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Motivation

• Should we allow experts to collude before providing advice?

• Do we want people to observe other’s opinions before providing their
own?

• Can we improve the informativeness of communication online by only
providing summary statistics of opinions?

The Question We Answer

What transfer-free mechanism maximizes the payoff of a DM receiving
advice from two identically biased experts with independent information?



Motivation

• Should we allow experts to collude before providing advice?

• Do we want people to observe other’s opinions before providing their
own?

• Can we improve the informativeness of communication online by only
providing summary statistics of opinions?

The Question We Answer

What transfer-free mechanism maximizes the payoff of a DM receiving
advice from two identically biased experts with independent information?



The Model

Players: 2 senders, 1 receiver

Each sender i ∈ {1, 2} has private type si ∈ [−1, 1]

• s1 ⊥⊥ s2, and si ∼ F.

Payoff Relevant State variable: ω = s1+s2
2

Receiver Chooses: a ∈ {0, 1}

Sender payoff: a(ω + b), with b > 0

Receiver payoff: aω



The Model: Timing and Communication

1 Mechanism designer commits to σ(s̃1, s̃2) ∈ [0, 1]
• The probability of recommending a = 1 given reports (s̃1, s̃2).

2 Senders simultaneously report their types to the mechanism.

3 The mechanism makes a recommendation to the receiver.

4 Receiver chooses action a ∈ {0, 1}.



Receiver and Sender First-Best Allocations
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Communication Design Problem

Maximize Expected Receiver Payoff via a Transfer Free Direct Mechanism

σ(s1, s2) ∈ [0, 1] is the probability of a = 1 given reports (s1, s2).

max
σ

E[aω] s.t.

1 Receiver Obedience; and
2 Sender Incentive Compatibility for each i:

Pr(1|σ, si) [E[s−i | 1, si] + si + 2b] ≥ Pr(1|σ, ŝi) [E[s−i | 1, ŝi] + si + 2b] , ∀si, ŝi
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Main Result

We make two assumptions:

(i.) Receiver obeys collusive advice: E[ω|s1 + s2 ≥ −2b] ≥ 0.
(ii.) F(s) + 2bf (s) is weakly increasing in s for all s ∈ [0, 1]

Theorem 1
Under (i.) and (ii.), a symmetric mechanism is optimal for the receiver if and only if
it achieves the senders’ first best allocation.

Proof (Sketch of Method):

• Problem with randomized recommendation is a linear programming
problem in L∞([−1, 1]2).

• Show sender’s first best solves a relaxed version of this problem by
constructing appropriate Lagrange multipliers.



Monotonic Mechanisms

We only provide the intuition for monotonic mechanisms in this talk.

A mechanism is monotonic iff

si > s′i ⇒ σ(si, s−i) ≥ σ(s′i , s−i)

If a monotonic mechanism satisfies IC and obedience then either it is:

1 The equilibrium of a collusive game; or
• Sender’s share information before sending messages to the receiver.

2 An equilibrium of a simultaneous move cheap-talk game
• Each sender sends a message simultaneously to the receiver.



Collusive Equilibrium
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Independent Equilibrium: 2 Messages, mi ∈ {L, H}

Sender Strategy:
mi = H⇔ si ≥ ŝ

ŝ is the type who is indifferent between recommending L and H:

E[s|s ≥ ŝ] + ŝ + 2b = 0

Receiver:

a = 1⇔ m1 = m2 = H

If this is an equilibrium, then:

• E[s|s > ŝ] > 0
• −1 < ŝ < −2b



Independent Equilibrium: 2 Messages, mi ∈ {L, H}



Collusive vs. Independent
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Collusive vs. Independent: Uniform si ∼ U[−1, 1]
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Collusive vs Independent: |M| > 2

As b→ 0:

• The number of messages (receiver’s payoff) increases in the independent
equilibrium.

• Receiver preferred cheap-talk equilibrium approaches first best.

• The senders’ first best (collusive) approaches the receiver’s first best.

The uniform case can illustrate why the collusive outcome wins the race.



Collusive vs. Independent: Uniform with |M| = 3
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Collusive vs. Independent: General F
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Summary and Extensions

In this setting a laissez-faire approach is optimal:

• Let your biased experts talk with each other before proffering advice.
• Allow the free sharing of opinions between agents online.

Further work, extend results to cases of:

• Correlated types.
• Differing biases.
• Larger number of senders.
• Richer action spaces.


