Good Data and Bad Data: The Welfare Effects of Price Discrimination

Maryam Farboodi

Nima Haghpanah Ali Shourideh

MIT, Yale, CMU

ESSET July 2025

Effects of Price Discrimination

- Classic question: how does third-degree price discrimination affect payoffs of buyers and sellers?
 - Much more relevant with the rise of personalized pricing and availability of data

Effects of Price Discrimination

- Classic question: how does third-degree price discrimination affect payoffs of buyers and sellers?
 - Much more relevant with the rise of personalized pricing and availability of data
- Common folk wisdom: personalized pricing hurts consumers
 - o Also: Pigou (1920), Joan Robinson (1969), etc.

Effects of Price Discrimination

- Classic question: how does third-degree price discrimination affect payoffs of buyers and sellers?
 - Much more relevant with the rise of personalized pricing and availability of data
- Common folk wisdom: personalized pricing hurts consumers
 - o Also: Pigou (1920), Joan Robinson (1969), etc.
- Bergemann, Brooks and Morris (2015) or BBM:
 - It can go either way
 - Every rationalizable CS-PS pair is feasible!

A Modified Version of Pigou's Logic

• Two types of consumers

$$D\left(p,\theta_{1}\right)=\theta_{1}-p<\theta_{2}-p=D\left(p,\theta_{2}\right)$$

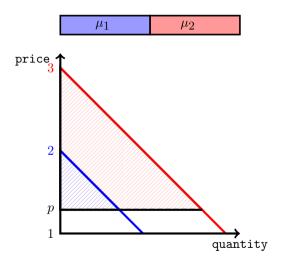
- Any market segment with distribution: $\mu_1 + \mu_2 = 1$
- Optimal price:

$$p = \frac{\mu_1 \theta_1 + \mu_2 \theta_2}{2}$$

• Total quantity

$$Q = \frac{\mathbb{E}\theta}{2}$$

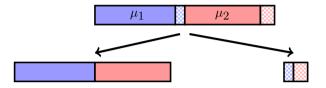
Pigou's Logic: Example



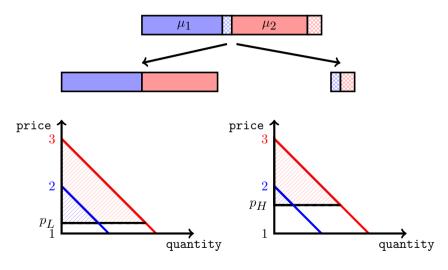
$$\mathtt{CS} = \frac{3}{4}\mathtt{var}[\theta] + \frac{1}{4}\mathbb{E}[\theta^2]$$

Pigou's Logic: Example _____

Pigou's Logic: Example _____



Pigou's Logic: Example



$$CS_L = \frac{3}{4} var_L[\theta] + \frac{1}{4} \mathbb{E}_L[\theta^2]$$

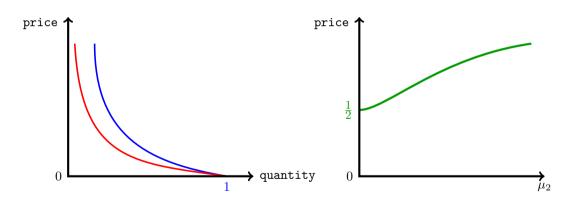
$$extsf{CS}_H = rac{3}{4} extsf{var}_H[heta] + rac{1}{4} \mathbb{E}_H[heta^2]$$
Good Data and Bad Data

Pigou's Logic

- Finer segmentation: two effects
 - 1. Market size effect: depending on how the seller reacts, total quantity can go up or down
 - 1.1 For linear demand family, it does not change
 - 2. Misallocation effect: finer segmentation decreases CS inefficiency of delivering fixed quantity via multiple markets
- Linear demand: only misallocation effect

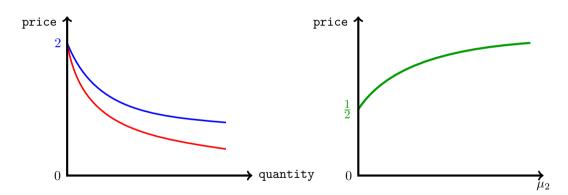
Piguo's Logic is more General

- Another example: $D(p, \theta_1) = (1+p)^{-3}, D(p, \theta_2) = (1+p)^{-2}$
 - \circ Price is almost linear \Rightarrow Misallocation effect dominates



Good Data!

- Another example: $D(p, \theta_1) = 1 p + \frac{2}{p}, D(p, \theta_2) = 3 2p + \frac{2}{p}$
 - Price is concave in prior ⇒ Quantity effect dominates



Our Paper

- Question: when is it that any coarsening is good? In other words, how general is Pigou's logic?
- Useful determinant for outright bans of personalized pricing
 - cannot really verify who knows what
- Alternative: banning use of specific type of data
 - standard information design
 - o not this paper: but related

Two Main Results

• Key concept: IMB (or IMG): $\alpha \cdot CS + (1 - \alpha) \cdot PS$

Information is Monotonically Bad! (or Good!)

Two Main Results ___

• Key concept: IMB (or IMG): $\alpha \cdot CS + (1 - \alpha) \cdot PS$

Information is Monotonically Bad! (or Good!)

- Theorem 1: Full characterization of demand systems (class of demand functions) where more data is always bad (or always good):
 - No exclusion, i.e., all types are active
 - o demand functions are generated by linear combinations of two demands

Two Main Results

• Key concept: IMB (or IMG): $\alpha \cdot CS + (1 - \alpha) \cdot PS$

Information is Monotonically Bad! (or Good!)

- Theorem 1: Full characterization of demand systems (class of demand functions) where more data is always bad (or always good):
 - No exclusion, i.e., all types are active
 - o demand functions are generated by linear combinations of two demands
- Theorem 2: Provide bounds for any demand system for loss/gain from more data.
 - Key idea:
 - rank of Hessian of the (KG) value function ≤ 2
 - eigenvalues!

Related Literature

- 2-demand models: Pigou (1920), Robinson(1933), Varian(1985), Aguirre, Cowan, Vickers(2010)
- All segmentations: Bergemann, Brooks, Morris (2014), ..., Strack and Yang (2025)
- Bayesian Persuasion:
 - Kamenica and Gentzkow (2011),
 - First order approach and duality: Kolotilin (2018); Dworczak, Martini (2019); Kolotilin, Corrao, Wolitzky (2023); Smolin, Yamashita (2023); Dworczak, Kolotilin (2023)

The Model

- A family of demand curves $\mathcal{D} = \{D(p,\theta)\}_{\theta \in \Theta}$, a distribution $\mu_0 \in \Delta(\Theta)$.
 - Each $D(p, \theta)$ is decreasing, C^1 , and $R(p, \theta) = pD(p, \theta)$ is st. concave
 - $\circ D(p,\theta): [0,\overline{p}(\theta)] \to \mathbb{R}_{+}$
- An interpretation:
 - \circ unit demand but θ is the finest information
 - 1D-PD is not possible

Market Segmentation

- Segmentation: $\sigma \in \Delta\Delta\Theta$, $\mathbb{E}\mu = \mu_0$; each μ is a "market"
- Seller chooses a price for every market $\mu \in \operatorname{Supp}\sigma, p^*(\mu) \in \operatorname{arg\,max}_{p \in \mathbb{R}_+} \mathbb{E}\left[R\left(p,\theta\right)\right].$
- (Regulator) objective

$$V^{\alpha}\left(\sigma\right) = \alpha \int \int CS\left(p^{*}\left(\mu\right),\theta\right) d\mu d\sigma + (1-\alpha) \int \int R\left(p^{*}\left(\mu\right),\theta\right) d\mu d\sigma$$

Market Segmentation

- Segmentation: $\sigma \in \Delta\Delta\Theta$, $\mathbb{E}\mu = \mu_0$; each μ is a "market"
- Seller chooses a price for every market $\mu \in \operatorname{Supp}\sigma, p^*(\mu) \in \operatorname{arg\,max}_{p \in \mathbb{R}_+} \mathbb{E}\left[R\left(p,\theta\right)\right].$
- (Regulator) objective

$$V^{\alpha}\left(\sigma\right) = \alpha \int \int CS\left(p^{*}\left(\mu\right),\theta\right) d\mu d\sigma + (1-\alpha) \int \int R\left(p^{*}\left(\mu\right),\theta\right) d\mu d\sigma$$

Definition. Demand system \mathcal{D} is:

- 1. IMB if for all σ, σ' with $\sigma \succcurlyeq_{MPS} \sigma', V^{\alpha}(\sigma) \le V^{\alpha}(\sigma')$,
- 2. IMG if for all σ, σ' with $\sigma \succcurlyeq_{MPS} \sigma', V^{\alpha}(\sigma) \ge V^{\alpha}(\sigma')$,

IMB: Information is Monotonically Bad!

THEOREM 1

Theorem 1

Theorem. For demand system \mathcal{D} , let D_1, D_2 be demands in \mathcal{D} with lowest and highest monopoly price p_1^*, p_2^* . \mathcal{D} is IMB (IMG) if and only if:

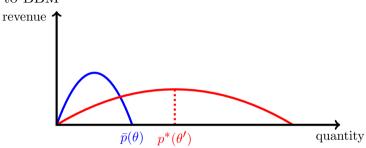
- 1. there is no exclusion: $p^*(\theta) \leq \bar{p}(\theta')$ for all $\theta, \theta' \in \Theta$,
- 2. D_1, D_2 is a basis for \mathcal{D} , i.e.,

$$D\left(p,\theta\right)=f_{1}\left(\theta\right)D_{1}\left(p\right)+f_{2}\left(\theta\right)D_{2}\left(p\right),\forall\theta,p\in\left(p_{1}^{*},p_{2}^{*}\right)$$

3. $\{D_1(p), D_2(p)\}$ is IMB (IMG).

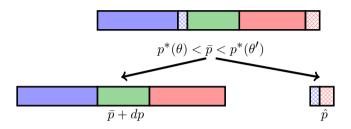
No Exclusion

• Similar to BBM



- $\Pr(\theta') \gg 0$: A segmentation that separates some θ from the rest does better.
- $\Pr(\theta) \gg 0$: A segmentation that separates some θ from the rest does worse.

Proof: Reduction to Two Demands



- Effects:
 - Composition effect: $\varepsilon \left(V\left(\hat{p}, \theta \right) V\left(\overline{p}, \theta \right) \right) + \varepsilon' \left(V\left(\hat{p}, \theta' \right) V\left(\overline{p}, \theta' \right) \right)$
 - Behavioral response of the seller:

$$dp = \frac{\varepsilon R_p(\overline{p}, \theta) + \varepsilon' R_p(\overline{p}, \theta')}{\mathbb{E}\left[R_{pp}(\overline{p}, \theta)\right]}, \qquad 0 = \varepsilon R_p(\hat{p}, \theta) + \varepsilon' R_p(\hat{p}, \theta')$$

Reduction to Two Demands

• Total Effect:

$$dV \approx \frac{\frac{\mathbb{E}V_{p}(\overline{p},\theta)}{\mathbb{E}R_{pp}(\overline{p},\theta)}R_{p}(\overline{p},\theta') + V(\hat{p},\theta') - V(\overline{p},\theta')}{R_{p}(\hat{p},\theta')}$$
$$-\frac{\frac{\mathbb{E}V_{p}(\overline{p},\theta)}{\mathbb{E}R_{pp}(\overline{p},\theta)}R_{p}(\overline{p},\theta) + V(\hat{p},\theta) - V(\overline{p},\theta)}{R_{p}(\hat{p},\theta)}$$

- Should always have the same sign under IMB/IMG for any two types
- At $\bar{p} = \hat{p}$, dV = 0, dV same sign for all \hat{p}

$$\frac{d}{d\hat{p}}dV\Big|_{\hat{p}=\overline{p}} = 0 \Rightarrow \frac{V_{p}\left(\overline{p},\theta'\right)}{R_{p}\left(\overline{p},\theta'\right)} - \frac{\mathbb{E}V_{p}\left(\overline{p}\right)}{\mathbb{E}R_{pp}\left(\overline{p}\right)} \frac{R_{pp}\left(\overline{p},\theta'\right)}{R_{p}\left(\overline{p},\theta'\right)} = \frac{V_{p}\left(\overline{p},\theta\right)}{R_{p}\left(\overline{p},\theta\right)} - \frac{\mathbb{E}V_{p}\left(\overline{p}\right)}{\mathbb{E}R_{pp}\left(\overline{p}\right)} \frac{R_{pp}\left(\overline{p},\theta\right)}{R_{p}\left(\overline{p},\theta\right)}$$

• Has to hold for all pairs at all beliefs

$$\Rightarrow D(p,\theta) \in \mathbf{span} \{D(p,\theta_1), D(p,\theta_2)\}$$

Proof: Reduction to Two Demands

• In the paper, use duality approach of Kolotilin, Corrao, Wolitzky (2025)

Two Types

• Curvature of KG value function

$$v''(\mu) = (p^*(\mu))^2 \mathbb{E} \Big[V''(p^*(\mu)) \Big]$$

$$+ 2 \frac{d}{d\mu} p^*(\mu) \quad \Big[V_2'(p^*(\mu)) - V_1'(p^*(\mu)) \Big]$$

$$+ \frac{d^2}{d\mu^2} p^*(\mu) \mathbb{E} \Big[V'(p^*(\mu)) \Big]$$

- Sufficient conditions for IMB (with V = CS): p^* convex enough, $D_2 > D_1$
- Sufficient conditions for IMG (with V = CS): p^* concave, $D_2 < D_1$

CES Demand

Example. Consider two demand curves $(c+p)^{-\theta_1}$, $(c+p)^{-\theta_2}$ for $\theta_1 > \theta_2 > 1$ and some constant c > 0. Then α -IMB holds if and only if $\theta_1 \leq \theta_2 + \frac{1}{2}$ for all $\alpha \geq 1/2$.

THEOREM 2

General Demand Systems _____

• Theorem 1: silent on arbitrary demand systems

General Demand Systems

- Theorem 1: silent on arbitrary demand systems
- Assume finite number of types $|\Theta| = N$ possible to make it more general
- Value of a segmentation

$$W\left(\sigma\right) = \int \int V\left(p^{*}\left(\mu\right), \theta\right) d\mu d\sigma, v : \mathbb{R}^{N-1} \to \mathbb{R}$$

General Demand Systems

- Theorem 1: silent on arbitrary demand systems
- Assume finite number of types $|\Theta| = N$ possible to make it more general
- Value of a segmentation

$$W\left(\sigma\right) = \int \int V\left(p^{*}\left(\mu\right), \theta\right) d\mu \, d\sigma, v : \mathbb{R}^{N-1} \to \mathbb{R}$$

Proposition. Hessian of v, $\nabla^2 v(\mu)$ is of rank at most 2 and satisfies

$$\nabla^{2}v\left(\mu\right) = -\frac{1}{\mathbb{E}R_{pp}}\left[\left(\Delta\mathbf{V}_{p} - \frac{d}{dp}\frac{\mathbb{E}V_{p}}{\mathbb{E}R_{pp}}\Delta\mathbf{R}_{p}\right)\Delta\mathbf{R}_{p}^{T} + \Delta\mathbf{R}_{p}\left(\Delta\mathbf{V}_{p} - \frac{d}{dp}\frac{\mathbb{E}V_{p}}{\mathbb{E}R_{pp}}\Delta\mathbf{R}_{p}\right)^{T}\right]$$

 $\Delta \mathbf{V}, \Delta \mathbf{R}$ is the stacked version of difference between all types (but 1) and type 1

Theorem 2

• $\underline{\lambda}(\mu)$ and $\overline{\lambda}(\mu)$ are the lowest and the highest eigenvalues of $\nabla^2 v(\mu)$

Theorem 2. Suppose \mathcal{D} is finite and there is no exclusion. For any two $\sigma \succ_{MPS} \sigma'$,

$$\frac{1}{2} \min_{\mu \in \Delta \Theta} \underline{\lambda}\left(\mu\right) \leq \frac{V^{\alpha}\left(\sigma\right) - V^{\alpha}\left(\sigma'\right)}{\operatorname{var}_{\sigma}\left(\|\mu\|_{2}\right) - \operatorname{var}_{\sigma'}\left(\|\mu\|_{2}\right)} \leq \frac{1}{2} \max_{\mu \in \Delta \Theta} \overline{\lambda}\left(\mu\right).$$

The bounds are tight.

A CES example.

Implications of the first result:

- 1. $\frac{1}{2}$ -IMB holds for $\{(c+p)^{-1.5}, (c+p)^{-2}\}.$
- 2. $\frac{1}{2}$ -IMB does not hold for $\{(c+p)^{-1.5}, (c+p)^{-2}, (c+p)^{-\theta}\}, 1.5 < \theta < 2.$

A CES example.

Implications of the first result:

- 1. $\frac{1}{2}$ -IMB holds for $\{(c+p)^{-1.5}, (c+p)^{-2}\}.$
- 2. $\frac{1}{2}$ -IMB does not hold for $\{(c+p)^{-1.5}, (c+p)^{-2}, (c+p)^{-\theta}\}, 1.5 < \theta < 2.$

Implication of the second result for total surplus:

θ	Lower bound	Upper bound
1.9	-0.460	4.6×10^{-5}
1.8	-0.395	1.47×10^{-4}
1.7	-0.332	2.19×10^{-4}
1.6	-0.282	1.48×10^{-4}

Proposition.Consider $\mathcal{D} = \{a(\theta)D(p) + b(\theta)\}_{\theta}$. α -IMB (α -IMG) holds if and only if

$$(2\alpha - 1) p + \alpha \frac{pD'(p)}{R''(p)}$$

is increasing (decreasing) over $[\min_{\theta} p^*(\theta), \max_{\theta} p^*(\theta)].$

Proposition.Consider $\mathcal{D} = \{a(\theta)D(p) + b(\theta)\}_{\theta}$. α -IMB (α -IMG) holds if and only if

$$(2\alpha - 1) p + \alpha \frac{pD'(p)}{R''(p)}$$

is increasing (decreasing) over $[\min_{\theta} p^*(\theta), \max_{\theta} p^*(\theta)].$

- $\alpha = 1/2, \ V^{\alpha} = TS$:
 - 1/2-IMB holds if and only if $-p^2D'(p)$ is log-concave.
 - 1/2-IMG holds if and only if $-p^2D'(p)$ is log-concave.

Proposition.Consider $\mathcal{D} = \{a(\theta)D(p) + b(\theta)\}_{\theta}$. α -IMB (α -IMG) holds if and only if

$$(2\alpha - 1) p + \alpha \frac{pD'(p)}{R''(p)}$$

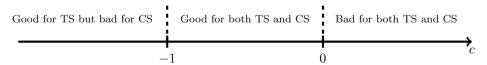
is increasing (decreasing) over $[\min_{\theta} p^*(\theta), \max_{\theta} p^*(\theta)].$

Proposition.Consider $\mathcal{D} = \{a(\theta)D(p) + b(\theta)\}_{\theta}$. α -IMB (α -IMG) holds if and only if

$$(2\alpha - 1) p + \alpha \frac{pD'(p)}{R''(p)}$$

is increasing (decreasing) over $[\min_{\theta} p^*(\theta), \max_{\theta} p^*(\theta)].$

• Three cases for how information affects CS and TS. $D'(p) = -p^{-2}(1+cp)^c$

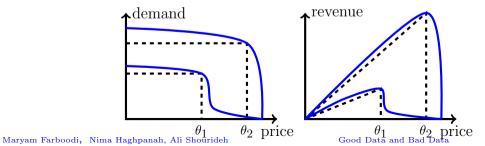


CES Demand

Example. Consider two demand curves $(c+p)^{-\theta_1}, (c+p)^{-\theta_2}$ for $\theta_1 > \theta_2 > 1$ and some constant c > 0. Then $\frac{1}{2}$ -IMB holds if and only if $\theta_1 \leq \theta_2 + \frac{1}{2}$.

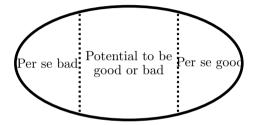
What if we approach unit-demand curves without violating no exclusion?

Corollary. Consider \mathcal{D}^{ϵ} that uniformly converges to a family of unit-demand curves as $\epsilon \to 0$ and revenue is concave for every $\epsilon > 0$. For small enough ϵ , the partial-inclusion condition is violated and therefore information is neither monotonically good nor bad.



Conclusion.

A characterization of:



- More examples in the paper
- Methodologically:
 - We apply modern tools (concavification and duality) to study a classical problem
 - Bounds

THANK YOU!