - T_{y}(w_{t}y)$ $c_{2} = (1 + r_{t+1})a - T_{a}((1 + r_{t+1})a, w_{t}y)$ we can replace this whole box by envelope condition w.r.t θ

$$V(\theta) \ge W^t \left(T_y^{SQ}, T_a^{SQ}; \theta\right)$$

Hosseini & and Shourideh(UGA & CMU)

s.t.

$$\min_{c_1(\theta), c_2(\theta), y(\theta)} \int \left(c_1(\theta) + \frac{P(\theta)c_2(\theta)}{1 + r_{t+1}} - w_t y(\theta) \right) dF(\theta)$$

s.t.

$$V(\theta) = u(c_1(\theta)) + \beta P(\theta)u(c_2(\theta)) - v\left(\frac{y(\theta)}{\theta}\right)$$
$$V'(\theta) = \frac{y(\theta)}{\theta^2}v'\left(\frac{y(\theta)}{\theta}\right) + \beta P'(\theta)u(c_2(\theta))$$

$$V(\theta) \ge W^t \left(T_y^{SQ}, T_a^{SQ}; \theta \right)$$

$$\min_{c_1(\theta), c_2(\theta), y(\theta)} \int \left(c_1(\theta) + \frac{P(\theta)c_2(\theta)}{1 + r_{t+1}} - w_t y(\theta) \right) dF(\theta)$$

s.t.

$$V(\theta) = u(c_1(\theta)) + \beta P(\theta)u(c_2(\theta)) - v\left(\frac{y(\theta)}{\theta}\right)$$
$$V'(\theta) = \frac{y(\theta)}{\theta^2}v'\left(\frac{y(\theta)}{\theta}\right) + \beta P'(\theta)u(c_2(\theta))$$

This is *implementability* constraint

$$V(\theta) \ge W^t \left(T_y^{SQ}, T_a^{SQ}; \theta\right)$$

$$\min_{c_1(\theta), c_2(\theta), y(\theta)} \int \left(c_1(\theta) + \frac{P(\theta)c_2(\theta)}{1 + r_{t+1}} - w_t y(\theta) \right) dF(\theta)$$

s.t.

$$V(\theta) = u(c_1(\theta)) + \beta P(\theta)u(c_2(\theta)) - v\left(\frac{y(\theta)}{\theta}\right)$$
$$V'(\theta) = \frac{y(\theta)}{\theta^2}v'\left(\frac{y(\theta)}{\theta}\right) + \beta P'(\theta)u(c_2(\theta))$$

first term is standard, second term is new

$$V(\theta) \ge W^t\left(T_y^{SQ}, T_a^{SQ}; \theta\right)$$

$$\min_{c_1(\theta), c_2(\theta), y(\theta)} \int \left(c_1(\theta) + \frac{P(\theta)c_2(\theta)}{1 + r_{t+1}} - w_t y(\theta) \right) dF(\theta)$$

s.t.

$$V(\theta) = u(c_1(\theta)) + \beta P(\theta)u(c_2(\theta)) - v\left(\frac{y(\theta)}{\theta}\right)$$
$$V'(\theta) = \frac{y(\theta)}{\theta^2}v'\left(\frac{y(\theta)}{\theta}\right) + \beta P'(\theta)u(c_2(\theta))$$

$$V(\theta) \ge W^t \left(T_y^{SQ}, T_a^{SQ}; \theta\right)$$

We can solve this problem for allocations $c_1(\theta), c_2(\theta), y(\theta) \forall \theta$

Hosseini & and Shourideh(UGA & CMU)

From Allocations to Taxes

- Solving the planning problem will give us Pareto efficient allocations
- Using allocations we can back out (optimal) marginal taxes

$$1 - \tau_{y}(\theta) \equiv 1 - T'_{y} = \frac{1}{w_{t}\theta} \frac{v'(y/\theta)}{u'(c_{1})}$$

$$1 - \tau_{a}(\theta) \equiv 1 - T'_{a} = \frac{1}{P(\theta)} \frac{1}{\beta(1 + r_{t+1})} \frac{u'(c_{1})}{u'(c_{2})}$$

From Allocations to Taxes

- Solving the planning problem will give us Pareto efficient allocations
- Using allocations we can back out (optimal) marginal taxes

$$1 - \tau_{y}(\theta) \equiv 1 - T'_{y} = \frac{1}{w_{t}\theta} \frac{v'(y/\theta)}{u'(c_{1})}$$

$$1 - \tau_{a}(\theta) \equiv 1 - T'_{a} = \frac{1}{P(\theta)} \frac{1}{\beta(1 + r_{t+1})} \frac{u'(c_{1})}{u'(c_{2})}$$

• We can also test whether any arbitrary set of taxes are optimal

$$U(c_1, c_2, y/\theta) = u(c_1) - \psi \frac{(y/\theta)^{1+\frac{1}{\epsilon}}}{1+\frac{1}{\epsilon}} + \beta P(\theta)u(c_2)$$

$$U(c_1, c_2, y/\theta) = u(c_1) - \psi \frac{(y/\theta)^{1+\frac{1}{\epsilon}}}{1+\frac{1}{\epsilon}} + \beta P(\theta)u(c_2)$$

Proposition

$$1 \geq -\theta \frac{\tau_{y}\left(\theta\right)}{1 - \tau_{y}\left(\theta\right)} \frac{\epsilon}{1 + \epsilon} \left[\frac{f'\left(\theta\right)}{f\left(\theta\right)} + \frac{1}{\theta} + \frac{\tau_{y}'\left(\theta\right)}{\tau_{y}\left(\theta\right)\left(1 - \tau_{y}\left(\theta\right)\right)} + \sigma \frac{c_{1}'\left(\theta\right)}{c_{1}\left(\theta\right)} \right]$$

$$U(c_1, c_2, y/\theta) = u(c_1) - \psi \frac{(y/\theta)^{1+\frac{1}{\epsilon}}}{1+\frac{1}{\epsilon}} + \beta P(\theta)u(c_2)$$

Proposition

$$1 \geq -\theta \frac{\tau_{y}\left(\theta\right)}{1 - \tau_{y}\left(\theta\right)} \frac{\epsilon}{1 + \epsilon} \left[\frac{f'\left(\theta\right)}{f\left(\theta\right)} + \frac{1}{\theta} + \frac{\tau_{y}'\left(\theta\right)}{\tau_{y}\left(\theta\right)\left(1 - \tau_{y}\left(\theta\right)\right)} + \sigma \frac{c_{1}'\left(\theta\right)}{c_{1}\left(\theta\right)} \right]$$

- This inequality is more likely to be violated if
 - $\frac{f'(\theta)}{f(\theta)}$ is negative (e.g, right tail of the distribution)
 - $\circ \tau'_{y}(\theta) < 0$, i.e, when tax is regressive
 - labor supply is very elastic

$$U(c_1, c_2, y/\theta) = u(c_1) - \psi \frac{(y/\theta)^{1+\frac{1}{\epsilon}}}{1+\frac{1}{\epsilon}} + \beta P(\theta)u(c_2)$$

Proposition

$$1 \geq -\theta \frac{\tau_{y}\left(\theta\right)}{1 - \tau_{y}\left(\theta\right)} \frac{\epsilon}{1 + \epsilon} \left[\frac{f'\left(\theta\right)}{f\left(\theta\right)} + \frac{1}{\theta} + \frac{\tau_{y}'\left(\theta\right)}{\tau_{y}\left(\theta\right)\left(1 - \tau_{y}\left(\theta\right)\right)} + \sigma \frac{c_{1}'\left(\theta\right)}{c_{1}\left(\theta\right)} \right]$$

- This inequality is more likely to be violated if
 - $\frac{f'(\theta)}{f(\theta)}$ is negative (e.g, right tail of the distribution)
 - $\circ \tau_{y}^{\prime}(\theta) < 0$, i.e, when tax is regressive
 - labor supply is very elastic

$$U(c_1, c_2, y/\theta) = u(c_1) - \psi \frac{(y/\theta)^{1+\frac{1}{\epsilon}}}{1+\frac{1}{\epsilon}} + \beta P(\theta)u(c_2)$$

Proposition

$$1 \geq -\theta \frac{\tau_{y}\left(\theta\right)}{1 - \tau_{y}\left(\theta\right)} \frac{\epsilon}{1 + \epsilon} \left[\frac{f'\left(\theta\right)}{f\left(\theta\right)} + \frac{1}{\theta} + \frac{\tau_{y}'\left(\theta\right)}{\tau_{y}\left(\theta\right)\left(1 - \tau_{y}\left(\theta\right)\right)} + \sigma \frac{c_{1}'\left(\theta\right)}{c_{1}\left(\theta\right)} \right]$$

- This inequality is more likely to be violated if
 - $\frac{f'(\theta)}{f(\theta)}$ is negative (e.g, right tail of the distribution)
 - $\tau'_{y}(\theta) < 0$, i.e, when tax is regressive
 - labor supply is very elastic

$$U(c_1, c_2, y/\theta) = u(c_1) - \psi \frac{(y/\theta)^{1+\frac{1}{\epsilon}}}{1+\frac{1}{\epsilon}} + \beta P(\theta)u(c_2)$$

Proposition

$$1 \geq -\theta \frac{\tau_{y}\left(\theta\right)}{1 - \tau_{y}\left(\theta\right)} \frac{\epsilon}{1 + \epsilon} \left[\frac{f'\left(\theta\right)}{f\left(\theta\right)} + \frac{1}{\theta} + \frac{\tau_{y}'\left(\theta\right)}{\tau_{y}\left(\theta\right)\left(1 - \tau_{y}\left(\theta\right)\right)} + \sigma \frac{c_{1}'\left(\theta\right)}{c_{1}\left(\theta\right)} \right]$$

- This inequality is more likely to be violated if
 - $\frac{f'(\theta)}{f(\theta)}$ is negative (e.g, right tail of the distribution)
 - $\circ \tau'_{y}(\theta) < 0$, i.e, when tax is regressive
 - labor supply is very elastic

• Suppose individual could purchase annuities at price *q*. Then

$$q \cdot u'(c_1) = P(\theta) \cdot (1+r)\beta u'(c_2)$$

• Suppose individual could purchase annuities at price *q*. Then

$$q \cdot u'(c_1) = P(\theta) \cdot (1+r)\beta u'(c_2)$$

• If there are no market imperfections $q = P(\theta)$

$$P(\theta) \cdot u'(c_1) = P(\theta) \cdot (1+r)\beta u'(c_2)$$

• Suppose individual could purchase annuities at price *q*. Then

$$q \cdot u'(c_1) = P(\theta) \cdot (1+r)\beta u'(c_2)$$

• If there are no market imperfections $q = P(\theta)$

$$u'(c_1) = (1+r)\beta u'(c_2)$$

• Suppose individual could purchase annuities at price *q*. Then

$$q \cdot u'(c_1) = P(\theta) \cdot (1+r)\beta u'(c_2)$$

• If there are no market imperfections $q = P(\theta)$

$$u'(c_1) = (1+r)\beta u'(c_2)$$

• In the absence of annuity market q = 1

$$u'(c_1) = P(\theta) \cdot (1+r)\beta u'(c_2)$$

• Suppose individual could purchase annuities at price *q*. Then

$$q \cdot u'(c_1) = P(\theta) \cdot (1+r)\beta u'(c_2)$$

• If there are no market imperfections $q = P(\theta)$

$$u'(c_1) = (1+r)\beta u'(c_2)$$

• In the absence of annuity market q = 1

$$u'(c_1) = (1 - \tau_a) \cdot P(\theta) \cdot (1 + r)\beta u'(c_2)$$

A corrective tax

$$1-\tau_a=\frac{1}{P(\theta)}$$

can restore efficiency

Two Reasons To Distort Saving Decisions 2 - incentive provision

- Consider the following extreme example
 - Two individuals: high ability and low ability
 - $\circ~$ High ability type survives with probability 1
 - Low ability type does not survive

Two Reasons To Distort Saving Decisions 2 - incentive provision

- Consider the following extreme example
 - Two individuals: high ability and low ability
 - $\circ~$ High ability type survives with probability 1
 - Low ability type does not survive
- Tension:

want to deliver utils to low ability while preventing high ability from shirking

Two Reasons To Distort Saving Decisions 2 - incentive provision

- Consider the following extreme example
 - Two individuals: high ability and low ability
 - $\circ~$ High ability type survives with probability 1
 - Low ability type does not survive
- Tension:

want to deliver utils to low ability while preventing high ability from shirking

- Best solution: 100% savings tax for low income
 - prevents high ability from shirking
 - does not hurt low ability

Optimality of Asset Taxes

$$U(c_1, c_2, y/\theta) = u(c_1) - \psi \frac{(y/\theta)^{1+\frac{1}{\epsilon}}}{1+\frac{1}{\epsilon}} + \beta P(\theta)u(c_2)$$

Optimality of Asset Taxes

$$U(c_1, c_2, y/\theta) = u(c_1) - \psi \frac{(y/\theta)^{1+\frac{1}{\epsilon}}}{1+\frac{1}{\epsilon}} + \beta P(\theta)u(c_2)$$

Proposition

Asset tax is efficient iff

$$P\left(\theta\right)\left(1-\tau_{a}\left(\theta\right)\right)=1-\frac{\theta}{1+1/\epsilon}\frac{\tau_{y}\left(\theta\right)}{1-\tau_{y}\left(\theta\right)}\frac{P'\left(\theta\right)}{P\left(\theta\right)}$$
Optimality of Asset Taxes

$$U(c_1, c_2, y/\theta) = u(c_1) - \psi \frac{(y/\theta)^{1+\frac{1}{\epsilon}}}{1+\frac{1}{\epsilon}} + \beta P(\theta)u(c_2)$$

Proposition

Asset tax is efficient iff

$$\frac{P\left(\theta\right)\left(1-\tau_{a}\left(\theta\right)\right)=1-\frac{\theta}{1+1/\epsilon}\frac{\tau_{y}\left(\theta\right)}{1-\tau_{y}\left(\theta\right)}\frac{P'\left(\theta\right)}{P\left(\theta\right)}$$

• This term corrects inefficiency due to absence of annuities

Optimality of Asset Taxes

$$U(c_1, c_2, y/\theta) = u(c_1) - \psi \frac{(y/\theta)^{1+\frac{1}{\epsilon}}}{1+\frac{1}{\epsilon}} + \beta P(\theta)u(c_2)$$

Proposition

Asset tax is efficient iff

$$P\left(\theta\right)\left(1-\tau_{a}\left(\theta\right)\right)=1-\frac{\theta}{1+1/\epsilon}\frac{\tau_{y}\left(\theta\right)}{1-\tau_{y}\left(\theta\right)}\frac{P'\left(\theta\right)}{P\left(\theta\right)}$$

- This term corrects inefficiency due to absence of annuities
- This term reduces the cost of incentive provision
 - lower abilities puts less value on future consumption
 - taxing their future consumption, prevents shirking by higher ability

Summary

• Tax reform can be Pareto improving

if there are within-generation inefficiencies

- How much efficiency can be gained by
 - Reforming labor income tax and transfer systems?
 - Introducing asset taxes that

remedy lack of annuity market? improve incentive provision in the tax system?

• To answer these questions we need a quantitative model

LIFE-CYCLE FRAMEWORK

Individuals

- Large number of finitely lived individuals born each period
 - Population grows at constant rate *n*
 - There is a maximum age T
- Individuals are indexed by their type θ :
 - Drawn from distribution $F(\theta)$
 - Fixed through their lifetime
- Individual of type θ has
 - deterministic earnings ability $\varphi_t(\theta)$ at age t ($y_t = \varphi_t(\theta)l_t$)
 - survival rate $p_{t+1}(\theta)$ at age t
 - discount factor $\beta(\theta)$

• Assumption: $\beta'(\theta) > 0$, $\varphi'_t(\theta) > 0$ and $p'_{t+1}(\theta) > 0$ for all t, θ

Hosseini & and Shourideh(UGA & CMU)

Pareto Optimal Reform

Preferences and Technology

• Individual θ has preference over consumption and leisure

$$\sum_{t=0}^{T} \beta(\theta)^{t} \frac{P_{t}(\theta)}{\left[u(c_{t})-v(l_{t})\right]}$$

where $P_t(\theta) = \prod_{s=0}^t p_s(\theta)$

- Everyone retires at age R: $\varphi_t(\theta) = 0$ for t > R for all θ
- Aggregate production function

$$Y = f(K, L)$$

Markets and Government

- There is no annuity, only risk free assets
 - upon death, the risk-free assets convert to bequest
 - $\circ~$ bequest is transferred equality to all individuals alive
- Government
 - Collects taxes on labor earnings, consumption and corporate profit
 - Makes transfers to individuals in pre- and post- retirement ages
 - Makes exogenously given purchases
- Budget constraint of the government

G + (r - n)D + All Transfers = All Taxes

• Individual of type θ solves

$$V(\theta) = \max \sum_{t=0}^{T} \beta(\theta)^{t} P_{t}(\theta) \left[u(c_{t}) - v\left(\frac{y_{t}}{\varphi_{t}(\theta)}\right) \right]$$

subject to

$$(1 + \tau_c)c_t + a_{t+1} = (1 + r)a_t - T_a((1 + r)a_t) + wy_t - T_y(wy_t) + Tr_t + SS_t(E_t)$$

- *E*_t is earnings history
- There is a corporate profit tax τ_K (paid by firms)

$$r = (1 - \tau_K)(F_K - \delta)$$

• Individual of type θ solves

$$V(\theta) = \max \sum_{t=0}^{T} \beta(\theta)^{t} P_{t}(\theta) \left[u(c_{t}) - v\left(\frac{y_{t}}{\varphi_{t}(\theta)}\right) \right]$$

subject to

$$(1+\tau_c)c_t + a_{t+1} = (1+r)a_t - T_a((1+r)a_t) + wy_t - T_y(wy_t) + Tr_t + SS_t(E_t)$$

- *E*_t is earnings history
- There is a corporate profit tax τ_K (paid by firms)

$$r = (1 - \tau_K)(F_K - \delta)$$

• Individual of type θ solves

$$V(\theta) = \max \sum_{t=0}^{T} \beta(\theta)^{t} P_{t}(\theta) \left[u(c_{t}) - v\left(\frac{y_{t}}{\varphi_{t}(\theta)}\right) \right]$$

subject to

$$(1 + \tau_c)c_t + a_{t+1} = (1 + r)a_t - T_a((1 + r)a_t) + wy_t - T_y(wy_t) + Tr_t + SS_t(E_t)$$

- *E*_t is earnings history
- There is a corporate profit tax τ_K (paid by firms)

$$r = (1 - \tau_K)(F_K - \delta)$$

• Individual of type θ solves

$$V(\theta) = \max \sum_{t=0}^{T} \beta(\theta)^{t} P_{t}(\theta) \left[u(c_{t}) - v\left(\frac{y_{t}}{\varphi_{t}(\theta)}\right) \right]$$

subject to

$$(1 + \tau_c)c_t + a_{t+1} = (1 + r)a_t - T_a((1 + r)a_t) + wy_t - T_y(wy_t) + Tr_t + SS_t(E_t)$$

- *E*_t is earnings history
- There is a corporate profit tax τ_K (paid by firms)

$$r = (1 - \tau_K)(F_K - \delta)$$

• Individual of type θ solves

$$V(\theta) = \max \sum_{t=0}^{T} \beta(\theta)^{t} P_{t}(\theta) \left[u(c_{t}) - v\left(\frac{y_{t}}{\varphi_{t}(\theta)}\right) \right]$$

subject to

$$(1 + \tau_c)c_t + a_{t+1} = (1 + r)a_t - T_a((1 + r)a_t) + wy_t - T_y(wy_t) + Tr_t + SS_t(E_t)$$

- *E*_t is earnings history
- There is a corporate profit tax τ_K (paid by firms)

$$r = (1 - \tau_K)(F_K - \delta)$$

Equilibrium

- Equilibrium is set of allocations, factor prices and policies such that
 - Individuals optimize taking policies as given
 - factors are paid marginal product
 - government budget holds
 - markets clear and allocations are feasible

• Once we know equilibrium allocations we can find status quo welfare

$$W_{SQ}(\theta) \equiv \sum_{t=0}^{T} \beta(\theta)^{t} P_{t}(\theta) \left[u(c_{t}) - v(l_{t}) \right]$$

using status quo policies

CALIBRATION

Calibration

- 1. Parametrize and estimate earning ability $\varphi_t(\theta)$
- 2. Parametrize and calibrate model of mortality $P_t(\theta)$
- 3. Parametrize and calibrate US status quo policies
- 4. Parametrize and calibrate preference and technology

- We do 1, 2 and 3 independent of the model
- Use the model to do 4

Earning Ability Profiles

• Use labor income per hour as proxy for working ability (PSID)

• Assume

$$\varphi_t(\theta) = \theta + \tilde{\varphi}_t$$

with

$$\log \tilde{\varphi}_t = \xi_0 + \xi_1 t + \xi_2 t^2 + \xi_3 t^3$$

• θ has Pareto-LogNormal distribution w/ parameters ($\mu_{\theta}, \sigma_{\theta}, a_{\theta}$)

$$a_{\theta} = 3$$
 is tail parameter \rightarrow standard
 $\sigma_{\theta} = 0.6$ is variance parameter \rightarrow variance of log wage in CPS
 $\mu_{\theta} = -1/a_{\theta}$ is location parameter \rightarrow normalization ($E(log(\theta)) = 0$)

Earnings Ability Profiles

Survival Profiles

• Assume Gompertz force of mortality hazard

$$\lambda_t(\theta) = \frac{\eta_0}{\theta^{\eta_1}} \left(\exp(\eta_2 t) / \eta_2 - 1 \right)$$

and

$$P_t(\theta) = \exp(-\lambda_t(\theta))$$

 η_1 which determines ability gradient η_2 determines overall age pattern of mortality η_0 is location parameter

- Use SSA's male mortality for 1940 birth cohort
- Use Waldron (2013) death rates (for ages 67-71)

Death Rates by Lifetime Earning Deciles

Unconditional Survival Probabilities

Status quo Government Policies

- Government collects four types of taxes
 - o non-linear progressive tax on taxable income we use

$$\mathcal{T}(y) = y - \phi y^{1-\tau},$$

the HSV tax function ($\tau = 0.151$, $\phi = 4.74$)

- FICA payroll tax we use SSA's tax rates
- linear consumption tax McDaniel (2007)
- linear corporate/capital income tax (paid by firms) 33%
- there is also a social security and Medicare benefit
 - Old-age: we use SSA's benefit formula
 - Medicare: 3% of GDP, paid equally to all retirees

Status quo Tax Function

Status quo Tax Function

Status quo Tax Function

Calibration Summary Parameters Chosen Outside the Model

Parameter	Description	Values/source		
Demographics				
Т	maximum age	75 (100 y/o)		
R	retirement age	40 (65 y/o)		
п	population growth rate	0.01		
Preferences				
ϵ	elasticity of labor supply	0.5		
Productivity				
$\sigma_{\theta}, a_{\theta}, \mu_{\theta}$	PLN parameters	0.5,3,-0.33		
Technology				
α,δ	capital share and depreciation	0.36,0.06		
Government policies				
$\tau_{ss}, \tau_{med}, \tau_c, \tau_K$	tax rates	0.124,0.029,0.055,0.33		
G	government expenditure	$0.09 \times GDP$		
D	government debt	$0.5 \times GDP$		

Preferences

• Utility over consumption and hours

$$u(c) - v(l) = \log(c) - \psi \frac{l^{1+\frac{1}{\epsilon}}}{1+\frac{1}{\epsilon}}$$

- $\circ \ \operatorname{Set} \epsilon = 0.5$
- Choose ψ to match average hours per worker
- Fir discount factor, assume

$$\beta(\theta) = \beta_0 \cdot \theta^{\beta_1}$$

- Choose β_0 to mach capital-output ratio
- Choose β_1 to mach wealth gini

Calibration Summary

Parameters Calibrated Using the Model

Moments		Data	Model
Capital-output ratio		3	3
Wealth gini		0.78	0.78
Average annual hours		2000	2000
Parameter	Description		Values/source
β	discount factor parameter		0.975
ω	discount factor parameter		0.01
ψ	weight on leisure		0.74

 $\beta(\theta) = \beta_0 \cdot \theta^{\beta_1}$

Distribution of Earnings

Distribution of Wealth

QUANTITATIVE ANALYSIS

Quantitative Exercise

- We can now use our calibrated model to
 - 1. Solve for status quo allocations
 - 2. Test optimality of stats quo policies
 - 3. Solve for optimal policies
 - 4. Measure efficiency gains from implementing optimal policies
- We first do this, holding fixed

demographics

prices (wages and interest rate)

at current steady state level

$$1 \geq \underbrace{-\theta \frac{\tau_{y}(\theta)}{1 - \tau_{y}(\theta)} \frac{\epsilon}{1 + \epsilon}}_{A_{t}} \cdot \underbrace{\left[\frac{f'(\theta)}{f(\theta)} + \frac{1}{\theta} + \frac{\tau_{y}'(\theta)}{\tau_{y}(\theta)\left(1 - \tau_{y}(\theta)\right)} + \sigma\frac{c_{1}'(\theta)}{c_{1}(\theta)}\right]}_{B}$$

Hosseini & and Shourideh(UGA & CMU)

Pareto Optimal Reform

Hosseini & and Shourideh(UGA & CMU)

Pareto Optimal Reform

$$P(\theta)(1 - \tau_{a}(\theta)) = \underbrace{1 - \frac{\theta \epsilon}{1 + \epsilon} \frac{\tau_{y}(\theta)}{1 - \tau_{y}(\theta)} \left(\frac{\beta'(\theta)}{\beta(\theta)} + \frac{P'(\theta)}{P(\theta)}\right)}_{D_{t}}$$

Optimal Earnings Tax

Optimal Asset Taxes (Subsidies)

Optimal Asset Taxes (Subsidies)

Aggregate Effects

Shares of GDP	Status quo	Optimal
Consumption	0.70	0.67
Capital	3.00	3.43
Tax Revenue	0.25	0.26
Labor income tax	0.15	0.15
Consumption tax	0.04	0.04
Capital tax	0.06	0.07
Transfers	0.14	0.13
To retirees	0.09	0.03
To workers	0.05	0.03
Asset subsidy	0	0.07

PDV of net transfers to each cohort falls by 5.15%

• Let's remove social security benefits and rule out asset subsidies and only reform earnings taxes

- Let's remove social security benefits and rule out asset subsidies and only reform earnings taxes
- What is the best that can be achieved?

- Let's remove social security benefits and rule out asset subsidies and only reform earnings taxes
- What is the best that can be achieved?

• The resulting allocations cost 2.25% more than status quo

- Let's remove social security benefits and rule out asset subsidies and only reform earnings taxes
- What is the best that can be achieved?

- The resulting allocations cost 2.25% more than status quo
- Implication:

IF proper asset subsidies are not in place, phasing out old-age transfers is not a good idea!

Optimal Labor Income Taxes – No Asset Subsidies

Aggregate Effects

Shares of GDP	Status quo	Optimal	No Subsidy
Consumption	0.70	0.67	0.70
Capital	3.00	3.43	2.99
Tax Revenue	0.25	0.26	0.22
Labor income tax	0.15	0.15	0.12
Consumption tax	0.04	0.04	0.04
Capital tax	0.06	0.07	0.06
Transfers	0.14	0.13	0.04
To retirees	0.09	0.03	0.00
To workers	0.05	0.03	0.04
Asset subsidy	0.00	0.07	0.00

Optimal reform: PDV of net transfers to each cohort **falls** by 5.15% No subsidy reform: PDV of net transfers to each cohort **rises** by 2.25%

Demographic Change - Continuation of Status quo

- We solve the model with
 - mortality of 2040 birth cohort
 - $\circ~$ population growth of 0.5%
- Hold debt at 50% of GDP
- Adjust transfers to workers to balance the budget
- General equilibrium (endogenous *w* and *r*)
- Compute welfare for each generation along transition path

Demographic Change – Optimal Reform

- Anyone who is alive at the start of reform faces status quo policy
- For any other birth cohort we solve our cost min problem
- One time transfer to those who are alive in period 0

Demographic Change w/ Optimal Policies

Shares of GDP	Status quo	Status quo	Optimal
	Current Demog.	Future Demog.	Future Demog.
Consumption	0.70	0.70	0.70
Capital	3.00	3.23	3.28
Tax Revenue	0.25	0.25	0.24
Labor income tax	0.15	0.16	0.15
Consumption tax	0.04	0.04	0.04
Capital tax	0.06	0.05	0.05
Transfers	0.14	0.15	0.08
To retirees	0.09	0.14	0.03
To workers	0.05	0.01	-0.01
Asset subsidy	0.00	0.00	0.06
Interest rate (%)	4	3.4	3.3
Wage	1	1.04	1.05

Optimal reform: PDV of net transfers to each cohort falls by 4.9% VIII

Distribution of Earnings w/ New Demographics

Distribution of Earnings w/ New Demographics

Distribution of Wealth w/ New Demographics

Distribution of Wealth w/ New Demographics

Conclusion Asset Subsidies?

- U.S. pays about 3% of GDP in asset subsidies
 - Tax deferred savings (401k, IRA, etc)
 - Tax beak for home ownership
 - Subsidies for small business development
- These subsidies:
 - Mostly affect richer individuals
 - Stop at retirement

Conclusion Asset Subsidies?

- U.S. pays about 3% of GDP in asset subsidies
 - Tax deferred savings (401k, IRA, etc)
 - Tax beak for home ownership
 - Subsidies for small business development
- These subsidies:
 - Mostly affect richer individuals
 - Stop at retirement
- Contrast to optimal policies to current US system
 - Asset subsidies should not stop at retirement
 - Asset subsidies should be progressive

BACK UP SLIDES

perfect annuity no annuity $V^a = \max \log c_1 + P \log c_2$ $V^{na} = \max \log c_1 + P \log c_2$ s.t. s.t.

$$c_1 + Pc_2 = 1$$
 $c_1 + c_2 = y$

perfect annuity $V^a = \max \log c_1 + P \log c_2$ no annuity s.t. $c_1 + Pc_2 = 1$ s.t. $\frac{1}{c_1} = \frac{1}{c_2}$

perfect annuity $V^{a} = \max \log c_{1} + P \log c_{2}$ no annuity s.t. $c_{1} + P c_{2} = 1$ s.t. $c_{1} + c_{2} = \frac{1}{1 + P}$

perfect annuity $V^{a} = \max \log c_{1} + P \log c_{2}$ no annuity $V^{a} = \max \log c_{1} + P \log c_{2}$ s.t. $c_{1} + Pc_{2} = 1$ s.t. $c_{1} + c_{2} = y$ $\Rightarrow c_{1} = c_{2} = \frac{1}{1+P}$ $\Rightarrow V^{a} = -(1+P) \log(1+P)$

perfect annuity $V^{a} = \max \log c_{1} + P \log c_{2}$ s.t. $c_{1} + Pc_{2} = 1$ $\Rightarrow c_{1} = c_{2} = \frac{1}{1+P}$ $\Rightarrow V^{a} = -(1+P) \log(1+P)$ no annuity $V^{na} = \max \log c_{1} + P \log c_{2}$ s.t. $c_{1} + Pc_{2} = 1$ s.t. $c_{1} + c_{2} = y$ $\frac{1}{c_{1}} = P \frac{1}{c_{2}}$

perfect annuity $V^{a} = \max \log c_{1} + P \log c_{2}$ s.t. $c_{1} + Pc_{2} = 1$ $\Rightarrow c_{1} = c_{2} = \frac{1}{1+P}$ $\Rightarrow V^{a} = -(1+P) \log(1+P)$ no annuity $V^{na} = \max \log c_{1} + P \log c_{2}$ s.t. $c_{1} + Pc_{2} = 1$ s.t. $c_{1} + c_{2} = y$ $\Rightarrow c_{1} = \frac{y}{1+P}, c_{2} = \frac{yP}{1+P}$

perfect annuity	no annuity
$V^a = \max \log c_1 + P \log c_2$	$V^{na} = \max \log c_1 + P \log c_2$
s.t. $c_1 + Pc_2 = 1$	s.t. $c_1 + c_2 = y$
$\Rightarrow c_1 = c_2 = \frac{1}{1+P}$	$\Rightarrow c_1 = \frac{y}{1+P}, c_2 = \frac{yP}{1+P}$
$\Rightarrow V^a = -(1+P)\log(1+P)$	$\Rightarrow V^{na} = -(1+P)\log(1+P) + (1+P)\log y + P\log P$

perfect annuity no annuity $V^a = \max \log c_1 + P \log c_2$ $V^{na} = \max \log c_1 + P \log c_2$ s.t. s.t. $c_1 + Pc_2 = 1$ $c_1 + c_2 = u$ $\Rightarrow c_1 = c_2 = \frac{1}{1+P}$ $\Rightarrow c_1 = \frac{y}{1+P}, c_2 = \frac{yP}{1+P}$ $\Rightarrow V^a = -(1+P)\log(1+P)$ $\Rightarrow V^{na} = -(1+P)\log(1+P)$ $+(1+P)\log y + P\log P$

To deliver same util
$$\Rightarrow \log y = -\frac{P}{1+P}\log P > 0$$

Hosseini & and Shourideh(UGA & CMU)

Pareto Optimal Reform

Lack of Annuitization is Costly assume $\beta(1+r) = 1$ and log utility

in the absence of annuities $u'(c_1) = P(\theta) \cdot u'(c_2) \Rightarrow c_2 = P(\theta)c_1$ Consumption consumption follows survival probability

age

Lack of Annuitization is Costly accuracy $\beta(1+r) = 1$ and log utility

assume $\beta(1+r) = 1$ and log utility

Go Back

Lack of Annuitization is Costly

assume $\beta(1+r) = 1$ and log utility

Go Back

Transition - Macro Aggregates

Hosseini & and Shourideh(UGA & CMU)