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Effects of Price Discrimination

• Classic question: how does third-degree price discrimination affect
payoffs of buyers and sellers?

◦ Much more relevant with the rise of personalized pricing and availability
of data

• Common folk wisdom: personalized pricing hurts consumers

◦ Also: Pigou (1920), Joan Robinson (1969), etc.

• Bergemann, Brooks and Morris (2015) or BBM:

◦ It can go either way
◦ Every rationalizable CS-PS pair is feasible!
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A Modified Version of Pigou’s Logic

• Two types of consumers

D (p, θ1) = θ1 − p < θ2 − p = D (p, θ2)

• Any market segment with distribution: µ1 + µ2 = 1

• Optimal price:

p =
µ1θ1 + µ2θ2

2

• Total quantity

Q =
Eθ
2
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Pigou’s Logic: Example

µ1 µ2

3

2

p

quantity
1

price

CS = 3
4var[θ] +

1
4E[θ

2]
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Pigou’s Logic: Example

µ1 µ2

3

2

pL

quantity
1

price

CSL = 3
4varL[θ] +

1
4EL[θ

2]

3

2
pH

quantity
1

price

CSH = 3
4varH [θ] + 1

4EH [θ2]
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Pigou’s Logic

• Finer segmentation: two effects
1. Market size effect: depending on how the seller reacts, total quantity can

go up or down

1.1 For linear demand family, it does not change

2. Misallocation effect: finer segmentation decreases CS – inefficiency of
delivering fixed quantity via multiple markets

• Linear demand: only misallocation effect
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Piguo’s Logic is more General

• Another example: D (p, θ1) = (1 + p)−3 , D (p, θ2) = (1 + p)−2

◦ Price is almost linear ⇒ Misallocation effect dominates

1
quantity0

price

1
2

µ2
0

price
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Good Data!

• Another example: D (p, θ1) = 1− p+ 2
p , D (p, θ2) = 3− 2p+ 2

p
◦ Price is concave in prior ⇒ Quantity effect dominates

2

quantity0

price

1
2

µ2
0

price
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Our Paper

• Question: when is it that any coarsening is good? In other words, how
general is Pigou’s logic?

• Useful determinant for outright bans of personalized pricing

◦ cannot really verify who knows what

• Alternative: banning use of specific type of data

◦ standard information design
◦ not this paper: but related
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Two Main Results

• Key concept: IMB (or IMG): α · CS + (1− α) · PS

Information is Monotonically Bad! (or Good!)

• Theorem 1: Full characterization of demand systems (class of demand
functions) where more data is always bad (or always good):

◦ No exclusion, i.e., all types are active
◦ demand functions are generated by linear combinations of two demands

• Theorem 2: Provide bounds for any demand system for loss/gain from
more data.

◦ Key idea:
- rank of Hessian of the (KG) value function ≤ 2
- eigenvalues!
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Related Literature

• 2–demand models: Pigou (1920), Robinson(1933), Varian(1985),
Aguirre, Cowan, Vickers(2010)

• All segmentations: Bergemann, Brooks, Morris (2014), ..., Strack and
Yang (2025)

• Bayesian Persuasion:

◦ Kamenica and Gentzkow (2011), .....
◦ First order approach and duality: Kolotilin (2018); Dworczak, Martini
(2019); Kolotilin, Corrao, Wolitzky (2023); Smolin, Yamashita (2023);
Dworczak, Kolotilin (2023)
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The Model

• A family of demand curves D = {D(p, θ)}θ∈Θ, a distribution µ0 ∈ ∆(Θ).

◦ Each D (p, θ) is decreasing, C1, and R (p, θ) = pD (p, θ) is st. concave
◦ D (p, θ) : [0, p (θ)] → R+

• An interpretation:
◦ unit demand but θ is the finest information

- 1D-PD is not possible
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Market Segmentation

• Segmentation: σ ∈ ∆∆Θ, Eµ = µ0; each µ is a “market”
• Seller chooses a price for every market

µ ∈ Suppσ, p∗ (µ) ∈ argmaxp∈R+
E [R (p, θ)].

• (Regulator) objective

V α (σ) = α

∫ ∫
CS

(
p∗ (µ) , θ

)
dµdσ + (1− α)

∫ ∫
R
(
p∗ (µ) , θ

)
dµdσ

Definition. Demand system D is:

1. IMB if for all σ, σ′ with σ ≽MPS σ′, V α (σ) ≤ V α (
σ′
)
,

2. IMG if for all σ, σ′ with σ ≽MPS σ′, V α (σ) ≥ V α (
σ′
)
,

IMB: Information is Monotonically Bad!
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Theorem 1



Theorem 1

Theorem. For demand system D, let D1, D2 be demands in D with lowest and
highest monopoly price p∗1, p

∗
2. D is IMB (IMG) if and only if:

1. there is no exclusion: p∗ (θ) ≤ p̄
(
θ′
)
for all θ, θ′ ∈ Θ,

2. D1, D2 is a basis for D, i.e.,

D (p, θ) = f1 (θ)D1 (p) + f2 (θ)D2 (p) ,∀θ, p ∈
(
p∗1, p

∗
2

)
3. {D1 (p) , D2 (p)} is IMB (IMG).
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No Exclusion

• Similar to BBM

p̄(θ) p∗(θ′) quantity

revenue

• Pr
(
θ′
)
≫ 0 :A segmentation that separates some θ from the rest does

better.
• Pr (θ) ≫ 0 :A segmentation that separates some θ from the rest does
worse.
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Proof: Reduction to Two Demands

p∗(θ) < p̄ < p∗(θ′)

p̄+ dp p̂

• Effects:
◦ Composition effect: ε (V (p̂, θ)− V (p, θ)) + ε′ (V (p̂, θ′)− V (p, θ′))
◦ Behavioral response of the seller:

dp =
εRp (p, θ) + ε′Rp (p, θ

′)

E [Rpp (p, θ)]
, 0 = εRp (p̂, θ) + ε′Rp

(
p̂, θ′

)
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Reduction to Two Demands

• Total Effect:

dV ≈
EVp(p,θ)
ERpp(p,θ)

Rp
(
p, θ′

)
+ V

(
p̂, θ′

)
− V

(
p, θ′

)
Rp (p̂, θ′)

−
EVp(p,θ)
ERpp(p,θ)

Rp (p, θ) + V (p̂, θ)− V (p, θ)

Rp (p̂, θ)

• Should always have the same sign under IMB/IMG for any two types
• At p = p̂, dV = 0, dV same sign for all p̂

d

dp̂
dV

∣∣∣∣
p̂=p

= 0 ⇒
Vp

(
p, θ′

)
Rp (p, θ′)

−
EVp (p)
ERpp (p)

Rpp
(
p, θ′

)
Rp (p, θ′)

=
Vp (p, θ)

Rp (p, θ)
−

EVp (p)
ERpp (p)

Rpp (p, θ)

Rp (p, θ)

• Has to hold for all pairs at all beliefs

⇒ D (p, θ) ∈ span {D (p, θ1) , D (p, θ2)}
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Proof: Reduction to Two Demands

• In the paper, use duality approach of Kolotilin, Corrao, Wolitzky (2025)
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Two Types

• Curvature of KG value function

v′′(µ) = (p∗(µ))2 E
[
V ′′(p∗(µ))

]
+2

d

dµ
p∗(µ)

[
V ′
2(p

∗(µ))− V ′
1(p

∗(µ))
]

+
d2

dµ2
p∗(µ) E

[
V ′(p∗(µ)

]
• Sufficient conditions for IMB (with V = CS): p∗ convex enough, D2 > D1

• Sufficient conditions for IMG (with V = CS): p∗ concave, D2 < D1
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CES Demand

Example. Consider two demand curves (c+p)−θ1 , (c+p)−θ2 for θ1 > θ2 > 1 and
some constant c > 0. Then α-IMB holds if and only if θ1 ≤ θ2+

1
2 for all α ≥ 1/2.
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General Demand Systems

• Theorem 1: silent on arbitrary demand systems

• Assume finite number of types |Θ| = N – possible to make it more general
• Value of a segmentation

W (σ) =

∫ KG’s v(µ)︷ ︸︸ ︷∫
V
(
p∗ (µ) , θ

)
dµ dσ, v : RN−1 → R

Proposition. Hessian of v, ∇2v (µ) is of rank at most 2 and satisfies

∇2v (µ) = − 1

ERpp

[(
∆Vp −

d

dp

EVp
ERpp

∆Rp

)
∆RT

p +∆Rp

(
∆Vp −

d

dp

EVp
ERpp

∆Rp

)T
]

∆V,∆R is the stacked version of difference between all types (but 1) and type
1.
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Theorem 2

• λ (µ) and λ (µ) are the lowest and the highest eigenvalues of ∇2v(µ)

Theorem 2. Suppose D is finite and there is no exclusion. For any two
σ ≻MPS σ′,

1

2
min

µ∈∆Θ
λ (µ) ≤

V α (σ)− V α (
σ′
)

varσ (∥µ∥2)− varσ′ (∥µ∥2)
≤ 1

2
max
µ∈∆Θ

λ (µ) .

The bounds are tight.

Maryam Farboodi, Nima Haghpanah, Ali Shourideh Good Data and Bad Data



A CES example

Implications of the first result:

1. 1
2 -IMB holds for {(c+ p)−1.5, (c+ p)−2}.

2. 1
2 -IMB does not hold for {(c+ p)−1.5, (c+ p)−2, (c+ p)−θ}, 1.5 < θ < 2.

Implication of the second result for total surplus:

θ Lower bound Upper bound

1.9 −0.460 4.6× 10−5

1.8 −0.395 1.47× 10−4

1.7 −0.332 2.19× 10−4

1.6 −0.282 1.48× 10−4
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Implications



Example: The class aD + b

Proposition.Consider D =
{
a(θ)D(p) + b(θ)

}
θ
. α-IMB (α-IMG) holds if and

only if

(2α− 1) p+ α
pD′ (p)
R′′ (p)

is increasing (decreasing) over [min
θ

p∗(θ),max
θ

p∗(θ)].

• α = 1/2, V α = TS:

◦ 1/2-IMB holds if and only if −p2D′ (p) is log-concave.
◦ 1/2-IMG holds if and only if −p2D′ (p) is log-concave.
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• Three cases for how information affects CS and TS. D′ (p) = −p−2 (1 + cp)c

c
0−1

Bad for both TS and CSGood for TS but bad for CS Good for both TS and CS
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CES Demand

Example. Consider two demand curves (c+p)−θ1 , (c+p)−θ2 for θ1 > θ2 > 1 and
some constant c > 0. Then 1

2 -IMB holds if and only if θ1 ≤ θ2 +
1
2 .
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What if we approach unit-demand curves without
violating no exclusion?

Corollary. Consider Dϵ that uniformly converges to a family of unit-demand
curves as ϵ → 0 and revenue is concave for every ϵ > 0. For small enough ϵ,
the partial-inclusion condition is violated and therefore information is neither
monotonically good nor bad.

price

demand

θ1 θ2 price

revenue

θ1 θ2
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Conclusion

A characterization of:

Per se bad Per se goodPotential to be
good or bad

• More examples in the paper

• Methodologically:

◦ We apply modern tools (concavification and duality) to study a classical
problem

◦ Bounds



Thank You!


