Political Economy of Sovereign Debt A Theory of Cycles of Populism and Austerity

Alessandro Dovis, Mikhail Golosov, and Ali Shourideh

Penn State, Princeton & Wharton

June 13th, 2016

BGSE SF 2016: International Capital Flows

Introduction _____

• Fiscal consolidations/austerity have unequal effect across the population:

Introduction _

- Fiscal consolidations/austerity have unequal effect across the population:
 - Cuts to public pensions; healthcare; education; compensation of government employees

Introduction

- Fiscal consolidations/austerity have unequal effect across the population:
 - Cuts to public pensions; healthcare; education; compensation of government employees
 - o Ponticelli and Voth (2012): Lead to social unrest, often to reversal

Introduction

- Fiscal consolidations/austerity have unequal effect across the population:
 - Cuts to public pensions; healthcare; education; compensation of government employees
 - o Ponticelli and Voth (2012): Lead to social unrest, often to reversal
- Populist policy cycles: Dornbusch and Edwards (1991), Sachs (1989)
 - $\circ~$ Latin american economies in the 20th century:
 - Argentina under Perón, Chile under Allende
 - Typical dynamics:
 - Large redistributive programs, accumulation of foreign debt
 - Eventually country got into trouble
 - Repayment of foreign debt and reversal of redistributive policies
 - Similar to recent experience in some of the Southern Europe countries

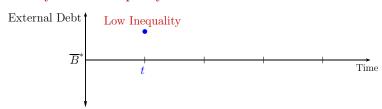
Introduction

- Fiscal consolidations/austerity have unequal effect across the population:
 - Cuts to public pensions; healthcare; education; compensation of government employees
 - $\circ\,$ Ponticelli and Voth (2012): Lead to social unrest, often to reversal
- Populist policy cycles: Dornbusch and Edwards (1991), Sachs (1989)
 - $\circ~$ Latin american economies in the 20th century:
 - Argentina under Perón, Chile under Allende
 - Typical dynamics:
 - Large redistributive programs, accumulation of foreign debt
 - Eventually country got into trouble
 - Repayment of foreign debt and reversal of redistributive policies
 - Similar to recent experience in some of the Southern Europe countries
- Theory of fiscal policy cycles in open economy based on government's:
 - Redistributive motive
 - Lack of commitment

What We Do _

- Small open economy
- OLG and heterogenous income/skill
- Government with redistributive motive
 - Redistribution within and across generations
 - \circ Set income taxes, transfers and pensions
 - \rightarrow Efficiency-equality trade-off
 - $\circ\,$ Issues debt: domestically and abroad
- Gov't cannot commit to
 - Repay government debt
 - Future income taxes, transfers and pensions
- Two ways to determine policies:
 - Fictitious planner that cares about current and future generations
 - Outcome of probabilistic voting (Lindbeck and Weibull, 1987)

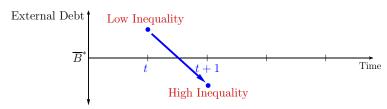
When government highly (external) indebted:


- Overshooting: Drastic adjustment in external indebtedness
 - External debt reduced below its long-run sustainable level
 - Allow for large inequality

If gov't more impatient than foreign lenders (or when people vote):

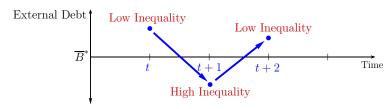
When government highly (external) indebted:

- Overshooting: Drastic adjustment in external indebtedness
 - o External debt reduced below its long-run sustainable level
 - Allow for large inequality


If gov't more impatient than foreign lenders (or when people vote):

When government highly (external) indebted:

- Overshooting: Drastic adjustment in external indebtedness
 - External debt reduced below its long-run sustainable level
 - Allow for large inequality


If gov't more impatient than foreign lenders (or when people vote):

When government highly (external) indebted:

- Overshooting: Drastic adjustment in external indebtedness
 - External debt reduced below its long-run sustainable level
 - Allow for large inequality

If gov't more impatient than foreign lenders (or when people vote):

Inequality Overhang ___

- Trade-off between two incentives to default:
 - Foreign: Reduce payments to foreigners
 - Domestic: Consumption inequality among the old is undesirable; always desirable 100% tax on assets for the current old and redistribute via pension

Inequality Overhang __

- Trade-off between two incentives to default:
 - Foreign: Reduce payments to foreigners
 - Domestic: Consumption inequality among the old is undesirable; always desirable 100% tax on assets for the current old and redistribute via pension
- When current debt increases
 - Current government would like to increase inequality; equality is a normal good
 - Higher current inequality leads to higher inequality in the future intertemporal smoothing
 - $\circ~$ Stronger motive for future default

Inequality Overhang _

- Trade-off between two incentives to default:
 - Foreign: Reduce payments to foreigners
 - Domestic: Consumption inequality among the old is undesirable; always desirable 100% tax on assets for the current old and redistribute via pension
- When current debt increases
 - Current government would like to increase inequality; equality is a normal good
 - Higher current inequality leads to higher inequality in the future intertemporal smoothing
 - $\circ~$ Stronger motive for future default \Rightarrow Future debt must be reduced

Related Literature _

• Optimal Fiscal Policy: Barro (1979), Lucas and Stokey(1983), Werning (2007), Bhandari, Evans, Golosov, and Sargent (2013)

- Optimal Fiscal Policy without Commitment:
 - Open economy: Amador, Aguiar and Gopinath(2009), Aguiar and Amador (2014)
 - Closed economy: Farhi, Sleet, Werning and Yeltekin (2012),
 D'Erasmo and Mendoza (2014), Scheuer and Wolitzky (2014)

Outline

- Optimal Policy without Commitment in Deterministic Economy
 - Model Setup
 - Overshooting/Repatriation of Government Debt
 - o Cyclicality of fiscal policies
- Extensions
 - o Economy with shocks
 - o Political Economy Model

Environment

Environment _____

- Time is discrete: $t = 0, 1, 2, \cdots$
- Small open economy
 - $\circ \ \ {\rm International \ interest \ rate} \ 1 + r^*$
- OLG structure:
 - o Continuum of households; live for two periods
- Government

Households

Preferences

$$\mathfrak{u}(c_{t,0},y_t;\theta) + \beta\mathfrak{u}(c_{t,1})$$

where $\theta \in \Theta = \left\{\theta^1, \cdots, \theta^N\right\}$ is individual specific labor productivity and $Pr(\theta = \theta^i) = \mu^i$.

• Analytical results for log-log preferences

$$\begin{split} u(c,y;\theta) &= \log c + \psi \log \left(1 - \frac{y}{\theta}\right) \\ u(c) &= \log c \end{split}$$

• GDP: $Y_t = \sum_i \mu^i y_t^i$ • Normalization $\sum_{i=1}^N \mu^i \theta^i = 1$;

Households

- Households have access to complete domestic asset markets; No access to international credit market
 - Without loss of generality: equivalent to households access to int'l credit market + capital control
- Taxes and transfers:
 - Linear tax on labor income: $\tau_{l,t}$
 - Linear tax on assets: $\tau_{a,t+1}$
 - \circ Receive transfers when young and old: T_t and P_{t+1}
- Budget constraint:

$$\begin{split} c_{0,t}^i + q_t \alpha_{t+1}^i &\leqslant (1 - \tau_{l,t}) y_t^i + T_t \\ c_{t,1}^i &\leqslant (1 - \tau_{\alpha,t+1}) \alpha_{t+1}^i + P_{t+1} \end{split}$$

Government

- Government can issue debt to
 - \circ International lenders: B_t
 - \circ Households: B_t^d
- Government budget constraint

$$\begin{split} \delta_t B_t + (1 - \tau_{\alpha,t}) B_t^d + T_t + P_t + G_t &= \tau_{lt} \sum_i \mu^i y_t^i \\ &+ q_t^d B_{t+1}^d + q_t B_{t+1} \end{split}$$

Government

- Government can issue debt to
 - \circ International lenders: B_t
 - \circ Households: B_t^d
- Government budget constraint

$$\begin{split} \delta_t B_t + (1 - \tau_{\alpha,t}) B_t^d + T_t + P_t + G_t &= \tau_{lt} \sum_i \mu^i y_t^i \\ &+ q_t^d B_{t+1}^d + q_t B_{t+1} \end{split}$$

• Credit market clearing:

$$B^d_{t+1} = \sum_i \mu^i \alpha^i_{t+1}$$

• If $B_{t+1} > 0$ then $q_t = \frac{\delta_{t+1}}{1+r^*}$

Government Preferences

- $\hat{\beta}^{t}\alpha^{i}$: Pareto weight of agent of type i in generation t
- Government objective

$$W = \frac{1}{\hat{\beta}} U_{1,-1} + \sum_{t=0}^{\infty} \hat{\beta}^{t} U_{t}$$

where

- \circ $U_{1,-1}$: Aggregate welfare among initial old
- \circ U_t : Aggregate welfare of generation born at t:

Government Preferences

- $\hat{\beta}^{t}\alpha^{i}$: Pareto weight of agent of type i in generation t
- Government objective

$$W = \frac{1}{\hat{\beta}} \mathbf{U}_{1,-1} + \sum_{t=0}^{\infty} \hat{\beta}^t \mathbf{U}_t$$

where

- \circ U_{1,-1}: Aggregate welfare among initial old
- \circ U_t : Aggregate welfare of generation born at t:
- Assumption Inequality aversion: $\alpha^1 \geqslant \alpha^2 \geqslant \cdots \geqslant \alpha^N$
 - \circ Utilitarian: $\alpha^i = \alpha^j$
 - \circ Rawlsian: $\alpha^1 = 1$, $\alpha^i = 0$, i > 1
- Assumption: $\hat{\beta}(1+r^*) \leqslant 1$

Characterization of Competitive Equilibrium _____

• Standard approach: characterize allocations that are CE

Characterization of Competitive Equilibrium ____

- Standard approach: characterize allocations that are CE
- Lump-sum taxes available: no restrictions on aggregate allocations

Characterization of Competitive Equilibrium _

- Standard approach: characterize allocations that are CE
- Lump-sum taxes available: no restrictions on aggregate allocations
- \bullet Sufficient to focus on aggregates $(C_{t,0},C_{t,1},Y_t)$ that satisfies inter temporal budget constraint
 - \circ determines $\tau_{l,t}$, T_t , P_{t+1}
 - \circ determines distribution of allocations through Negishi weights $\Phi_t = \{\phi_t^i\}_{i=1}^N$

Characterization of Competitive Equilibrium _

• With log-log preferences:

$$\phi_t^{\mathfrak{i}} = 1 + \kappa \frac{\theta^{\mathfrak{i}} - 1}{1 - Y_t}$$

- $\circ \varphi_{+}^{i}$: the fraction of consumption by individual of type i consumption and wealth inequality
- \circ As Y_t increases, Φ_t increases in SOSD.
- \circ Intuition: higher taxes \Rightarrow lower inequality \Rightarrow lower GDP

Government Preferences

• Value for the government as function of C_0 , C_1 , Y with log-log:

$$\begin{split} U^p(C_0,C_1,Y) &=& \log C_0 + \psi \log (1-Y) + \beta \log C_1 \\ &+ (1+\psi+\beta) \sum_i \alpha^i \mu^i \log \phi^i \\ &=& \log C_0 + \psi \log (1-Y) + \beta \log C_1 \\ &- (1+\psi+\beta) H(Y) \\ U^p_1(C_1,Y) &=& \beta \log C_1 + \beta \sum_i \alpha^i \mu^i \log \phi^i \\ &=& \beta \log C_1 - \beta H(Y) \end{split}$$

• H(Y): cost of inequality

Optimal Policy Problem

$$\max_{\text{policy, all'n, prices}} W = \frac{1}{\hat{\beta}} U_{-1,1} + \sum_{t=0}^{\infty} \hat{\beta}^t U_t$$

subject to

- Policy, all'n, prices constitute a competitive equilibrium
 - Given an initial value of external government debt: B₀
 - Given an initial distribution of assets: $\{a_0^i\}_{i=1,...,L}$
- Lack of commitment

Optimal Policy Problem.

$$\max_{\text{policy, all'n, prices}} W = \frac{1}{\hat{\beta}} U_{-1,1} + \sum_{t=0}^{\infty} \hat{\beta}^t U_t$$

subject to

- Policy, all'n, prices constitute a competitive equilibrium
 - \circ Given an initial value of external government debt: B_0
 - $\circ\,$ Given an initial distribution of assets: $\left\{\mathfrak{a}_0^{\mathfrak{i}}\right\}_{\mathfrak{i}=1,\cdots,I}$
- \bullet Lack of commitment \to Sustainability constraint

$$\frac{1}{\hat{\beta}}U_{t-1,1} + \sum_{s=t}^{\infty} \hat{\beta}^{s-t}U_{s} \geqslant \underline{W}$$

Government Value of Default ____

- <u>W</u>:
 - The government is in financial autarky forever
 - No saving by households (expect 100% tax on assets)
 - o No consumption inequality among the old
- Cost of default: Disruption of asset markets
 - Cannot borrow from foreign to smooth (relevant with shocks)
 - $\circ~$ No saving by households \Rightarrow worse efficiency-equality trade-off
- W: Limit of a finite-horizon equilibrium

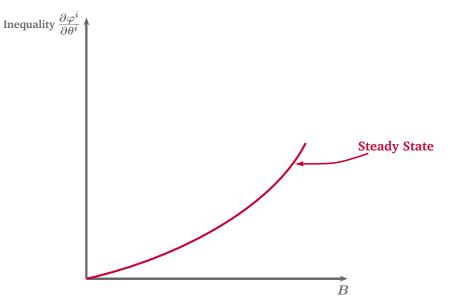
Optimal Policy Problem

Government chooses $\{C_{t,0},C_{t-1,1},Y_t\}_{t=0}^{\infty}$ to

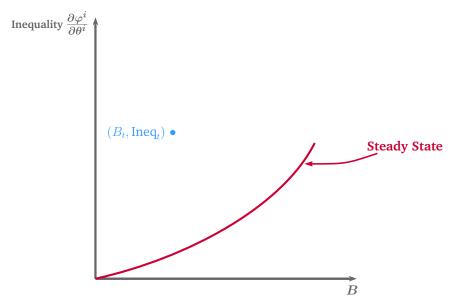
$$\max \frac{\beta}{\hat{\beta}} \left[\sum_i \mu^i \alpha^i \log(\alpha_0^i + P) \right] + \sum_{t=0}^{\infty} \hat{\beta}^t U^p(C_{t,0}, C_{t,1}, Y_t)$$

subject to

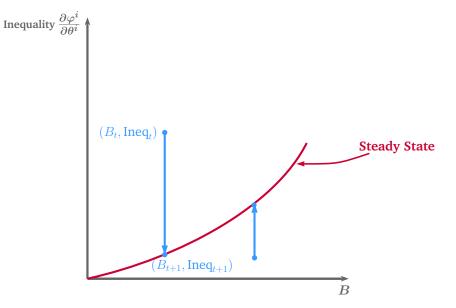
$$\begin{split} B_0 + \sum_{t=0}^{\infty} \frac{1}{(1+r^*)^t} \left[C_{t-1,1} + C_{t,0} + G_t \right] \leqslant \sum_{t=0}^{\infty} \frac{1}{(1+r^*)^t} Y_t \\ \frac{1}{\hat{\beta}} U_1^p (C_{t-1,1}; Y_{t-1}) + \sum_{s=t}^{\infty} \hat{\beta}^{s-t} U^p (C_{s,0}, C_{s,1}, Y_s) \geqslant \underline{W} \end{split}$$

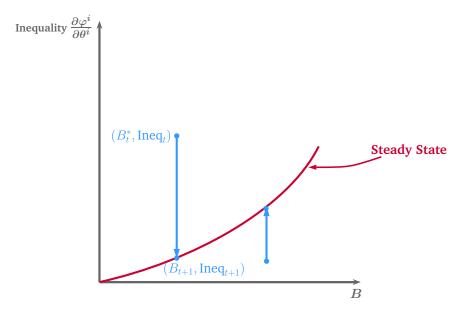

given $(B_0, \{a_0^i\})$

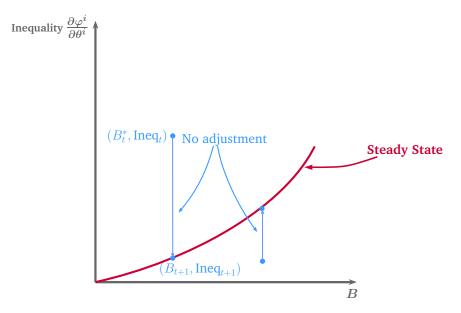
OPTIMAL POLICY WITH COMMITMENT


Optimal Policy with Commitment and $\hat{\beta}(1+r^*)=1$ _____

- Constant consumption and output over time
- Constant inequality except among initial old
- Roll over external debt; no adjustment of debt, $CA_t = \frac{r^*}{1+r^*}B_0$


Optimal Policy with Commitment and $\hat{\beta}(1+r^*)=1$ _____


Optimal Policy with Commitment and $\hat{\beta}(1+r^*)=1$ _____

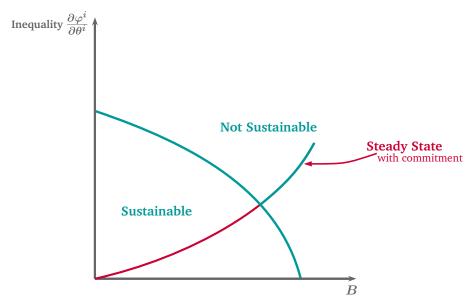

Optimal Policy with Commitment and $\hat{\beta}(1+r^*)=1$ _____

Optimal Policy with Commitment and $\hat{\beta}(1+r^*)=1$

Optimal Policy with Commitment and $\hat{\beta}(1+r^*)=1$

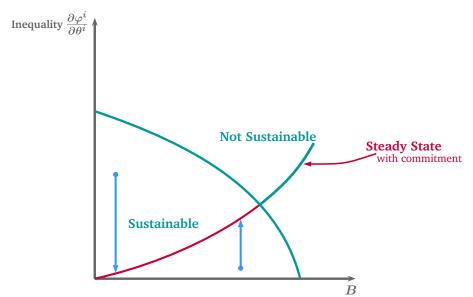
OPTIMAL POLICY WITHOUT COMMITMENT

Two Incentives to Default

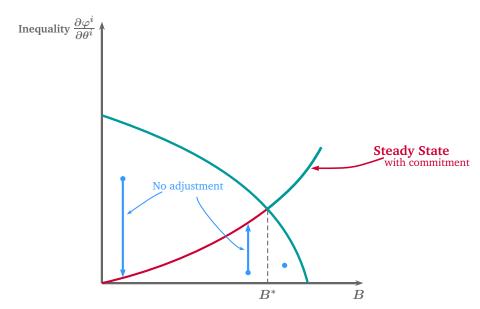

- Foreign: Reduce payments to foreigners
- Domestic: Consumption inequality among the old is undesirable; always desirable 100% tax on assets for the current old and redistribute via pension

Higher incentive to default if:

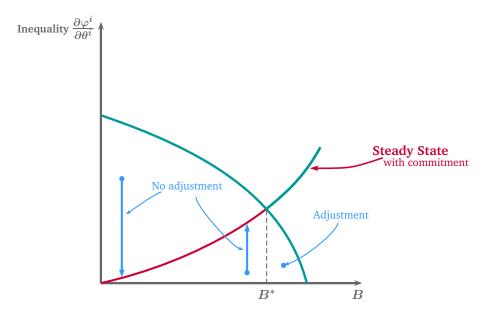
- High foreign debt
- Wealth inequality is high


$$\frac{\beta}{\hat{\beta}}[\log C_{-1,1} + \sum_i \mu^i \alpha^i \log \phi_{t-1}^i] + \sum_{t=0}^\infty \hat{\beta}^t U^p(C_{0,t}, C_{1,t}, Y_t; \Phi_t) \geqslant \underline{W}$$

Best Sustainable Allocations with $\hat{\beta}(1+r^*) = 1$ _____



DGS


Best Sustainable Allocations with $\hat{\beta}(1+r^*)=1$ _____

Best Sustainable Allocations with $\hat{\beta}(1+r^*)=1$ _____

Best Sustainable Allocations with $\hat{\beta}(1+r^*)=1$ _____

Solution ____

- \bullet Problem has many dimensional states $\left(B,\{\mathfrak{a}^i\}\right)$
- For $t \ge 1$, aggregates and inequality for generations born at $s \ge t$ are recursive in B
- Problem at t=0 choses aggregates for t=0, foreign debt and inequality for current generation given $\left(B_0,\{a_0^i\}\right)$

• State variable: Value of foreign debt B

$$\begin{split} V(B) = \max_{C_0, C_1, Y, V'} \quad &\frac{\beta}{\hat{\beta}} log C_1 + log \, C_0 + \psi \, log (1-Y) \\ -(1+\psi+\beta) H(Y) + \hat{\beta} V(B') \end{split}$$

subject to

$$C_0 + C_1 + G + B \leqslant Y + \frac{1}{1 + r^*} B'$$

 $V(B') - \frac{\beta}{\hat{\beta}} H(Y) \geqslant \underline{W}$

• Value for current gov't is

$$W(B, Y_{-}) = V(B) - \frac{\beta}{\hat{\beta}}H(Y_{-})$$

• State variable: Value of foreign debt B

$$\begin{split} V(B) = \max_{C,Y,V'} & \quad \kappa log C + \psi \, log (1-Y) \\ -(1+\psi+\beta) H(Y) + \hat{\beta} V(B') \end{split}$$

subject to

$$\begin{array}{rcl} C+G+B & \leqslant & Y+\frac{1}{1+r^*}B'\\ \\ -\frac{\hat{\beta}}{\beta}H(Y)+V(B') & \geqslant & \underline{W} \end{array}$$

• Rewrite the recursive problem as

$$V(B^*) = \max_{Y,B'} \ \nu(Y + \tfrac{1}{1+r^*}B' - B - G,Y) + \hat{\beta}W(Y,B')$$

subject to

$$W(Y, B') \geqslant \underline{W}$$

• Rewrite the recursive problem as

$$V(B^*) = \max_{Y,B'} \ \nu(Y + \tfrac{1}{1+r^*}B' - B - G,Y) + \hat{\beta}W(Y,B')$$

subject to

$$W(Y, B') \geqslant \underline{W}$$

• Optimality requires:

$$MRS_{Y,B'}^{current \ gov't} = \frac{\frac{\partial}{\partial Y} \nu}{\frac{\partial}{\partial B'} \nu} = \frac{\frac{\partial}{\partial Y} W}{\frac{\partial}{\partial B'} W} = MRS_{Y,B'}^{future \ gov't}$$

Downward adjustment of Debt ___

• Effect of current debt on trade-off between debt and inequality

$$0 < \frac{\partial}{\partial B} \frac{\frac{\partial}{\partial Y} \nu}{\frac{\partial}{\partial B'} \nu}$$

Downward adjustment of Debt __

• Effect of current debt on trade-off between debt and inequality

$$0 < \frac{\partial}{\partial B} \frac{\frac{\partial}{\partial Y} \nu}{\frac{\partial}{\partial B'} \nu} \Rightarrow 0 < \frac{\partial}{\partial B} \frac{\frac{\partial}{\partial Y} W}{\frac{\partial}{\partial B'} W}$$

Downward adjustment of Debt _

• Effect of current debt on trade-off between debt and inequality

$$0 < \frac{\partial}{\partial B} \frac{\frac{\partial}{\partial Y} \nu}{\frac{\partial}{\partial B'} \nu} \Rightarrow 0 < \frac{\partial}{\partial B} \frac{\frac{\partial}{\partial Y} W}{\frac{\partial}{\partial B'} W}$$

 $\frac{\partial}{\partial Y}W$: cost of increasing inequality for the future government $\frac{\partial}{\partial B'}W$: cost of increasing debt for the future government

Downward adjustment of Debt _

• Effect of current debt on trade-off between debt and inequality

$$0 < \frac{\partial}{\partial B} \frac{\frac{\partial}{\partial Y} \nu}{\frac{\partial}{\partial B'} \nu} \Rightarrow 0 < \frac{\partial}{\partial B} \frac{\frac{\partial}{\partial Y} W}{\frac{\partial}{\partial B'} W}$$

 $\frac{\partial}{\partial Y}W$: cost of increasing inequality for the future government $\frac{\partial}{\partial B'}W$: cost of increasing debt for the future government

• Increasing current debt leads to higher cost of inequality relative to debt

Downward adjustment of Debt _

• Effect of current debt on trade-off between debt and inequality

$$0 < \frac{\partial}{\partial B} \frac{\frac{\partial}{\partial Y} \nu}{\frac{\partial}{\partial B'} \nu} \Rightarrow 0 < \frac{\partial}{\partial B} \frac{\frac{\partial}{\partial Y} W}{\frac{\partial}{\partial B'} W}$$

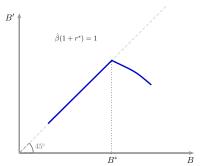
 $\frac{\partial}{\partial Y}W$: cost of increasing inequality for the future government $\frac{\partial}{\partial B'}W$: cost of increasing debt for the future government

• Increasing current debt leads to higher cost of inequality relative to debt ⇒ higher inequality and lower debt

Main Result: Policy function is hump-shaped __

Theorem

There exists B* such that:

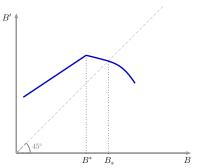

- for all $B < B^*$, B'(B) is increasing in B and the sustainability constraint is slack
- \bullet for all $B>B^*,\,B'(B)$ is decreasing in B and the sustainability constraint is binding

Main Result: Policy function is hump-shaped

Theorem

There exists B* such that:

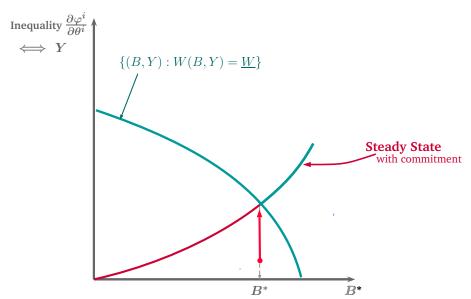
- for all $B < B^*$, B'(B) is increasing in B and the sustainability constraint is slack
- \bullet for all $B>B^*,\,B'(B)$ is decreasing in B and the sustainability constraint is binding



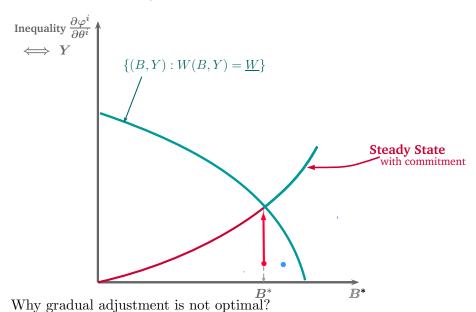
Main Result: Policy function is hump-shaped

Theorem

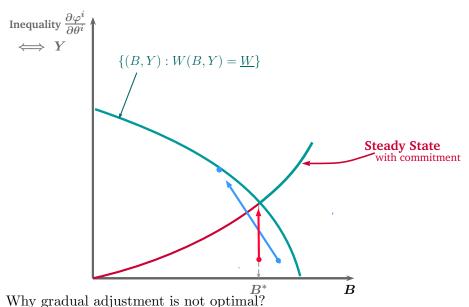
There exists B* such that:


- for all $B < B^*$, B'(B) is increasing in B and the sustainability constraint is slack
- \bullet for all $B>B^*,\,B'(B)$ is decreasing in B and the sustainability constraint is binding

Intuition: downward sloping policy function _____


- Current government's perspective: higher debt leads to a higher desired level of inequality
- Higher inequality has to be accompanied by lower debt in the future

Large Repayment/Austerity


Why gradual adjustment is not optimal? Pointial Economy of Sovereign Debt

Large Repayment/Austerity

DGS Political Economy of Sovereign Debt

Large Repayment/Austerity

Page Page 18

Gradual Adjustment - what goes wrong? _____

• Suppose $\hat{\beta}(1+r^*)=1$ and $B>B^*$.

Gradual Adjustment - what goes wrong? __

- Suppose $\hat{\beta}(1+r^*)=1$ and $B>B^*$.
- Suppose contrary to the prescription: $B' = B^*, Y = Y^*$

Gradual Adjustment - what goes wrong? _

- Suppose $\hat{\beta}(1+r^*)=1$ and $B>B^*$.
- Suppose contrary to the prescription: $B' = B^*$, $Y = Y^*$
- Higher interest payment: current consumption is lower than $C_0(B^*)$:
 - \circ Lower transfers: $T < T_0^*(B^*)$
 - $\circ \ \mathrm{Lower \ taxes:} \ \tau_l < \tau_l(B^*)$

Gradual Adjustment - what goes wrong? _

- Suppose $\hat{\beta}(1+r^*)=1$ and $B>B^*$.
- Suppose contrary to the prescription: $B' = B^*$, $Y = Y^*$
- Higher interest payment: current consumption is lower than $C_0(B^*)$:
 - \circ Lower transfers: $T < T_0^*(B^*)$
 - $\circ \ \mathrm{Lower \ taxes:} \ \tau_l < \tau_l(B^*)$
- \bullet At this point, the current government is very poor \to can tolerate more inequality

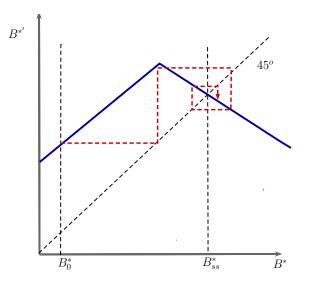
Gradual Adjustment - what goes wrong? _

- Suppose $\hat{\beta}(1+r^*)=1$ and $B>B^*$.
- Suppose contrary to the prescription: $B' = B^*$, $Y = Y^*$
- Higher interest payment: current consumption is lower than $C_0(B^*)$:
 - \circ Lower transfers: $T < T_0^*(B^*)$
 - $\circ \ \, \mathrm{Lower} \,\, \mathrm{taxes:} \,\, \tau_{l} < \tau_{l}(B^{*})$
- At this point, the current government is very poor \rightarrow can tolerate more inequality
- lowering taxes/transfers and having the same interest payment makes the current government better off
- \bullet current government is willing to tolerate even less consumption by paying out \to ensures there is no default in the future

Recap_

When gov't has high external debt (and low inequality so no default)

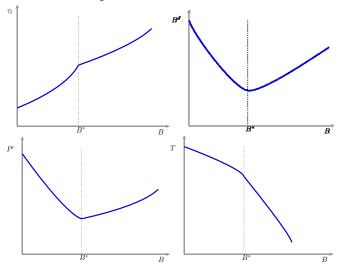
- Debt cannot be rolled over so reduction needed
- Gov't better off by
 - Allowing for larger inequality (and so increase output)
 - Reducing further foreign debt (to ensure credibility of plan)
 - Reducing distortions and allow for high inequality better instrument than debt to increase resources available today


Who is Paying for the Adjustment? _

- Burden of adjustment is on current generations:
 - Old receive low pensions
 - Young receive low consumption, high income inequality
- Compensated by higher future values:
 - Young promised high pension payments
 - Low income inequality for future generations
 - $\circ\,$ Front-loading of consumption if $\hat{\beta}(1+r^*)<1$
 - \rightarrow Accumulation of external gov't debt

Who is Paying for the Adjustment? _

- Burden of adjustment is on current generations:
 - Old receive low pensions
 - Young receive low consumption, high income inequality
- Compensated by higher future values:
 - Young promised high pension payments
 - Low income inequality for future generations
 - \circ Front-loading of consumption if $\hat{\beta}(1+r^*)<1$
 - \rightarrow Accumulation of external gov't debt
 - \Rightarrow This gives rise to cycles


Cycles when $\hat{\beta}(1+r^*) < 1$

Policies Over the Cycle _____

- Transfers and pensions are decreasing in external debt
- Taxes are increasing in external debt
- Output and inequality are increasing in external debt
- Domestic debt increases with external debt

Policies Over the Cycle

Policy Functions

Summing-up ___

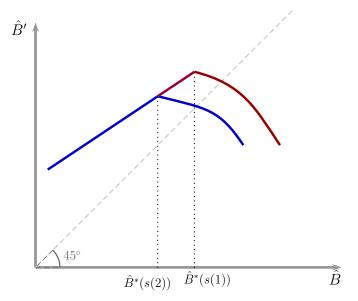
In the best outcome when government cannot commit and has redistributive motives, fiscal consolidations are characterized by

- Large adjustment in foreign debt position
- Increase in inequality
- Repatriation of gov't debt
- Burden on current generation (even if $\hat{\beta}(1+r^*) < 1$)
- Cyclical policy is optimal if $\hat{\beta}(1+r^*) < 1$

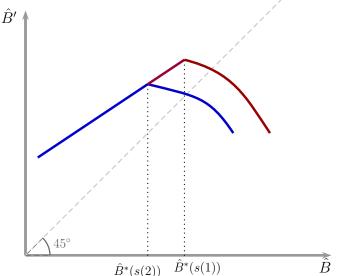
Assumptions ___

- Imperfect redistribution Details
 - Absence of type-specific transfers critical
- OLG structure and market incompleteness
 - Infinite horizon + heterogenous agents + complete markets economy behaves like representative agent economy
 - tax and inequality smoothing
- Preferences
 - Results robust to different preferences
 - Analytical results for GHH GHH
 - Numerical results for BGP preferences

Extensions

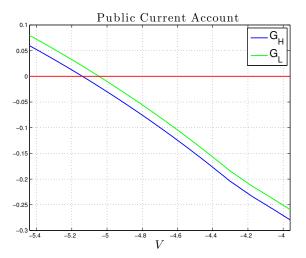

- Economy with shocks Details
 - Same logic
 - Justification for $\hat{\beta}(1+r^*) < 1$
 - Difference wrt RA economy a la Thomas-Worrall: Repayment can happen also in bad fiscal time
- Political economy model Details

STOCHASTIC ECONOMY


Shocks

- Suppose G_t : i.i.d. where $G_t \in \{G_L < G_H\}$
- Worst equilibrium is the same as before: $\underline{W}_{L} > \underline{W}_{H}$.
- Complete market for households and government
- Assumption: $\hat{\beta}(1+r^*) < 1$
- Why impatience?
 - Continuum of identical countries
 - Lack of commitment in each country
 - Market clearing interest rate is low:
 - Countries oversave to avoid default/reneging on tax policies
 - Alvarez and Jermann (2000), Aiyagari(1994)

Hump-shaped Policy Function



Overshooting More Pronounced When G Low _

 $\hat{B}^*(s(2)) \quad \hat{B}^*(s(1)) \qquad \qquad B$ In general equilibrium: Transition from highest value of external debt to negative external debt

Net Repayment Also When G High

When government is highly indebted: Positive public current account also when G is high \bullet Back

POLITICAL ECONOMY MODEL

Political Economy Model _

- So far policies are set by fictitious gov't that attaches weights to future generations
- Results survive if policies are set in best interest of generations currently alive only
 - Burden of adjustment on current young
 - Even if current gov't attaches zero weight on future generations
 - o Total debt is cyclical
 - Foreign debt is cyclical (sufficient condition)

Political Economy Model _

- Policies outcome of political game between two short lived parties: Probabilistic Voting a la Lindbeck and Weinbull (1987)
 - Stage 1: Each party proposes a policy: default, taxes, transfers, pensions
 - Stage 2: households receive ideological bias shock and vote. winner: majority of votes
 - $\circ~$ Stage 3: Policies are implemented

Political Equilibrium

- Utility of agent i from policy by party j: $u_{t,j}^i + \varepsilon_{t,j}^i$ $\varepsilon_{t,j}^i$ uniform
- Probability of winning for party j:

$$\sum_i \mu^i F_o^i (u_{t-1,1,j}^i - u_{t-1,1,-j}^i) + \sum_i \mu^i F_y^i (u_{t,j}^i - u_{t,-j}^i)$$

• Symmetric equilibrium + uniformity assumption: Government maximizes:

$$\omega \sum_{i} \alpha^{i} \mu^{i} u_{t-1,1}^{i} + \sum_{i} \alpha^{i} \mu^{i} u_{t}^{i}$$

ullet Strategic interaction: pensions chosen by government at t+1 affect government's choice at t

Subgame Perfect Equilibrium Outcomes _____

• Everything the same as before except sustainability constraint:

$$\omega U_1^p(C_{t,1},Y_t) + \nu_{t+1} \geqslant \underline{\nu}$$

where

$$\nu_t = U^p(C_{t,0},C_{t,1},Y_t)$$

and \underline{v} is the value of worst equilibrium for current government

Subgame Perfect Equilibrium Outcomes ____

• Everything the same as before except sustainability constraint:

$$\omega U_1^p(C_{t,1},Y_t) + \nu_{t+1} \geqslant \underline{\nu}$$

where

$$v_t = U^p(C_{t,0}, C_{t,1}, Y_t)$$

and \underline{v} is the value of worst equilibrium for current government

- Consider two SPE outcomes:
 - Selection in spirit of Eaton-Gersovitz
 - If gov't reneges on debt or pension payments reversion to worst equilibrium
 - Best SPE

Eaton-Gersovitz Equilibrium

- State: (\mathbb{B}, z) where $\mathbb{B} = (\mathbb{B}, \{a^i\}, P^e), z$ indicator of past default
- If z = 1: value for the current government is \underline{V}
- If z = 0: $V(\mathbb{B}, 0) = \max\{v(\mathbb{B}), \underline{V}\}$ where

$$\nu\left(\mathbb{B}\right) = \max_{\left(P,C_{0},Y,\mathbb{B}'\right)} \omega \sum_{i} \mu^{i} \alpha^{i} \log\left(\alpha^{i} + P\right) + U^{p}(C_{0},C_{1},Y)$$

subject to

$$\begin{split} \sum_{i} \mu^{i} \left(\alpha^{i} + P \right) + C_{0} + B + G & \leq & Y + \frac{1}{1 + r^{*}} B' \\ \bar{\nu} \left(\mathbb{B}' \right) \geqslant \underline{V}, & P \geqslant P^{e} \\ C_{1} &= \left(\sum_{i} \mu^{i} \alpha^{i}' + \bar{P} \left(\mathbb{B}' \right) \right), & \alpha^{i}' + \bar{P} \left(\mathbb{B}' \right) = \phi^{i} \left(Y \right) C_{1} \end{split}$$

Eaton-Gersovitz Equilibrium

- State: (\mathbb{B}, z) where $\mathbb{B} = (\mathbb{B}, \{a^i\}, P^e), z$ indicator of past default
- If z = 1: value for the current government is \underline{V}
- If z = 0: $V(\mathbb{B}, 0) = \max\{v(\mathbb{B}), \underline{V}\}$ where

$$\nu\left(\mathbb{B}\right) = \max_{\left(P,C_{0},Y,\mathbb{B}'\right)} \omega \sum_{i} \mu^{i} \alpha^{i} \log\left(\alpha^{i} + P\right) + U^{p}(C_{0},C_{1},Y)$$

subject to

$$\begin{split} \sum_{i} \mu^{i} \left(\alpha^{i} + P \right) + C_{0} + B + G & \leqslant & Y + \frac{1}{1 + r^{*}} B' \\ \bar{\nu} \left(\mathbb{B}' \right) \geqslant \underline{V}, & P \geqslant P^{e} \\ C_{1} = \left(\sum_{i} \mu^{i} \alpha^{i\prime} + \bar{P} \left(\mathbb{B}' \right) \right), & \alpha^{i\prime} + \bar{P} \left(\mathbb{B}' \right) = \phi^{i} \left(Y \right) C_{1} \end{split}$$

For $t\geqslant 1$ outcomes recursive in "total debt": $\hat{B}=B+\sum_i \mu^i \alpha^i +P^e$

Auxiliary Problem _

• For $t \geqslant 1$

$$w\left(\hat{B}\right) = \max_{C_0, Y, C_1', B'} U^p(C_0, C_1, Y)$$

subject to

$$\begin{split} \hat{B} + C_0 + G &\leqslant Y + \frac{B'}{1 + r^*} \\ \omega \left[H \left(Y \right) + \log \left(C_1' \right) \right] + \omega \left(B' + C_1' \right) &\geqslant \underline{V} \end{split}$$

• At t = 0

$$\nu\left(\mathbb{B}\right) = \max_{P \geqslant P^e} \omega \sum_{i} \mu^{i} \alpha^{i} \log\left(\alpha^{i} + P\right) + w(B + \sum_{i} \mu^{i} \alpha^{i} + P)$$

• Sustainability constraint similar to normative benchmark

Main Result: Overshooting and Cycles _

Theorem

 $\hat{\mathbf{B}}'(\hat{\mathbf{B}})$ is decreasing.

The theorem implies that:

- Inherited and issued debt are substitutes
- Burden of adjustment on current young
 - $\circ~$ Even if current gov't attaches zero weight on future generations
- Total debt is cyclical
- Foreign debt is cyclical when ω is large enough

Similar result can be proven for best SPE Details Back

Conclusion .

- Fiscal and Redistributive policies when gov't lacks commitment
 - $\circ\,$ Interaction between domestic and for eign motive to default
- Optimal fiscal consolidation involves cyclical behavior of external debt and austerity type adjustments
- Consistent with
 - Populist cycles in Latin America/large low-frequency swings in NFA
 - Recent experience of Southern Europe

EXTRA SLIDES

Government Value of Default

$$(1 - \hat{\beta})\underline{W} = \max_{\text{policy, all'n, prices}} \frac{1}{\hat{\beta}} \sum_{i} \alpha^{i} \mu^{i} \beta u(c_{1}^{i}) + \sum_{i} \alpha^{i} \mu^{i} u(c_{0}^{i}, y^{i}; \theta^{i})$$

subject to

- Policy, all'n, prices constitute a competitive equilibrium with no assets trade:
 - Default on government debt: $B_0^* = 0$, $a_0^i = 0 \Rightarrow c_1^i = P$ for all i
 - Young households do not save anticipating default next period: $a_1^i = 0$

Government Value of Default ____

$$(1-\hat{\beta})\underline{W} = \max_{\mathrm{policy, \ all'n, \ prices}} \frac{1}{\hat{\beta}} \sum_{i} \alpha^{i} \mu^{i} \beta u(c_{1}^{i}) + \sum_{i} \alpha^{i} \mu^{i} u(c_{0}^{i}, y^{i}; \theta^{i})$$

subject to

$$c_1^{\mathfrak{i}} = P$$

the static implementability constraint:

$$u_c^{\mathfrak{i}}c_0^{\mathfrak{i}}+u_y^{\mathfrak{i}}y^{\mathfrak{i}}=T$$

and the resource constraint

$$\sum_i \mu^i c_1^i + \sum_i \mu^i c_0^i + G \leqslant \sum_i y^i$$

Period-0 Problem

$$W_0(B_0^*,\{\alpha_0^i\}) = \max \frac{\beta}{\hat{\beta}} \sum_i \mu^i \alpha^i \log((1-\tau_\alpha)\alpha_0^i + P) + V$$

subject to

$$\begin{split} &\frac{1}{\hat{\beta}}U_1^p(C_{1,-};\Phi_{-1})+V\geqslant\underline{\mathcal{W}}\\ &\hat{B}(V)-P-(1-\tau_\alpha)\sum_i\mu^i\alpha_0^i=B_0^* \end{split}$$

• Initial external Gov't Debt: B* Pack

Role of Imperfect Redistribution ____

- Inability to perfectly redistribute resources across households critical
- \bullet Suppose gov't had access to type-dependent transfers $\{T^i\}$
- In this case $\alpha^i u_c^i = \alpha^j u_c^j \to \{\phi^{i*}\}\$
- Sustainability constraint is

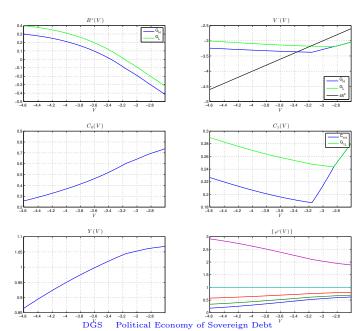
$$\frac{\beta}{\hat{\beta}}[logC_1 + \sum_i \mu^i \alpha^i \log \phi^{i*}] + V' \geqslant \underline{W}$$

 \rightarrow once sustainability binds C_1 and V' independent of state (as in Thomas-Worrall, 1998)

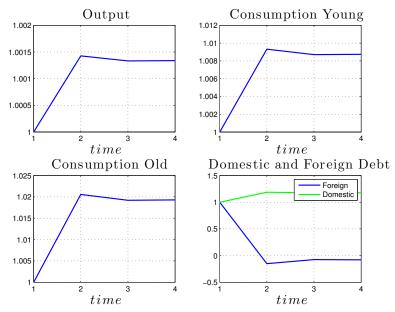
→ Back

Role of Preferences

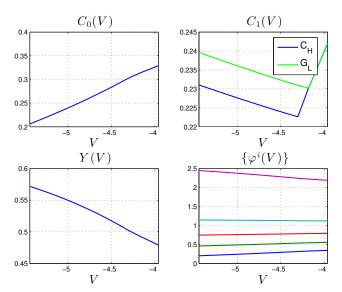
- With log-log preferences:
 - \circ Wealth effect: Y(V) is decreasing in V
 - \circ Key factor: inequality is decreasing in V
- Can prove the same result for GHH:


$$\log\left(c_0 - \nu\left(\frac{y}{\theta}\right)\right) + \beta\log c_1$$

- \circ Y(V) is increasing in V
- \circ Key factor: inequality is decreasing in V



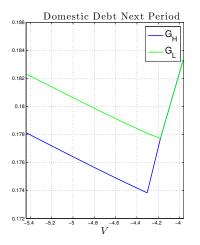
▶ Back

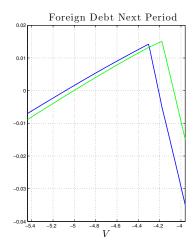

Numerical Example with GHH: Allocations

Fiscal Consolidation Dynamics with GHH



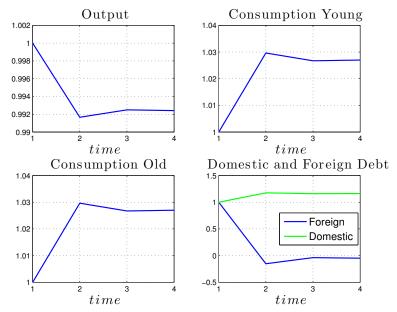
Allocations with Log-Log

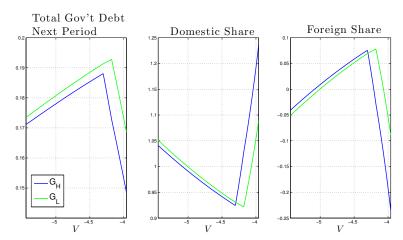

DGS Political Economy of Sovereign Debt


Policies with Log-Log

DGS Political Economy of Sovereign Debt

Repatriation of Government Debt _




▶ Total Debt and Shares

▶ Details

Fiscal Consolidation Dynamics

Repatriation of Government Debt ___

Repatriation of Government Debt ____

When there is repayment:

- Gov't debt held by foreign investors goes from high to low
- Gov't debt held domestically goes from low to high
 - Under our preferred decentralization:

$$\begin{split} B(V,G) &=& \sum_i \mu^i \alpha^i(V,G) = \sum_i \mu^i [c^i(V,G) - P(V,G)] \\ &=& C_1(V,G) - c_1^1(V,G) = [1-\phi^1(V,G)]C_1(V,G) \end{split}$$

$$\circ$$
 $C_1 \uparrow \text{ and } \phi^1 \downarrow \Rightarrow B \uparrow$

Best SPE

$$\max \frac{1}{\hat{\beta}} U_1^p(C_{1,-1},\Phi_{-1}) + \sum_{t=0}^{\infty} \hat{\beta}^t U^p(C_{t,0},C_{t,1},Y_t)$$

subject to

$$\begin{split} B_0^* + \sum_{t=0}^\infty \frac{1}{(1+r^*)^t} \left[C_{t-1,1} + C_{t,0} + G_t \right] \leqslant \sum_{t=0}^\infty \frac{1}{(1+r^*)^t} Z Y_t \\ \omega U_1^p(C_{t-1,1}, Y_{t-1}) + U^p(C_{t,0}, C_{t,1}, Y_t) \geqslant \underline{\nu} \end{split}$$

given Φ_{-1} , B_0^*

Main Result _____

 $\bullet\,$ Problem is recursive in ν_t

Main Result

 \bullet Problem is recursive in ν_t

Theorem

Suppose that $\hat{\beta}(1+r^*) \leqslant 1$. Then there exists v^*

- 1. When $\nu > \nu^*$, $\nu'(\nu)$ is increasing
- 2. When $\nu < \nu^*$, $\nu'(\nu)$ is decreasing
- \bullet Total debt is cyclical in ν
- \bullet For eign debt is cyclical only when ω is large enough
- Similar property holds for a class of Markov equilibria:
 - Assumption: future governments cannot renege on pensions (triggers punishment)

