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Abstract

We study optimal rating design under moral hazard and strategic manipulation. An in-

termediary observes a noisy indicator of e�ort and commits to a rating policy that shapes

market beliefs and pay. We characterize optimal ratings via concavi�cation of a gain func-

tion. Optimal ratings depends on interaction of e�ort and risk: for activities that raise tail

risk, optimal ratings exhibit lower censorship, pooling poor outcomes to insure and encour-

age risk-taking; for activities that reduce tail risk, upper censorship increases penalties for

negligence. In multi-task environments with window dressing, less informative ratings deter

manipulation. In redistributive test design, optimal tests exhibit mid censorship.
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1 Introduction

Many markets rely on information disclosure or ratings to facilitate trade and incentivize quality

provision. ESG rating agencies aim to incentivize companies to improve their environmental and

social impact. Online platforms such as Amazon, Airbnb, Upwork, and eBay design reputation

systems to incentivize and signal providers’ quality. Standardized tests communicate student

ability to universities. In each case, an intermediary observes signals about agent behavior and

must decide how to convey this information to a market that rewards agents based on perceived

quality. A fundamental challenge arises: agents strategically respond to rating policies, and the

information disclosed shapes the incentives. Additionally, these incentives can lead to window-
dressing activities to manipulate the ratings.

Despite the ubiquity of these systems in markets su�ering from moral hazard, several core

theoretical questions are yet to be answered: What are the fundamental trade-o�s in designing

rating systems when participants can anticipate and react to them? How should an intermediary

design information structures to account for window-dressing incentives? This paper answers

these questions by developing a theoretical framework for optimal rating design under moral

hazard, utilizing a variant of the career concerns model introduced by Holmström (1999).

Our model features an agent (e.g., a company seeking an ESG rating or a seller on eBay) who

takes costly actions that create value for a competitive market. These actions also generate a noisy

indicator observed by an intermediary (e.g., an ESG rating �rm or an online platform) which must

then decide how to convey this information via a rating. The market, in turn, pays the agent its

expected value based on the signal and its belief about the agent’s action.

Our primary objective is to �nd the optimal information structure to maximize a �exible wel-

fare function for the intermediary. This function can target a particular action or a particular

distribution of payo�s for the agent, capturing environments where market values do not fully

internalize the social value of actions—such as the positive externalities of ESG activities—or

where a platform has concerns for fairness or redistribution.
1

Our paper consists of two parts: In the �rst part, we provide the theoretical foundations of our

analysis, and in the second part, we provide general properties of optimal ratings and apply the

method to a few practical applications. The main technical challenge in formulating the opti-

mal rating problem is the interplay between information structures and the agent incentive con-

straints. We introduce the concept of interim prices—the agent’s interim expectation of market’s

1
Since Holmström (1999), it is well known that the implicit incentives provided by career concerns do not nec-

essarily lead to e�cient e�ort levels because they fail to fully internalize the social bene�t of the agent’s action.

This externality is also present in our model and the intermediary’s objective can be thought of as addressing such

externalities.
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posteriors—as the su�cient statistic that determines incentives from the agent’s perspective.
2

This object, which can be interpreted as the agent’s second-order belief, allows us to transform

the problem of choosing an information structure into a tractable mechanism design problem. In

Proposition 1, we show that when these interim prices are comonotone with market values, then

a price schedule can be implemented by some rating if and only if they are a mean-preserving

contraction of the market values. This implies that we can cast the problem of rating design as a

standard moral hazard problem with transfers subject to a majorization constraint.

With this result in hand, in Theorem 1, we show that optimal ratings can be characterized

through concavi�cation of a gain function in the quantile space. This gain function depends

both on the distributional motives of the intermediary and the local e�ect of the agent’s action

on the quantile distribution of the indicator (holding �xed market beliefs). The concavi�cation

approach provides a sharp characterization: regions where the gain function coincides with its

concave envelope correspond to full information disclosure, while regions where concavi�cation

requires linear interpolation correspond to pooling. Thus, the optimal information structure is a

deterministic monotone partition of the indicator space. Intuitively, the intermediary either fully

reveals the indicator on some regions or pools contiguous intervals—a sharp foundation for the

prevalence of coarse, threshold-based rating systems.

The second part of the paper applies this framework to derive general properties of optimal rat-

ings and how they depend on the agent’s technology and the intermediary’s objective. When the

intermediary’s objective is to maximize e�ort (absent distributional motives), the design problem

reduces to �nding the rating that achieves the highest level of e�ort. Under the canonical Mono-

tone Likelihood Ratio Property (MLRP) assumption in the moral hazard literature, we show that

the gain function in this case is concave and as a result full information disclosure is optimal.

However, many economically relevant activities violate MLRP in systematic ways. Innovative

activities often increase both upside potential and downside risk, i.e., R&D e�ort can lead to break-

throughs or failures. Conversely, maintenance activities typically reduce variance through more

consistent outcomes. To capture these patterns, we introduce two new distributional properties:

the expanding likelihood ratio property (ELRP), where increased e�ort expands the distribution’s

tails, and the compressing likelihood ratio property (CLRP), where increased e�ort compresses

outcomes toward the center. Under ELRP, optimal ratings take the form of lower censorship pro-

viding insurance against downside risk to encourage risk-taking. Under CLRP, optimal ratings

are upper censorship, pooling high realizations while revealing low ones, which punishes poor

outcomes and encourages variance-reducing e�ort.

We also characterize how distributional concerns interact with incentive provision. When in-

termediary places higher weights on lower realizations of the indicator, either because of fairness

2
See also Doval and Smolin (2024).
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concerns or redistributive objectives, the gain function may become non-concave even under

MLRP at low quantiles. Thus leading to optimality of lower-censorship ratings. This creates a

fundamental tension between maximizing e�ort and protecting agents from downside risk.

Finally, in Section 5, we use these insights to study a model of multi-tasking à la Holmström

and Milgrom (1991) and redistributive test design. In the multi-task model, the agent allocates

e�orts across productive tasks and window-dressing ones (actions that boost the indicator more

than market values) which di�erentially impact the observed indicator and market value. With

normal additive noise and a convex cost, this model is reducible to a single action model and thus

the results from Section 4 apply.
3

Since the additive normal model satis�es MLRP, fully revealing ratings implement the highest

level of e�ort. However, when window dressing makes those actions welfare-reducing, optimal

policy involves withholding information to temper manipulation incentives. Moreover, similar to

Holmström and Milgrom (1991), a decline in the cost of window dressing leads to further reduc-

tions in informativeness. We also study a nonreducible two-task example and show that when

window dressing disproportionately drives extreme indicator realizations, upper censorship can

be strictly welfare-improving relative to full revelation by disproportionately discouraging ma-

nipulative e�ort. Finally, we apply our framework to redistributive test design with heteroge-

neous students, showing that optimal tests may involve "mid censorship" to balance incentive

provision across student types.

Beyond its technical contributions, our analysis o�ers practical guidance for regulators and

rating system design. As data collection has intensi�ed, several institutions have formed around

using data to incentivize behavior which in turn has created incentives for manipulation and

window dressing (see for example Mayzlin et al. (2014)). Our results provide guidance on how

ratings should be designed in such environments supporting the observed heterogeneity in the

rating system. For example, platforms have adopted a variety of ratings: some platforms (such

as Shipt or Instacart) allow for low rating forgiveness and fresh start which could be interpreted

as lower censorship; others such as Airbnb have too many high ratings (see for example Zervas

et al. (2021)) that can be interpreted as upper censorship. Our results suggest these di�erences

may re�ect optimal responses to underlying di�erences in how e�ort a�ects outcome distribu-

tions. More broadly, the paper provides a toolkit for evaluating rating policies across domains—

from ESG certi�cation to educational testing to online marketplaces—by connecting observable

features of agent technology to the optimal structure of information disclosure.

3
Mathematically, this is equivalent to the set of equilibrium actions for arbitrary ratings having dimension one.
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1.1 Related Literature

Our paper is related to a few strands of the literature in information economics and mechanism

design. It is closely related to a recent literature that studies information design when strategic

behavior a�ects the state by the choice of the information structure (e.g., Frankel and Kartik

(2019), Ball (2025), and Perez-Richet and Skreta (2022)). In contrast with Ball (2025) and Frankel

and Kartik (2019), our mathematical result on second-order expectations allows us to study a

larger class of problems without any restrictions on information structures. Our analysis, thus,

identi�es both the precise shape of the optimal information structure and when it is optimal to

use uncertain rating systems. In our model, presence of window–dressing incentives is similar

to the falsi�cation model in Perez-Richet and Skreta (2022). The main di�erence with our setting

is the existence of noise in the ability of the agent to manipulate the signal observed by the

intermediary.

A related paper to ours is Boleslavsky and Kim (2020). They study a model of Bayesian persua-

sion with moral hazard, similar to ours, in which an agent chooses an e�ort level that a�ects the

distribution of the state, and a sender a�ects a receiver’s action using an information structure.

The papers di�er in terms of focus and technique. We focus on a career concern model where the

information structure only a�ects the agent’s incentive. Additionally, we use majorization tools

which allows us to work with larger state spaces.
4

From a technical perspective, our results are related to the new literature in information eco-

nomics that uses optimization under majorization constraints; Kleiner et al. (2021). Their solution

method uses the characterization of extreme points of the set of monotone functions that ma-

jorizes a certain function. Similarly, Bergemann et al. (2022a) and Bergemann et al. (2022b) use

the same strategy as our work to cast the problem in terms of quantiles and use concavi�cation to

derive optimal mechanisms. While their focus is on screening models with hidden information,

ours is closer to classic moral hazard.

Our paper is also related to the literature concerned with the problem of certi�cation and its

interactions with moral hazard: Albano and Lizzeri (2001), Zubrickas (2015), Onuchic and Ray

(2023), and Zapechelnyuk (2020). A notable contribution is that of Albano and Lizzeri (2001),

where the key assumption that the intermediary can charge an arbitrary fee schedule leads to an

indeterminacy between using transfers and ratings to implement desired outcomes. Zubrickas

(2015), Zapechelnyuk (2020), and Onuchic and Ray (2023) also study related problems, but they

focus on deterministic technologies where the agent’s e�ort deterministically translates into val-

ues for the market. In contrast and in our model, the presence of noise allows us to disentangle

4
Relatedly, a recent paper by Madsen et al. (2025) studies a moral hazard model with non–monetary incentives.

Our paper is related to their work to the extent that our agent is incentivized using ratings; a non–monetary instru-

ment.
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the indicator from market values which in turn leads to an ine�cient level of e�ort under full

information and enables us to study window dressing and manipulation incentives. Relatedly

and in the context of team production, Halac et al. (2021) show that uncertainty about a worker’s

compensation ranking in a team can remove low e�ort equilibria. Our result on how censorship

for some technologies can improve incentives can be regarded as the single agent version of their

result.
5

Finally, our paper complements the empirical literature on certi�cation and disclosure in markets

with asymmetric information, such as online platforms (e.g., Hui et al. (2023) and Nosko and

Tadelis (2015)), health insurance markets (Vatter (2025)), food labeling (Barahona et al. (2023)),

and ESG investing (Berg et al. (2022)). We contribute to this literature by developing theoretical

methods and general lessons for the optimal design of rating systems.

The remainder of the paper proceeds as follows. Section 2 presents the model and introduces

interim prices as the key analytical object. Section 3 derives our main characterization result

through concavi�cation of the gain function. Section 4 establishes general properties of optimal

ratings under alternative distributional assumptions, including MLRP, ELRP, CLRP, and redis-

tributive motives. Section 5 applies our framework to multi-task moral hazard with window

dressing and redistributive test design. Proofs are relegated to the Appendix.

2 A Model of Moral Hazard

In this section, we describe our basic model of rating design and provide some preliminary anal-

ysis of the restrictions implied by the fact that incentives are provided through ratings.

We are interested in settings in which an intermediary observes some information about an

agent’s chosen actions and decides how to convey this information to a competitive market,

henceforth “the market,” who then pays its posterior mean as a price to the agent.

More speci�cally, the agent exerts an e�ort vector a ∈ A ⊂ RN
at a cost c(a). This action

generates a random outcome (v, y) ∈ R2
, where v represents the value of the output to the market

and y is a noisy indicator observed by the intermediary. We denote the cumulative distribution

function of the indicator y conditional on action a by G(y|a).

The market consists of competitive buyers who value the agent’s output at v. However, the

market observes neither the true value v nor the agent’s action a directly. Instead, it forms expec-

tations based on information provided by the intermediary. If the market observes the indicator

5
Ali et al. (2022) study a model with adverse selection (i.e., exogenous state), where optimal disclosure involves

uncertainty, but it is a way of uniquely implementing an intermediary’s desirable outcome.
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y and holds a belief â regarding the agent’s action, the expected value of the output is given by:

v(y; â) = E[v | y, a = â]

We refer to v (y; â) as market values, i.e., the most informative assessment of the valuation of the

market. Throughout the paper we impose the following monotonicity assumption:

Assumption 1. For all market beliefs â, the market value v (y; â) is increasing in the indicator y.

This assumption states that market values are ranked based on the values of the indicator. With-

out any other assumption on the distribution function G (y|a), e.g., increasing in FOSD, MLRP,

this assumption is innocuous as one can always relabel the values of the indicator according to

the market values. While our main characterization results – Proposition 1 and Theorem 1 – hold

without Assumption 1, we maintain this assumption for tractability and convenience.

The intermediary observes the indicator y (at no cost) and controls the information observed by

the market. Speci�cally, the intermediary commits to an information structure (S, π (·|y)), where

S is a set of signal realizations and π (·|y) ∈ ∆ (S) is the distribution over signals conditional

on realization of y. Having observed s, the market pays its expected payo� E [v|s] to the agent.
6

This expectation is calculated using the information available, s, and the common belief about

equilibrium play.
7

The timing of the model is as follows. First, the intermediary chooses and commits to an in-

formation structure (S, π (·|y)). Subsequently observing the intermediary’s choice, the agent

chooses her action, a, which in turn generates a realization of indicator y for the intermediary.

The intermediary then draws a rating s according to π (·|y) and sends it to the market. Finally,

the market observes s, updates its beliefs and pays the agent E [v|s]. Figure 1 depicts the structure

of the model and actions.

6
We assume that the buyers are on the long side of the market, thus willing to pay their expected value. Our

analysis remains unchanged if the market keeps a constant fraction of their expected value.

7
An information structure is a family of probability spaces {(S,S , π (·|y))}y∈Y , where S is the space of signal

realizations and S is a σ-algebra. Throughout the paper, we work with S as a compact subset of some Euclidean

space, and S as the Borel σ-algebra associated with topology induced by the Euclidean norm and a compact space

for S. Henceforth, we drop references to σ-algebra in our analysis. Additionally, when describing subsets, we refer

to Borel subsets.
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Agent: a ∈ A y ∈ R
Int.: π(·|y) ∈ ∆(S)

s ∈ S

Market: v − p̂

pay p̂ = E [v|s]

Figure 1: General structure of the model

Given an information structure (S, π (·|y)) and action a, the agent’s expected payo� is given

by ∫
Y

∫
S

E [v|s] dπ (s|y) dG (y|a)− c (a) . (1)

In equilibrium, the agent chooses a to maximize (1).

The ex post market price E [v|s] depends on the information structure (S, π) and also on the

market’s prior about the distribution of (a, y), which depends on the agent’s equilibrium strategy

. More speci�cally, the market uses its beliefs about the equilibrium strategy of the agent a to

form a prior G (y|a) and uses Bayes’ rule to form the posterior expectation E [v|s] satisfying∫
Y

∫
S′
E [v|s] dπ (s|y) dG (y|a) =

∫
Y

v (y; a) π (S ′|y) dG (y|a) ,∀S ′ ⊂ S. (2)

The above de�nes a Bayesian Nash equilibrium given the information structure (S, π). More

speci�cally, given an information structure (S, π), an equilibrium is an e�ort a together with

market beliefs E [v|s] such that amaximizes expression (1), and given a, the market beliefs satisfy

Bayesian updating as de�ned in equation (2).
8

Examples

To clarify the scope and applicability of our analysis, we now describe several environments that

�t the model above.

1. Reputation Mechanisms in Online Platforms: Online platforms face challenges in de-

signing their reputation systems because of moral hazard. These platforms have access to

performance data about providers (i.e., hosts on Airbnb, sellers on eBay, and freelancers on

Upwork) not available to the market.
9

The platform’s certi�cation policy, such as Airbnb’s

8
We have focused on equilibria in which the agent plays a pure e�ort strategy. Our main characterization results,

Proposition 2 and Theorem 1, hold when allowing for mixed e�ort strategy by the agent.

9
As documented by Saeedi (2019), Hui et al. (2016), and Nosko and Tadelis (2015), there are many performance

indicators available to eBay that are not conveyed to the market directly, such as total quantities sold, and previous

claims and their outcomes.
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Superhost, eBay’s Top Rated Seller or Upwork’s Talent Badge, is based on performance

measures and they can be regarded as the information structure in our model. According

to Hui et al. (2023) among others, the changes in such policies in�uence provider behavior.

Our model examines the resulting issues and trade-o�s for both platform and providers.

2. Manipulation and Window Dressing: Rating systems frequently incentivize agents to

manipulate signals or engage in “window dressing”—costly actions that in�ate observed in-

dicators without enhancing fundamental values.
10

Online platforms are frequently plagued

by data manipulation by providers.
11

For example, some third-party sellers on Amazon pay

customers for positive reviews and higher ratings, He et al. (2022). In our model, this can

be captured by letting the agent take costly actions to increase the observed indicator y

without a�ecting market valuation v. This creates a trade-o� in rating design: information

provision incentivizes productive actions but simultaneously raises the incentives for win-

dow dressing. In Sections 5.1 and 5.2, we develop a multi-tasking model à la Holmström

and Milgrom (1991) to describe how the presence of window-dressing motives a�ects the

optimal design of ratings.

3. Career Concerns and Externalities: Since Holmström (1999)’s seminal model of career

concerns, it has been known that in absence of long-term contracts and when agents (i.e.,

CEOs or government workers) care about their careers, they exert ine�cient levels of ef-

fort.
12

In our framework, this occurs when market values v (y; a) change with a. Since

the agent does not account for the e�ect of her e�ort on market values, equilibrium is

ine�cient. It is thus natural to ask whether ratings can be used to possibly reduce such

ine�ciencies. As we will show, our main characterization result can be used to shed light

on this question. Speci�cally, we show that under the often used MLRP condition (Mono-

tone Likelihood Ratio Property), perfect information implements the highest possible value

of e�ort.
13

We also identify properties of the indicators distribution, G (y|a), under which

censoring parts of information is bene�cial giving rise to non-trivial rating policies.

10
In recent years, several lawsuits have involved rating manipulation in di�erent industries, such as education

(e.g., the case of Temple University, Temple Business School Dean Fraud, and the case of Columbia University in

NYT on Columbia’s ranking manipulation and Michael Thadeuss on ranking manipulation) and �nancial markets

(e.g., the case of Greenwashing by Deutsche Bank). Along the same lines, Agarwal et al. (2018) show that greater

transparency leads to fund managers’ forgoing long term pro�ts and short-termism.

11
Feedback manipulation has long been a debated issue on e-commerce platforms (e.g., Hui et al. (2018)).

12
See also Prat (2005) for highlighting situations in which information about actions can lead to conformism by

the agent and as a result, ine�cient outcome.

13
Relatedly, Dewatripont et al. (1999) show that under MLRP, it is always optimal to use all the information

available.

9

https://www.justice.gov/usao-edpa/pr/former-temple-business-school-dean-sentenced-over-one-year-prison-rankings-fraud-scheme
https://www.nytimes.com/2022/03/17/us/columbia-university-rank.html
http://www.math.columbia.edu/~thaddeus/ranking/investigation.html
https://www.bloomberg.com/news/articles/2022-05-31/deutsche-bank-s-dws-unit-raided-amid-allegations-of-greenwashing


2.1 Interim Prices: De�nition and Characterization

In this section, we introduce a mathematical object, interim prices, that allows us to simplify the

problem of rating design in the environment described above.

The notion of interim price is simple. This mathematical object determines the agent’s incen-

tives in choice of e�ort and will be present in the incentive constraints for the agent. Speci�cally,

we de�ne interim prices as

p (y) =

∫
E [v|s] dπ (s|y) . (3)

In words, p is the expected payment to the agent conditional on the indicator y, integrating over

possible signals s given the rating system. Additionally, it is an equilibrium object as it depends

on E [v|s] which depends on the market’s beliefs about the agent’s action pro�le. It can also be

interpreted as the agent’s “second-order belief”: their beliefs about the beliefs of the market on

values.

Critically, it is a su�cient statistic for the information structure from the agent’s perspective.

Speci�cally, for any choice of a, the agent’s payo� is given by∫
p (y) dG (y|a)− c (a) .

Thus, the problem of designing an optimal rating system is isomorphic to the problem of choos-

ing an interim price schedule p, subject to the constraint that p must be implementable via some

information structure (S, π). Thus, we need to characterize the set of feasible interim prices.

Generally, there are no simple conditions to characterize the set of interim price pro�les that

result from a particular information structure and action pro�les. However, as we will show next,

under some restriction on information structures, a simple characterization exists.

To understand the notion of interim prices, recall that market values are given by v (y; a) =

E [v|y]. These are the interim prices associated with a fully revealing information structure, i.e.,

the most informative information structure. Now, from the perspective of the market, E [v|s], is

a garbling of v (y; a). Similarly, from the perspective of an observer that sees the realization of y,

interim price p is a garbling of E [v|s] and thus itself a garbling of v. In other words, if we view

them as random variables, we must have p �cv v or equivalently p is mean preserving contraction

of v.
14

Given the results in the literature – see for example Rothschild and Stiglitz (1970) or Gentzkow

and Kamenica (2016) – it is tempting to suggest that the reverse of the above observation is also

14
The relation p �cv v represents the concave order which implies that for all concave functions φ : R → R,

E [φ (p)] ≥ E [φ (v)]. Since Bayes plausibility implies E [p] = E [v], this de�nition is equivalent to majorization,

second order stochastic dominance and increasing concave order – see for example Shaked and Shanthikumar (2007)

section 4.A.
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true: that mean preserving contraction is a su�cient condition for existence of ratings. Below we

show that this is indeed true when interim prices and market values are comonotone.
15

Formally

we say that p and v are comonotone if:

p (y) > p (y′)⇒ v (y; a) > v (y′; a) .

In words, higher prices are associated with higher market values, so the two random variables

never move in opposite directions.

Proposition 1. Suppose that p is a function that maps values of y into R such that

1. p is comonotone with v, and

2. p �cv v.

Then, there exists an information structure (S, π) such that p (y) =
∫
E [v|s] dπ (s|y).

The proof is a straightforward application of Kleiner et al. (2021)’s result on the extreme points

of the set of monotone functions that satisfy a majorization constraint.

This proposition implies that for any arbitrary information structures with an action a and

interim price function p, we can characterize the comonotone equilibria of the game as follows:

1. The action a is incentive compatible,

a ∈ arg max
â∈A

∫
p (y) dG (y|â)− c (â) (4)

2. Interim prices p (y) dominate v (y; a) = E [v|y] according to the concave order.

3. Interim prices and market valuations are comonotone.

This reduction allows us to transform the optimal rating design problem as a standard mechanism

design problem with transfers, where the “transfers” are the interim prices constrained by the

concave order.

3 Optimal Ratings: A General Characterization

In this section, we use Proposition 1 to provide our main theoretical characterization result for

optimal ratings under moral hazard. In the rest of the paper, we discuss various applications and

the implications of our characterization result.

15
In the Appendix D, we provide an example that illustrates that without comonotonicity mean preserving con-

traction is no longer su�cient and additional conditions are needed. We also discuss its relationship with similar

results in the literature.
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3.1 The Intermediary’s Problem

The intermediary chooses an information structure to maximize an objective that may di�er from

total surplus. We consider a class of objectives in the form

W (a) +

∫
p (y)α (y) dG (y|a) , (5)

where W (a) captures externalities or direct preferences over e�ort, and α (y) ≥ 0 represents

distributional weights on agent payo�s. This class of objective functions �ts several applications

in which rating design interacts with moral hazard:

1. Targeting an Action: It is possible that market values do not necessarily re�ect the social

value of the agent’s actions. This may occur for two reasons: �rst, direct externalities. In

this case, W (a) is di�erent from the total surplus V (a) = E [v|a]− c (a). The di�erence of

the two W (a)− V (a) represents the external e�ects that are not captured by the market.

Second, as discussed in Section 2, when market beliefs directly a�ect market values, a fully

revealing equilibrium can be ine�cient due to career concerns. In this case, the objective

is simply total surplus or V (a).

2. Distributional Concerns: The weights α (y) can be interpreted as distributional con-

cerns. For example, in the context of platform design, platforms might aim to guarantee

a minimum payo� level for sellers to maintain a minimum market size. In educational

contexts, critics often argue that standardized tests create biases against lower-income stu-

dents and minorities. Given such disparities in outcome distribution, a college or school

with distributional concerns could reweight test outcomes for its admission policies. This

reweighting can be achieved using an objective function similar to that in (5).

Given this class of objectives and the comonotonicity restriction, the problem of optimal rating

design can be stated as maximizing the objective in (5) subject to incentive compatibility (4),

comonotonicity and majorization.

3.2 Quantile Formulation

To simplify working with concave order constraints, we transform the interim prices and market

values to their quantile formulation. This would allow us to characterize of optimal ratings via

concavi�cation of a gain function.
16

Let vQ(i) denote the market value associated with the i-th quantile of the indicator distribution.

Formally,

16
See also Bergemann et al. (2022b) and Bergemann et al. (2022a) for a similar approach.
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vQ(i) = v(G−1(i|a); a). (6)

Note that we have dropped a from the expression of quantile value for ease of exposition. Sim-

ilarly, let pQ(i) be the quantile representation of the interim price. Given the comonotonicity

assumption of p and v, pQ (i) is the interim price associated with market value vQ (i).

Given this inversion and using integration by part, for any arbitrary integrable function h (y),

we can write∫
Y

h (y) p (y) dG (y|a) =

∫ 1

0

∫
{y:v(y)>vQ(i)}

h (y) dG (y|a) dpQ (i) =

∫ 1

0

H (i) dpQ (i) ,

where

H (i) =

∫
{y:v(y)>vQ(i)}

h (y) dG (y|a) (7)

collects the contribution of h over all realizations whose associated market value exceeds vQ(i).

In the appendix, we use the above and the fact that p <cv v to prove the following lemma:

Lemma 1. Let h be an integrable function andH be de�ned by (7).Let cavH be the concave envelope
of H , i.e., the lowest concave function dominating H (i). Then

max
p : p <cv v,

p, v : comonotone

∫
h (y) p (y) dG (y|a) =

∫ 1

0

cavH (i) dvQ (i) (8)

Moreover, the optimal p satis�es:

1. p (y) = v (y; a) when H (G (y|a)) = cavH (G (y|a)).

2. If cavH (i) > H (i) for all i in some maximal interval I ⊂ [0, 1], then, p (y) = E [v|G (y|a) ∈ I].

The result of Lemma 1 is depicted in Figure 2. The function H (i) is constructed by integrating

h (y) for values of y above a threshold, y′. This threshold is one for which v (y′) = vQ (i). When

the concave envelope of H (i) does not coincide with H (i), optimal interim prices are constant

and equal to average market value of the interval. Conversely when it coincides with H (i),

optimal interim prices coincide with market valuations v (y). In the proof of Lemma 2 we make

use of the fact that if p <cv v, the reverse is true for their quantiles (or c.d.f.’s). We then apply

Blackwell’s theorem to construct a concavi�cation of H as the optimum.
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0 y

h(y)

ŷ0 1
0 i

H(i)

0 1

cavH(i)

î

p = E[v̄|y < ŷ] p = v̄

Figure 2: Concavi�cation of H (right) and Construction of Optimal Ratings. The value ŷ is asso-

ciated with the quantile î.

3.3 Incorporating Incentives: the Main Characterization

In the above, we used a generic unconstrained objective function of the form

∫
h (y) p (y) dµy.

Our optimal rating design problem is a constrained optimization problem that has to respect in-

centive compatibility constraints (4). One can thus use standard Lagrangian arguments to trans-

form our problem to an unconstrained optimization.

The incentive constraint can be written in quantile space by de�ning

F (i|â; a) = G
(
G−1 (i|a) |â

)
,

where F is the distribution over quantiles when the agent chooses â but quantiles are de�ned

according to a. Then we can write any incentive compatibility as

−
∫ 1

0

F (i|a, a) dpQ (i)− c (a) ≥ −
∫ 1

0

F (i|â; a) dpQ (i)− c (â) , ∀â ∈ A. (9)

In order to sidestep many of the complications that typically arise in moral hazard problems,

we will use the �rst order approach (FOA) throughout the paper. That is, we replace the incentive

constraint (9) with its �rst order condition. In the Appendix C, we will use an approach similar

to Chade and Swinkels (2020) to provide su�cient conditions on the distribution functions for

the validity of the �rst order approach.

Using the IC in quantile space, FOA, and Lemma 1 we show the following result:

Theorem 1. If w∗ is the highest value of the objective (5) and under the validity of FOA, there exists
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a real vector λ ∈ RN such that

w∗ = max
a
W (a) +

∫
cavΓ (i;λ, a) dvQ (i) (D)

s.t. i = G ({y : v (y; a) ≤ vQ (i) |a})

where

Γ (i;λ, a) =

∫
{y:v(y;a)>vQ(i)}

α (y) dG−
N∑
n=1

λn

[
∂

∂ân
F (i|â; a)

∣∣∣∣
â=a

+
∂

∂an
c (a)

]

We refer to Γ as the gain function. It summarizes the weight that the intermediary puts on a

particular type and the associated IC conditions.

Theorem 1 implies that the rating design problem can be solved by solving a one-dimensional

concavi�cation problem of the gain function and then �nding optimal values of e�ort and the

multipliers associated with the incentive compatibility constraints (9). While its intuition is cap-

tured by the discussion above, its proof uses a notion of duality which is rather standard.

The �rst implication of Theorem 1 is that optimal rating systems are simple. In fact, since

the function to be concavi�ed is only a function of the quantile i, by Caratheodory theorem any

convex combination of values of Γ (i;λ, a) can be achieved by using at most two points. This logic

establishes that the optimum in (D) is always achieved by a deterministic monotone partition.

However, the optimum should also satisfy the incentive compatibility. To ensure that this is

indeed possible, we make the following assumption on the distribution function G (y|a):

Assumption 2. Independence. For all a ∈ A:

1. G (y|a) is full support over a convex subset of R.

2. For any interval I ⊂ SuppG (y|a), then the function α (y) g (y|a) cannot be written as a

non–zero linear combination of g (y|a) ,
{
∂g(y|a)
∂an

}N
n=1

for all values of y ∈ I .

The independence assumption ensures that there is enough variation in y conditional on ef-

fort a.
17

Given Assumption 2, Theorem 1, and second part of Lemma 1, we have the following

proposition:

Proposition 2. Suppose that Assumption 2 holds. Then the optimal interim price in (D) is always
associated with a deterministic monotone partitional rating. Moreover, whenever cavΓ (i;λ, a) =

17
An example that violates Assumption 2 is one in which y = y (a), an increasing function of a. In this case, any

change in the interim price function a�ects the incentives of the DM. In a previous version of this paper, we have

established that if Assumption 2 is violated, optimal ratings can involve randomization.
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Γ (i;λ, a), optimal rating reveals the value v = vQ (i) to the market. When cavΓ (i;λ, a) >

Γ (i;λ, a), then there exists an interval i ∈ [i1, i2] such that optimal rating reveals that v ∈ [vQ (i1) , vQ (i2)].

As we discuss above, the maximum value of the Lagrangian is always achieved by an interim

price associated with a deterministic monotone partitional signal. The independence assumption

guarantees that the optimum in (D) cannot be achieved by a (non–extreme) supporting point of

the set {p : p, v : comonotone, p <cv v} and only a unique extreme point of this set can achieve

the unconstrained optimum in (D).
18

Theorem 1 and Proposition 2 together provides a full characterization of optimal ratings. They

tie the problem of optimal rating to concavi�cation of a simple statistics of the outcome distri-

bution: the response of the quantiles to local changes in actions along each dimension. In what

follows, we describe how properties of the technology that generates the indicator and its corre-

lation with market values determine the general properties of optimal ratings.

4 General Properties of Optimal Ratings

In this section, we provide general properties of optimal ratings and how they depend on the

joint distribution of the indicator function and market values. For clarity, we focus on problems

in which e�ort is one dimensional. In Section 5.1, we study a multi-tasking application where

e�ort is allowed to be multi–dimensional.

4.1 Targeting An Action

We start our analysis by considering objectives that only target an action, i.e., α (y) = 0 in (5).

In this case, the problem of solving optimal rating design boils down to a characterization of the

set of implementable e�orts. As we have shown, an e�ort a ∈ A is implementable when there

exists an interim price function p (y) such that p (y) is a mean-preserving contraction of market

values v (y; a) and a is incentive compatible given p (y).

To make the model tractable, let us assume the following:

Assumption 3. The action space A and the distribution function g (y|a) satisfy the following

1. The action space is A = [0, a] ⊂ R.

2. For all a > 0, the support of g (y|a) is a (potentially unbounded) interval I =
[
y, y
]
and

g (y|a) is twice di�erentiable.

18
Formally, a supporting point of a convex set C is one that belongs to a supporting hyperplane of C .
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3. Cost function c (a) is non-negative, strictly convex, increasing and twice di�erentiable for all
a ∈ A.

4. For any e�ort, a ∈ A, v (y; a) is increasing in y.

The �rst three parts of Assumption 3 are fairly common in the moral hazard literature. The last

assumption notably implies that y is an indicator that is positively correlated with market values.

This assumption on its own is innocuous since the indicator y itself is not payo� relevant.

By Theorem 1, under FOA, the optimal rating is found by a concavi�cation of the function

Γ (i;λ, a) = −λ
[
∂F (i|â;a)

∂â

∣∣∣
â=a

+ c′(a)
]

where λ is the Lagrange multiplier on local incentive-

compatibility constraint, and F (i|â; a) is the induced distribution of the quantiles of the indicator

when the DM chooses e�ort â while the market believes it to be a. The following calculation ties

the object to be concavi�ed to properties of the distribution function G (y|a):

−λ ∂
2

∂i2
∂F (i|â)

∂â

∣∣∣∣
â=a

= −λ ∂
2

∂i2
Ga

(
G−1 (i|a) |a

)
= −λ ∂

∂i

ga (G−1 (i|a) |a)

g (G−1 (i|a) |a)

=
−λ ∂

∂y
ga(y|a)
g(y|a)

∣∣∣
y=G−1(i|a)

g (G−1 (i|a) |a)
=
−λ ∂2

∂y∂a
log g (y|a)

∣∣∣
y=G−1(i|a)

g (y|a)

In other words, the concavity of Γ (i;λ, a) at a particular quantile i is determined by the sign of

the cross partial of the log-likelihood function log g (y|a). This implies that optimal ratings are

directly tied to the supermodularity of the log-likelihood function log g (y|a). In what follows,

we discuss a few cases and their economic interpretation and implication for optimal rating.

Let us start from the canonical assumption made in the moral hazard literature, the so-called

MLRP assumption:

De�nition 1. A distribution function g (y|a) is said to satisfy Monotone Likelihood Ratio Prop-

erty (MLRP) when g (y|a) is log–supermodular. That is
∂2

∂a∂y
log g (y|a) = ∂

∂y
ga(y|a)
g(y|a)

≥ 0,∀y ∈
I, a ∈ A.

MLRP implies that an increase in e�ort leads to a rightward shift of the distribution of indicator

realizations. Moreover, it also implies that the same is true for the conditional distribution of the

indicator when restricted to an interval of values of y.
19

Our �rst result establishes that in the presence of MLRP, highest implementable e�ort is indeed

associated with full information:

19
Formally, MLRP is equivalent to the statement that an increase in a increases the distributions over the indicator

y according to the likelihood ratio order. See Shaked and Shanthikumar (2007), section 1C.

17



Proposition 3. Suppose Assumptions 2 and 3 hold, FOA is valid, and g (y|a) satis�es MLRP. Then
the highest implementable e�ort is associated with interim price p (y) = v (y; a). That is, it is the
highest e�ort level that satis�es

aFI ∈ arg max
a∈A

∫
v (y; aFI) g (y|a) dy − c (a) .

The above result states that the often assumed MLRP has strong implications for what can be

achieved via ratings. Speci�cally, it states that using ratings, it is not possible to increase the level

of e�ort beyond what the market can achieve by fully observing the indicators.

We should note that the de�nition of highest implementable e�ort aFI involves calculation of

a �xed point. This is because, market values v (y; a) should be calculated under the belief of the

market that the action taken is aFI while the DM is able to deviate from it. In Proposition 3 aFI

is de�ned as the highest such �xed point.

The proof of Proposition 3 follows straight from Theorem 1. Speci�cally, under MLRP, the

function Γ (i;λ, a) is either concave or convex for all values of i depending on the sign of λ. This

means that when λ > 0, Γ is concave and coincides with its concavi�cation. Thus given our

construction of optimal ratings in Section 3, optimal rating becomes fully revealing. In turn, if

λ < 0, Γ is convex in i and thus, its concavi�cation is simply the 0 function – since Γ (0;λ, a) =

Γ (1;λ, a) = 0. In other words, optimal rating involves providing no information which results

in a = 0 which cannot be optimal, so λ cannot be negative.

4.1.1 Expanding and Compressing Likelihood Ratios

Many economic activities violate MLRP in systematic ways. For example, activities where greater

e�ort a�ects not just the mean outcome but also its variance. Innovative activities often increase

both upside potential and downside risk—greater R&D e�ort can lead to breakthroughs or fail-

ures. On the other hand, activities such as maintenance typically reduce variance—more careful

attention produces more consistent outcomes. These patterns correspond to distributions where

the cross-derivative of the log-likelihood changes sign.

In what follows, we de�ne two classes of distributions and characterize the optimal ratings.

De�nition 2. A distribution function g (y|a) is said to satisfy:

1. Expanding likelihood ratio property (ELRP) if for any a ∈ A, there exists ŷ such that

∂2

∂a∂y
log g (y|a) ≥ 0 when y ≥ ŷ and

∂2

∂a∂y
log g (y|a) ≤ 0 when y ≤ ŷ,

2. Compressing likelihood ratio property (CLRP) if for any a ∈ A, there exists ŷ such that

∂2

∂a∂y
log g (y|a) ≤ 0 when y ≥ ŷ and

∂2

∂a∂y
log g (y|a) ≥ 0 when y ≤ ŷ.
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The terminology re�ects how e�ort a�ects the signal distribution’s tails. Under ELRP, increased

e�ort expands the tails, while under CLRP, increased e�ort compresses the distribution toward

the center.

For example, consider log y ∼ N (log a, aγ), that is, log y has a normal distribution with mean

log a and variance aγ . In this case, we can use the de�nition of the density of the normal distri-

bution to show that

∂2

∂a∂y
log g (y|a) =

1 + γ log y/a

a1+γy
.

When γ > 0, g satis�es ELRP since the above is positive if and only if y/a ≥ e−γ . In contrast,

when γ < 0, g satis�es CLRP since the above is negative if and only if y/a ≤ e−γ .

A version of these examples are depicted in Figure 3. As it can be seen, in case of ELRP, the

tail densities increase as e�ort a increases while the densities for mid–realizations decline. In

contrast, under CLRP, tail densities decline while the densities for mid–realizations increase. In

both cases, the two densities intersect exactly twice which is in contrast with single crossing of

MLRP.

y

g(y|a)

log y ∼ N (a, a3)

a = 1

a = 1.2

(a) ELRP

y

g(y|a)

log y ∼ N (a, a−3)

a = 1 a = 1.2

(b) CLRP

Figure 3: Distributions with ELRP (left) and CLRP (right)

Given these de�nitions, we can state our result on optimal ratings for these classes distributions:

Proposition 4. Suppose Assumptions 2 and 3 hold and FOA is valid.

1. If g (y|a) satis�es ELRP, then the highest implementable e�ort aLC is the highest value of e�ort
that is incentive compatible for an interim price associated with lower-censorship ratings, i.e.,
ratings that pool values of y below a threshold and reveal higher values.
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2. If g (y|a) satis�es CLRP, then the highest implementable e�ort aUC is the highest value of e�ort
that is incentive compatible for an interim price associated with upper-censorship ratings, i.e.,
ratings that pool values of y above a threshold and reveal lower values.

As the above proposition establishes, optimal ratings for ELRP and CLRP distributions are fairly

simple. They involve either upper censorship (in case of ELRP) or lower censorship (in case of

CLRP). In what follows we provide an example and discuss its implications for various tasks and

technologies.

Suppose that y ∼ N
(
a, (ka)2)

, that y determines market values, i.e., v (y; a) = y, and that cost

is c (a) = a2/a. Under a full information rating, p (y) = y, pro�t of the DM is a − a2/2 which

is maximized at aFI = 1. It can be easily checked that in this case G (y|a) satis�es ELRP. For

any value of i ∈ [0, 1], we can �nd the highest level of e�ort that is a best response to pooling

of i lowest realizations of the indicator y. This is depicted in Figure 4 (left panel) for values of

k = 1, 2, 3, 4. At the lowest value, i = 0, optimal e�ort is aFI = 1. Optimal e�ort peaks at some

threshold, 0.56, 0.69, 0.73, 0.75 respectively, and falls to zero as i tends to 1. It should be noted that

as variance of y becomes steeper as a function of a, the highest possible value of e�ort increases.

Figure 4 (right panel) depicts the marginal change in the quantile as a result of an increase in a,

−Fa (i|a; a), and its concavi�cation (in the case of k = 1). The threshold for pooling on the right

coincides with the peak of the left plot since optimal ratings take the form of lower censorship.

i

a

k = 1

k = 2

k = 3

k = 4

(a) Optimal e�ort for pooling the lowest i realizations of y

i

−Fa(i|a; a)

"pooling"

(b) Concavi�cation of the marginal change in quantiles

Figure 4: Optimal e�orts for lower-censorship policies

We should note that the notion of ELRP and CLRP are tied to whether an increase in ef-

fort a leads to a higher or lower variance of the indicator y. Speci�cally, suppose that y =

f (σ (a) ε+m (a)) withm and f increasing, and ε has density eh(ε)
such that h (ε) is concave and
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ε+h′ (ε) /h′′ (ε) is increasing in ε. In this case, y exhibits ELRP (CLRP) only if σ (a) is increasing

(decreasing) in a. Several classes distributions satisfy these properties for h: Normal, Gumbel,

Generalized Normal, Logistic, etc. For this class of distributions, a constant σ (a) leads to MLRP.

The above �ndings point to a practical property of optimal ratings in targeting an action.

Namely that how variance of indicator interacts with the desired action determines the best

way to incentivize it. Speci�cally, an activity where more e�ort leads to a more precise out-

come (CLRP) such as maintenance activities, full revelation at low values and pooling at higher

values, encourages higher e�ort to avoid low value punishments. On the other hand, if higher

e�ort leads to riskier outcome (ELRP) such as innovative activities, then pooling of low realiza-

tion via lower-censorship ratings provides insurance against possible downsides and encourages

risk taking (increasing e�ort). When e�ort doesn’t a�ect variance (MLRP), optimal rating is full

revelation and no pooling is needed.

We should end this section by emphasizing that while we have focused on the highest possible

e�ort that is implementable, any lower value of e�ort can also be targeted by rating systems. The

analysis in this section speci�cally is useful in identifying values of e�ort that are higher than

those achieved by a fully revealing rating system. Especially in markets with positive externalities

where fully informative ratings lead to ine�ciently low levels of e�ort, one can use ratings (absent

MLRP) to improve market e�ciency.

4.2 Redistributive Motives

Here, we discuss optimal ratings in presence of redistributive motives. This could happen because

of societal values – see for example Dessein et al. (2025), to guarantee a minimal level of ex-post

payo�. In an earlier version of this paper Saeedi and Shourideh (2022), we provide examples in

which the intermediary wishes to maximize fees from providing the rating to the market and

showed that this also gives rise to redistributive motives.

To see the e�ect of redistributive motives, suppose that α (y) is positive, decreasing in y, and∫
I
α (y) dG (y|a) <∞ for all a ∈ A. In this case and using Assumption 3, we can apply the result

of Theorem 1 which implies that optimal ratings are determined by concavifying the following

function ∫ ∞
G−1(i|a)

α (y) dG (y|a)− λGa

(
G−1 (i|a)

)
.

We have extensively discussed the properties of the second term that captures the incentive e�ect

21



of ratings. The �rst term is decreasing and convex function of i since
20

∂2

∂i2

∫ ∞
G−1(i|a)

α (y) dG (y|a) = − ∂
∂i

α (G−1 (i|a)) g (G−1 (i|a) |a)

g (G−1 (i|a) |a)
= − α′ (G−1 (i|a))

g (G−1 (i|a) |a)
≥ 0

Evidently, if λ = 0, since the above function is convex, optimal ratings must be one that pools all

values of y. Obviously, such a rating does not provide any incentive for exerting e�ort. The total

gain function combines this convex redistributive term with the incentive e�ect. Even when the

incentive e�ect is concave (as under MLRP), strong redistributive preferences can make the total

gain function non-concave for low quantiles.

The following proposition illustrates how redistributive motives a�ect optimal ratings:

Proposition 5. Suppose that

lim
i→0

α
(
G−1 (i|a)

)
+ λ

ga (G−1 (i|a) |a)

g (G−1 (i|a) |a)
>

∫ 1

0

α
(
G−1 (i|a)

)
di.

Then there exists an interval around y = G−1 (0|a) where the optimal rating is pooling. As a special

case, the same is true if α (G−1 (i|a))→∞ as i→ 0 and limi→0

∣∣∣∣ga(G−1(i|a)|a)
g(G−1(i|a)|a)

∣∣∣∣ <∞.

Proposition 5 illustrates the key force of redistributive motives. The assumption implies that the

function Γ (i;λ, a) satis�es
∂Γ(i;λ,a)

∂i

∣∣∣
i=0

< −Γ (0;λ, a). Since Γ (1;λ, a) = 0, the line connecting

(0,Γ (0;λ, a)) and (1,Γ (1;λ, a)) is above Γ (i;λ, a) for an interval of values of i > 0 and thus

the concave envelope of Γ lies strictly above Γ for an interval of values of i above 0. This means

that optimal rating should be pooling for an interval of values above i = 0. Intuitively, when

redistribution motives are high, the redistribution e�ects of pooling at low values is higher than

the incentive costs due to this pooling.

As an example, suppose that y = aε, log ε ∼ N (−1/2, 1), c (a) = a2/2, and α (y) = y−β for

some β > 0. In this case,

∂

∂i
Γ (i;λ, a) = −α (y)− λga (y|a)

g (y|a)

∣∣∣∣
y=G−1(i|a)

= −y−β − λ
1
2

+ log y
a

a

∣∣∣∣
y=G−1(i|a)

The above function is increasing in i = G−1 (y|a) for values of y below a threshold and decreasing

for values of y above it. This implies that H is convex below this threshold and concave above

it. As a result, optimal rating must be lower censorship. Figure 5a shows the components of the

20
While we are assuming α to be di�erentiable, this is really not needed for convexity of the �rst term.
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function Γ when β = 2 at the optimum value of e�ort, a, and multiplier, λ. Since G satis�es

MLRP, the incentive component is concave while adding the redistributive motives makes the

sum convex for low realizations. The resulting sum and its concavi�cation is depicted in Figure

5b. The optimal rating pools the lowest 47.28 percent of realizations of y.

i

−λGa(G
−1(i|a)|a)

∫
G−1(i|a)

α(y)dG

(a) Components of Γ (i;λ, a): Redistributive (blue) and in-

centives (orange)

i

cavΓ

Γ(i;λ, a)

(b) The function Γ (i;λ, a) (red) and its concavi�cation (blue)

Figure 5: Concavi�cation of the marginal change in quantiles

It is useful to conclude this section with a summary of the results:

1. When targeting an e�ort, the set of implementable e�orts is determined by the supermod-

ularity of log g (y|a).

2. Optimal rating associated with highest implementable e�ort is lower (upper) censorship

when g (y|a) exhibits ELRP (CLRP).

3. Strong redistributive motives lead to pooling of low realizations of y.

In what follows, we use the insights in this section to shed light on two important examples:

Multi-tasking and optimal redistributive test design with heterogeneity.

5 Applications

In this section, we illustrate the value of our characterization results above by applying them to

a multi-task moral hazard model and optimal test design.
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5.1 Rating Design, Multi-task Moral Hazard and Window Dressing

Since the seminal work of Holmström and Milgrom (1991), the multi-task principal-agent mod-

els have become the workhorse of analyzing incentives in setting where agents can use several

actions to a�ect the observed outcomes
21

– see also Baker (1992) and Dewatripont et al. (1999).
22

In this section, we consider a variant of the model in Dewatripont et al. (1999) to understand how

rating design can be used to mitigate multi-task incentive problems.

The DM chooses a vector of e�orts a = (a1, · · · , aN) ∈ [0, a]N , which determines market

values and the indicator as follows:

v = bv · a+ εv, y = by · a+ εy

where bv, by ∈ RN
+ capture the e�ect of a on market values and indicator, respectively, and:

(
εy

εv

)
∼ N

(
0,

(
σ2
v σvy

σvy σ2
y

))
, σvy > 0

In words, choosing a vector of e�ort levels creates a value for the market while it a�ects the

indicator observed by the intermediary di�erently. Since εv and εy are positively correlated, high

values of the indicator signal a higher value for the market.

Using properties of the normal distribution, we can show that market values conditional on y

and belief â are:

v (y; â) = E [v|y; â] =
σvy
σ2
y

(y − by · â) + bv · â = βy + (bv − βby) · â

where β = σvy/σ
2
y > 0. Suppose that the cost of e�ort is

c (a) =
1

2

N∑
n=1

κna
2
n

where κn > 0 is marginal cost of task n.

When bv 6= by, the indicator is a distorted measure of market value. A special case is window

21
Several empirical studies have looked at variants of the multi-task moral hazard model. A partial list includes

Dumont et al. (2008) and Alexander (2020) for compensation of doctors, Acemoglu et al. (2020) for incentives in

military and security forces, De Janvry et al. (2023) for incentives of government employees, Andrabi and Brown

(2022) for incentives of teachers, and Mayzlin et al. (2014) and Hui et al. (2025) for incentives on online platforms.

22
Since Dewatripont et al. (1999) analyze a variant of Holmström (1999)’s career concern model, their model is

closer to ours where the agent’s compensation is determined by market expectations as opposed to an endogenous

contract chosen by the principal as in Holmström and Milgrom (1991) and Baker (1992).
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dressing: an e�ort that boosts the indicator without a�ecting market values. More precisely, we

say that task n exhibits window–dressing if by,n > 0 and bv,n = 0. In this case, e�ciency requires

ai = 0 since ai does not add to market values and is costly.

A key feature of this model is that it is reducible to the single e�ort model of section 4. This

is because the e�ort vector a a�ects the distribution of the indicator solely through my = by · a.

Additionally given my, there is a unique cost minimizing values for vector of e�orts:

min
a∈[0,a]N

1

2

N∑
n=1

κna
2
n

subject to by · a = my

The solution to the above is given by

ãn (my) =
by,n
κn

my∑
j b

2
y,j/κj

,

and the resulting indirect cost function is

C (my) =
m2
y

2
∑

j b
2
y,j/κj

.

Since the DM can choose the vector a given any level of my, she will always choose ãn (my) to

minimize her cost. Thus the rating design problem is reducible to a choice of an interim price

function p (·) and my.

Now, consider the problem of �nding the optimal rating that maximizes total surplus. Total

surplus in this environment is given by

bv · ã (my)− C (my)

and thus the welfare maximizing m∗y is given by

m∗y =
N∑
n=1

by,nbv,n
κn

.

Given that y|my ∼ N
(
my, σ

2
y

)
and the normal distribution satis�es MLRP, our result in section 4

implies that the highest implementable level of e�ort is the one associated with full information.

Under full information, the DM solves the following:

max
m>0

βby · ã (m)− C (m)
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whose solution is given by

m∗FI = β
∑
i

b2
y,i

κi

We thus have the following proposition:

Proposition 6. Ifm∗y ≥ m∗FI , then the welfare maximizing rating is fully revealing and implements
ã (m∗FI). Ifm

∗
y < m∗FI , then the welfare maximizing rating implements ã

(
m∗y
)
. An optimal rating

that implements ã
(
m∗y
)
is a lower-censorship rating that pools the realizations of y below y given

by

βzφ (z) + β
φ (z)2

Φ (z)
+ β [1− Φ (z)] =

∑N
i=1 by,ibv,i/κi∑N
i=1 b

2
y,i/κi

, z =
y −m∗y
σy

(10)

where Φ is the c.d.f. of the standard normal distribution and φ = Φ′.

Given the above discussion and the results of section 4, Proposition 6 is immediate. We should

note that the lower-censorship rating is one of possibly many optimal ratings that implement the

e�cient outcome. This is because m∗y is an interior point of the set of implementable values of

my given by [0,m∗FI ].

Proposition 6 also identi�es the su�cient statistic that determines the optimal lower-censorship

rating. This is given by

σ2
y

σvy

∑N
i=1 by,ibv,i/κi∑N
i=1 b

2
y,i/κi

. An object of interest is the e�ect of changes in cost

of manipulation or window–dressing on the optimal rating. So, suppose that some e�ort ai,

exhibits window dressing, i.e., bv,i = 0, by,i > 0. An increase in κi reduces the denominator of

the su�cient statistic and thus increases its value. Since the left hand side of (10) is decreasing

in z, an increase in the su�cient statistic leads to a reduction in z and hence a more informative

rating. We thus have the following:

Proposition 7. Suppose that ai exhibits window dressing e�ort, i.e., bv,i = 0, by,i > 0 and that
m∗y < m∗FI . Then, a decrease in κi leads to a less informative optimal rating.

This result is reminiscent of Holmström and Milgrom (1991)’s result on optimality of low–

powered incentives. It highlights that when manipulation becomes easier, optimal ratings should

become less informative in order to reduce window–dressing incentives.

For a general task i, whether a decline in cost κi leads to a less or more informative rating de-

pends on the relationship between the values of bv,i and by,i. The following proposition illustrates

this dependence:

Proposition 8. A decline in cost of task i, κi leads to a less informative signal, i.e., higher value of
z, if and only if

by,i∑N
j=1 b

2
y,j/κj

− bv,i∑N
j=1 by,jbv,j/κj

≥ 0
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We should end this section by emphasizing that while an extensive literature has studied multi-

tasking model and their empirical applications, the idea of using rating policy to mitigate issues

like window–dressing remains unexplored. Our analysis here means to illustrate the bene�ts of

using rating policies to reduce ine�ciencies caused by such motives.

5.2 A Nonreducible Two–Task Model

The key bene�t of the setup above was that it was reducible to the single e�ort setup characterized

in section 4. Here we discuss an example that is not reducible to single e�ort and discuss its

implication on optimal rating design.

Suppose there are two tasks a1, a2 and the market values and the indicator are given by

v = a1 (ε1 + 1)

y = ba1 (ε1 + 1) + a2 (ε2 + 1)

where εi’s are standard normal distributions and independent and b > 0. Since v and y are

positively correlated, we can calculate the expected market values using properties of the normal

distribution

v (y; a) =
ba2

1

b2a2
1 + a2

2

(y − ba1 − a2) + a1 = β (a)× (y − ba1 − a2) + a1

Using Theorem 1, when the objective of rating design is independent of the distribution of interim

prices, the shape of the optimal rating is determined by a weighted value of the marginal change

in the quantiles:

−λ1
∂G (G−1 (i|â) |a)

∂a1

∣∣∣∣
â=a

− λ2
∂G (G−1 (i|â) |a)

∂a2

∣∣∣∣
â=a

Since y ∼ N
(
ba1 + a2, (ba1)2 + a2

2

)
, we can use properties of the normal distribution to show

that the above is either concave for low values of i and convex for high values or vice versa. As

a result, optimal rating must be either upper or low. The following result re�nes this further:

Proposition 9. Suppose that the cost of e�ort is c (a) = κ
2

(a2
1 + a2

2) and b <
√

3
√

1 +
√

2− 3
√√

2− 1 ≈
0.772. Then, the welfare maximizing rating in the non–reducible two–task model is upper censorship
and delivers welfare that is strictly higher than fully informative rating.

Note that in the two task model of this section both productive e�ort, a1, and window–dressing

e�ort a2, increase the mean and variance of the indicator y. However, since the impact of produc-

tive e�ort on y is lower, censoring higher values of y has a bigger impact on window–dressing.
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Since window–dressing actions only destroy surplus, some pooling of high observations has a

high impact on window–dressing incentives while its impact on productive e�ort is mild.

Overall, our analysis of the multi-task model presented here highlights the importance of rat-

ings when the indicator is a distorted measure of market values.

5.3 Redistributive Test Design

Recent public discourse in the education realm has highlighted the biases of standardized testing

(such as the SAT) and testing of di�cult subjects (such as math) against students with socioe-

conomic disadvantages.
23

Inspired by these observations, there has been a movement for more

relaxation of requiring students to participate in such tests. This includes several universities’

policies to make the SAT optional (see Dessein et al. (2025)) and attempts at making mathemat-

ics education more accessible and easier. Inspired by this debate, in this section, we provide an

alternative answer to this question in the form of optimal test design.

To see this, consider a student that could be of θ ∈ {R,P}with probabilities fR, fP . Sup-

pose that both types can exert e�ort aθ which leads to a distribution of an indicator y which is

distributed according to g (y|aθ) with support given by I =
[
y, y
]

– with the possibility that

y = −∞ and y = ∞. The cost of e�ort for each type is kθc (a) where c (a) is a convex and

increasing function where 0 < kR < kP . Finally, let v = y so that the market values are simply

the value of the indicators and let p (y) be the interim price function that is increasing.

Consider a rating designer who wishes to maximize the following objective

αPfP

[∫
I

p (y) dG (y|aP )− kP c (aP )

]
+αRfR

[∫
I

p (y) dG (y|aR)− kRc (aR)

]
(11)

where αPfP + aRfR = 1 and αP > 1 > αR. Let us assume that an increase in a leads to an

increase in g (y|a) in the sense of �rst order stochastic dominance. This would imply that since

the student of type R has a lower marginal cost, her associated distribution of the indicator is

shifted to the right.

The problem of optimal rating design is then to �nd p (y) and aR, aP to maximize the objec-

tive in (11) subject to incentive compatibility for both types and that p (y) is mean preserving

contraction of y which is distributed according to fPG (y|aP ) + fRG (y|aR) = G (y|aR, aP ). In

this case, a similar proof to that of Theorem 1 implies that under the validity of FOA, the optimal

23
In 2023, California Board of Education passed the controversial California Mathematics Framework which sets

guidelines for mathematics education in California public schools. Citing the students’ socioeconomic disadvantages,

the framework calls for some relaxations in testing standards and education of mathematics. For more information,

see the article in the New Yorker on the California Mathematics Framework.
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rating can be found by concavi�cation of the gain function

Γ (i) =− αPfPG
(
G
−1

(i) |aP
)
− αRfRG

(
G
−1

(i) |aR
)

− λPGa

(
G
−1

(i) |aP
)
− λRGa

(
G
−1

(i) |aR
)

where in the above i is the quantile of y according to G and λθ’s are the multipliers on the

associated incentive compatibility constraint.

The following proposition guarantees that for a class of distribution functions, the second

derivative of the above object switches sign at most three times. This would imply that opti-

mal rating is always switching between at most four regions of pooling and separation:

Proposition 10. Suppose that log g (y|a) = f (y) + r (y)m (a) − b (a) where r (y) ,m (a) , b (a)

are increasing functions and m (a) > 0. Then optimal rating that maximizes (11) always has at
most four alternating intervals of pooling and revelation.

Note that the class of distributions considered in Proposition 10 includes some of the fairly

common ones that are used in applied work including 1. a normally distributed y where one of

the mean or variance is controlled by the action a, 2. a log–normally distributed y such that a

controls mean of log y, 3. when y is distributed according to a extreme–valued distribution of

type 1 and 2 (Gumbel and Frechet) where the scale parameter is controlled by a, among others.

Moreover, the assumption implies that log g is supermodular in (y, a), i.e., it satis�es MLRP.

Interestingly, one might think that, in light of the results on redistributive optimal ratings in

section 4, it should always be optimal to pool low realizations. However, the di�erence here

is that there are two incentive constraints. Under certain conditions on the likelihood function

ga/g for low realizations of y – speci�cally as it becomes arbitrarily large as y → y, the incentive

e�ect dominates the redistributive motives for low realizations and optimal ratings become mid

censorship. To see this, let us consider the following example.

Example 1. Suppose that y = a + ε where ε ∼ N (0, 1) and that c (a) = a2/2. Let us also

assume that αP = 1/fP , αR = 0 so that objective is to maximize the payo� of the high cost type.

As mentioned before, this example satis�es the requirement of Proposition 10 and hence optimal

ratings switch at most three times between pooling and revelation. Our calculations illustrate

that indeed optimal ratings are mid censorship: those that pool middle observations of y and

separate the extreme realizations. We further assume that kR = 1/2 and that fP = fR = 1/2.

Figure 6 depicts the optimal rating and the concavi�cation of the gain function described above

for di�erent values of costs for type P .
24

In the left panel, the cost of type P is closer to that

24
In order for the di�erence between the concavi�cation and the function to be more visible, we subtract

(αRfR + αP fP ) (1− i) from the gain function Γ in the plot. Since this subtraction is linear, it does not a�ect

the resulting concavi�cation in terms of the pooling and separating intervals.
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i

cavΓ(i)
Γ(i)

(a) Low cost for type P , kP = 3/4

i

cavΓ(i)
Γ(i)

(b) High cost for type P , kP = 5/4

Figure 6: Determining the optimal rating for Example 1

of type R. In this case, optimal rating pools observations approximately between the 6th and

71st quantile of the y distribution. When the cost for type–P increases to 5/4, the optimal rating

pools observations below the 78th percentile – the lower threshold is at 1.3th percentile. As it

can be seen, as the di�erence between the two cost types increases the rating policy becomes less

informative in order to redistribute more across the types.

6 Conclusion

In this paper, we have developed a general framework for the design of rating systems in the pres-

ence of moral hazard and strategic manipulation. Our approach makes this problem tractable by

identifying "interim prices" as the su�cient statistic for the agent’s incentives. Under a natu-

ral monotonicity restriction implementability is equivalent to a majorization restriction: feasible

interim prices are mean-preserving contractions of the full-information market value. This con-

verts rating design into the classic moral-hazard problem with a majorization constraint.

Building on this characterization, we provide a general solution method. Under a �rst-order

approach to incentive compatibility, optimal rating design reduces to concavifying a gain function

in quantile space. This formulation yields two broad takeaways. First, it delivers a set of su�cient

statistics for optimal transparency: the technology matters through how e�ort shifts the quantile

distribution of the indicator and, in turn, the distribution of market values. Second, it implies
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structure on optimal information policies. Under mild conditions, optimal ratings are simple

deterministic monotone partitions of the indicator space: the intermediary either fully reveals

the indicator on some regions or pools contiguous regions into coarse categories.

The economic insights that emerge from our analysis connect the statistical properties of the

task to the structure of optimal disclosure. In the canonical benchmark with monotone likeli-

hood ratios, full information disclosure achieves the highest implementable e�ort. Departures

from this benchmark generate systematic and testable patterns of censorship. For innovative ac-

tivities where greater e�ort expands outcome variance (ELRP), lower-censorship ratings that pool

poor realizations provide insurance against downside risk, encouraging risk-taking. For mainte-

nance activities where e�ort compresses variance (CLRP), upper-censorship ratings that pool high

realizations punish poor outcomes by deterring negligence and encouraging consistency. Strong

redistributive motives create a fundamental tension between maximizing e�ort and protecting

agents from downside risk, generally favoring policies that pool low realizations. More broadly,

the framework clari�es why “more transparency” is not a universal remedy: whether additional

information strengthens incentives depends on which parts of the outcome distribution e�ort

a�ects.

Two applications illustrate how the theory speaks to current design problems. In multi-task

environments with window dressing, more informative ratings can intensify incentives for ma-

nipulable activities that improve measured performance without an increase in underlying value.

The optimal response is often to reduce informativeness to mitigate manipulation incentives. In

particular, when manipulation becomes cheaper, welfare-optimal rating policies become more

opaque, and in a nonreducible setting upper censorship can strictly dominate full disclosure by

disproportionately discouraging extreme realizations driven by window dressing. In redistribu-

tive test design, we show how the same concavi�cation logic rationalizes mid-censorship rules

that pool intermediate outcomes while separating extremes. These results formalize a common

policy intuition: the optimal granularity of evaluation depends jointly on incentive provision,

manipulability, and distributional objectives.
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A Proofs

A.1 Proof of Proposition 1

Proof. That if p is constructed from some information structure (π, S) then p <c.v. v is immediate

from the text.

Now, suppose that p and v are comonotone and p <c.v. v. Comonotonicity of p and v implies that

there exists a monotone function p̂ where p (y) = p̂ (v (y; a)). By the main result of Kleiner et al.

(2021), p̂ has to be a linear combination of a set of monotone functions each of which partition

the possible values of v into a collection of intervals I = {Iα}α∈A ∪ {Jβ}β∈B for which either

p̂ (v) = v,∀v ∈ Iα or p̂ (v) = E [v|v ∈ Jβ] ,∀v ∈ Jβ . We can represent each function with its

associated partition I . By the Krein–Milman theorem, p̂ (v) must be a convex combination. For

the sake of convenience, suppose that there are a �nite
25

number of such function {p̂j (v)}Jj=1

with partitions {Ij}Jj=1 =
{
{Iα}α∈Aj ∪ {Jβ}β∈Bj

}
j

and a probability distribution {τj}Jj=1 so

that

p̂ (v) =
J∑
j=1

p̂j (v) τj, ∀v

25
It is fairly straightforward to see that this proof generalizes to arbitrary distributions. In order to avoid clutter

we omit the general case.
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We can de�ne S =
⋃
j {sj} ×

(⋃
α∈Aj Iα ∪Bj

)
and

π (sj, C|v) =
J∑
j=1

τj1 [v ∈ C or ∃β ∈ C, v ∈ Jβ] ,∀C ⊂
⋃
α∈Aj

Iα ∪Bj

In words, π is associated with a signal that reveals which partition Ij is used with probability τj

and then reveals v if the signal associated with Ij reveals v and otherwise the interval Jβ that v

belongs to. Under this signal, the market posterior E [v|sj] is either v if v is fully revealed in Ij or

it is E [v|v ∈ Jβ] , β ∈ Bj if sj and interval Jβ are revealed. Since these values are equal to p̂j (v)

, it implies that p̂ (v) = E [E [v|s]]. This concludes the proof.

A.2 Proof of Lemma 1

Proof. In this proof, we assume that −∞ < vQ (0) < vQ (1) < ∞. The cases with vQ (1) = ∞
or vQ (0) = −∞ can be proved using a limiting argument. Before proceeding, we prove the

following lemma:

Lemma 2. Let p, v be comonotone and pQ (i) , vQ (i) be their associated quantile representation as
de�ned in (6). If Fp (v) , Fv (v) are the cumulative distribution functions of p, v respectively, then
p <cv v if and only if Fv (v) <cv Fp (v) where v is uniformly distributed over V = [vQ (0) , vQ (1)].
In other words,∫ 1

0

φ (pQ (i)) di ≥
∫ 1

0

φ (vQ (i)) di,∀φ : V → R : concave⇔∫
V

ψ (Fv (v)) dv ≥
∫
V

ψ (Fp (v)) dv,∀ψ : [0, 1]→ R : concave

An example that illustrates Lemma 2 is depicted in Figure 7. On the left, we have an example

of p, v (not their quantile version) where p is a mean–preserving contraction of v while this is

reversed for their c.d.f.’s. The idea behind Lemma 2 is simple. Since c.d.f.’s are inverses of the

quantile functions mean preserving contraction for one implies mean preserving spread for the

other. We provide its proof in the online Appendix. Note that in the above, we can view i = Fv (v)

as having a distribution according to
vQ(i)−vQ(0)

vQ(1)−vQ(0)
and j = Fp (v) as having a distribution

pQ(j)−vQ(0)

vQ(1)−vQ(0)

with probability
vQ(1)−pQ(1)

vQ(1)−vQ(0)
on j = 1.

Now, if p <cv v, Lemma 2 implies that Fv <cv Fp. By Blackwell’s theorem (see also Kolotilin

(2018) and Gentzkow and Kamenica (2016)), there must exist a signal structure (or a garbling)

where Fv (v) = i is the conditional mean of Fp = j upon realization of the signal with i having

distribution dvQ (i) / (vQ (i)− vQ (0)) and similarly for j. Let µ (·|i) ∈ ∆ [0, 1] be the posterior
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vmin y

v(y) = E [v|y]

p(y)

y y

vmax

0 v

Fv(v)

Fp(v)

vmin vmax

1

Figure 7: Example of p <cv v (left) and their associated CDF’s (right) that satisfy Fv <cv Fp

associated with Fv (v) = i. Since the distribution of i is given by dvQ (i) / (vQ (i)− vQ (0)) we

can write Bayes plausibility as∫
µ (A|i) dvQ (i)

|V |
=

∫
A
dpQ (j)

|V |
, A ⊂ [0, 1] (12)

such that

i =

∫
jdµ (j|i) ,∀i ∈ [0, 1] (13)

where in the above |A| is the Lebesgue measure of A and |V | = vQ (1) − vQ (0). Note that (13)

simply states that i = Fv (v) is the posterior mean of j = Fp (v) according to the distribution

µ (·|i).

We can then write∫
Y

p (y)h (y) dG = −
∫ 1

0

pQ (j) dH (j)

= −
∫ 1

0

µ ([0, j] |i) dvQ (i) dH (j) by setting A=[0, j] in (12)

= −
∫ 1

0

∫ 1

0

µ ([0, j] |i) dH (j) dvQ (i) Fubini’s Theorem

= −
∫ 1

0

[
H (1)−

∫ 1

0

H (j) dµ (j|i)
]
dvQ (i) Int. by parts for inside integral

=

∫ 1

0

∫ 1

0

H (j) dµ (j|i) dvQ (i) since by construction H (1) = 0

Now, consider the expression

∫ 1

0
H (j) dµ (j|i). In this expression µ (·|i) is a probability dis-

tribution over j whose mean value is i. In other words, this is a convex combination of val-
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ues of H (j) with average of i. Given the de�nition of the concave envelope, we have that∫ 1

0
H (j) dµ (j|i) ≤ cavH (i). Moreover, since the space of measures over [0, 1] is compact accord-

ing to weak–* topology (Banach-Alaoglu theorem) for each i there must exist µ (·|i) ∈ ∆ [0, 1]

such that

∫ 1

0
H (j) dµ (j|i) = cavH (i). We can then use the above procedure to construct an

interim price function that delivers

∫
cavH (i) dvQ (i). This proves the equality (8).

To prove the second part, note that by Caratheodory theorem, for any i either cavH (i) = H (i)

or that there exists i1 < i < i2 such that

cavH (i) =
i2 − i
i2 − i1

H (i1) +
i− i1
i2 − i1

H (i2)

In the �rst case, µ ({i} |i) = 1 and in the second case µ ({i1} |i) = i2−i
i2−i1 = 1−µ ({i2} |i). In other

words, concavi�cation of H partitions the range of [0, 1] into subintervals (i1,α, i2,α), [i1,β, i2,β]

where for any α there exists β such that i2,α = i1,β and another β for which i1,α = i2,β where for

all i ∈ [i1,β, i2,β], µ ({i} |i) = 1 and for all i ∈ (i1,α, i2,α), µ ({i1,α} |i) = i2,α−i
i2,α−i1,α = 1−µ ({i2,α} |i).

From above we know that

pQ (j) =

∫ 1

0

µ ([0, j] |i) dvQ (i)

Given the construction of µ, we have

µ ([0, j] |i) =

1 [j ≥ i] cavH (i) = H (i)

i2,α−i
i2,α−i1,α1 [i2,α > j ≥ i1,α] + 1 [j ≥ i2,α] otherwise

Now, suppose that j ∈ [i1,β, i2,β] for some β. This means that if i > j, µ ([0, j] |i) = 0 since all

higher quantiles either put weights only on i or on values of the form i1,α, i2,α which are higher

than j. Then we can write

pQ (j) =

∫ 1

0

µ ([0, j] |i) dvQ (i)

=

∫ j

0

dvQ (i) = vQ (j)

Moreover, if j ∈ (i1,α, i2,α) for some α, then it has to be that if i > i2,α, then µ ([0, j] |i) = 0. So
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we can write

pQ (j) =

∫ i2,α

0

µ ([0, j] |i) dvQ (i)

=

∫ i1,α

0

dvQ (i) +

∫ i2,α

i1,α

µ ([0, j] |i) dvQ (i)

= vQ (i1,α) +

∫ i2,α

i1,α

i2,α − i
i2,α − i1,α

dvQ (i)

= vQ (i1,α)− vQ (i1,α) +

∫ i2,α

i1,α

vQ (i)

i2,α − i1,α
di

= E [vQ (i) |i ∈ (i1,α, i2,α)]

This establishes the claim.

A.3 Proof of Theorem 1

Proof. Consider the problem of �nding the best interim price function in quantile form for a given

action a:

max
pQ

W (a)−
∫
pQ (i) dH (i; a) = max

pQ
W (a) + THpQ

subject to pQ <cv vQ, monotonicity of pQ and the �rst order IC constraints. We will show that

for any a ∈ A, Lagrange multipliers associated with the �rst order IC constraints exist so that

the constrained optimization gives the same value as the unconstrained optimization of the La-

grangian over the space of pQ’s that are a mean preserving contraction of vQ and are monotone.

This combined with Lemma 1 implies the desired result.

We view pQ as a member of any arbitrary Lp ([0, 1]) space for some p ≥ 1. Let us refer to the

�rst order IC constraints with respect to an as TnpQ = 0 where Tn is an a�ne transformation that

maps Lp ([0, 1]) to R (same is true for TH ) and we can de�ne TpQ = (T1pQ, · · · , TNpQ) which is

an a�ne transformation from Lp ([0, 1]) to RN
. Finally, let us refer to the set of pQ’s that satisfy

pQ <cv vQ and monotonicity of pQ as P and the subset of P that satis�es TpQ = 0 as Q.

For any subset S ⊂ {1, · · · , N}, let Sc = {1, · · · , N} \S and let us consider the following sets

P (S) = {pQ ∈ Lp ([0, 1]) |pQ <c.v. vQ, pQ increasing, TnpQ ≥ 0, n ∈ S, Tn′pQ ≤ 0, n′ ∈ Sc}

Lemma 3. There exists S such that maxpQ∈P(S) THpQ = maxpQ∈Q THpQ.

Proof. Since all members of Q satisfy TnpQ = 0, it must be that Q ⊂ P (S) for all S. This

implies that maxpQ∈P(S) THpQ ≥ maxpQ∈Q THpQ. Now, suppose to the contrary that for all S,

the left hand side is strictly higher than the right hand side. This implies that for any S ⊂
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{2, · · · , n}, there exists p ∈ P (S) , p′ ∈ P (S ∪ {1}) such that THp, THp
′ > maxpQ∈Q THpQ.

Since T1p ≤ 0 ≤ T1p
′

there must exists λ such that T1 (λp+ (1− λ) p′) = 0. Let p(1),S =

λp + (1− λ) p′ and recall that p(1),S ∈ P (S). Note that we must also have that THp
(1),S >

maxpQ∈Q THpQ. Now, we know that T2p
(1),S ≤ 0 ≤ T2p

(1),S∪{2}
for any S ⊂ {3, · · · , n}. By

using the same argument, we can �nd p(1,2),S
such that T1p

(1,2),S = T2p
(1,2),S = 0, p(1,2),S ∈ P (S)

and THp
(1,2),S > maxpQ∈Q THpQ. By continuing this construction, we can �nd p(1,2,··· ,N)

such

that T1p
(1,··· ,N) = · · · = TNp

(1,··· ,N) = 0 and that THp
(1,··· ,N) > maxpQ∈Q THpQ which is a

contradiction since p(1,··· ,N) ∈ Q.

Now, suppose that Ŝ ⊂ {1, · · · , N} satis�es the condition in Lemma 3. Let us de�ne P =

{pQ|pQ <c.v. vQ, pQ increasing}. Then, T maps members of P into RN
. Moreover, T maps mem-

bers of P
(
Ŝ
)

into a convex cone. Since the image of P
(
Ŝ
)

under T is convex in RN
, it must

have a non–empty relative interior.
26

This implies that we can apply standard results for exis-

tence of Lagrange multipliers (strong duality) – see for example, Theorem 8.3.1. in Luenberger

(1997). Hence, it must be that λ 6= 0 ∈ RN
exists such that λn ≥ 0 for all n ∈ Ŝ and λn ≤ 0 for

all n ∈ Ŝc such that

max
pQ∈P

W (a)−
∫
pQ (i) dH (i; a) =

max
pQ∈P

W (a) +

∫ [
H (i; a)−

N∑
n=1

λn
∂

∂ân
F (i|â; a)

∣∣∣∣
â=a

]
dpQ −

N∑
n=1

λn
∂c (a)

∂an

The rest of the claim follows from Lemma 1.

A.4 Proof of Proposition 2

Proof. Given the statement of Theorem 1, we know that the unconstrained objective in (D) can

be achieved by a monotone partition. Note that by Kleiner et al. (2021), the extreme points of the

convex setP – the set of pQ’s that are mean preserving contractions of vQ and are monotone – are

associated with the monotone partitions. In what follows, we show that under the Assumption

2, no two extreme points of P can deliver the same value of the Lagrangian

L (pQ, λ; a) = W (a)−
∫
pQ (i) d

(
H (i; a)−

N∑
n=1

λn
∂

∂ân
F (i|â; a)

∣∣∣∣
â=a

)
−

N∑
n=1

λn
∂c (a)

∂an

This would imply that L (pQ, λ; a) has a unique maximand for any λwhich establishes the claim.

26
See for example Theorem 6.2 in Rockafellar (1970).
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Suppose that there are two interim price functions p1, p2 ∈ P that are associated with mono-

tone partitions. If p1 6= p2, then there must exist an interval I ⊂ [0, 1] so that all of its members

satisfy p1,Q (i) = v1,Q (i) and p2,Q (i) is constant for all i ∈ I . By Lemma 1, if p1,Q (i) = v1,Q (i) is

optimal for an interval I , then Γ (i; a, λ) = H (i; a)−
∑N

n=1 λn
∂
∂ân

F (i|â; a)
∣∣∣
â=a

should coincide

with its concave envelope. Moreover, suppose that the maximal interval containing I for which

p2,Q is constant is Ĩ = (i1, i2). Suppose that the value of p2,Q is p̃ over this interval.

We show that this implies that Γ (i; a, λ) is linear over the interval I . Suppose to the contrary

that for some sub–interval I ′ ⊂ I , Γ (i; a, λ) is strictly concave. Then,

−
∫
Ĩ

p2,Q (i) dΓ (i; a, λ) = −p̃ [Γ (i2; a, λ)− Γ (i1; a, λ)]

We also have that

vQ (i1) < p̃ =

∫
Ĩ
vQ (i) di

i2 − i1
< vQ (i2)

Let us de�ne

p̂Q (i) =


pQ,2 (i) i ∈ [0, 1] \Ĩ

p i ∈ (i1, j)

p i ∈ (j, i2)

where

p =

∫ j
i1
vQ (i) di

j − i1
, p =

∫ i2
j
vQ (i) di

i2 − j
We have

−
∫
p̂2,Q (i) dΓ (i;λ, a) +

∫
p2,Q (i) dΓ (i;λ, a) =

−
∫ j
i1
vQ (i) di

j − i1
[Γ (j; a, λ)− Γ (i1; a, λ)]−

∫ i2
j
vQ (i) di

i2 − j
[Γ (i2; a, λ)− Γ (j; a, λ)]

+

∫ i2
i1
vQ (i) di

i2 − i1
[Γ (i2; a, λ)− Γ (i1; a, λ)]

In the above, since Γ (i; a, λ) is strictly concave over parts of I , we must have that

Γ (j; a, λ)− Γ (i1; a, λ)

j − i1
>

Γ (i2; a, λ)− Γ (j; a, λ)

i2 − j
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Let us also de�ne π1 = j−i1
i2−i1 = 1− π2 . Since p < p,we can write

π1p
Γ (j; a, λ)− Γ (i1; a, λ)

j − i1
+ π2p

Γ (i2; a, λ)− Γ (j; a, λ)

i2 − j
<(

π1p+ π2p
)(

π1
Γ (j; a, λ)− Γ (i1; a, λ)

j − i1
+ π2

Γ (i2; a, λ)− Γ (j; a, λ)

i2 − j

)
=∫ i2

i1
vQ (i) di

i2 − i1
Γ (i2; a, λ)− Γ (i1; a, λ)

i2 − i1

which implies that

−
∫
p̂2,Q (i) dΓ (i;λ, a) +

∫
p2,Q (i) dΓ (i;λ, a) > 0

and thus p2,Q cannot be optimal. Therefore,

Γ′ (i; a, λ) = c,∀i ∈ I

for some c. Using the de�nition of H and F , we have

Γ′ (i; a, λ) = −α
(
G−1 (i|a)

)
− 1

g (y|a)

∑
λn
∂g (G−1 (i|a) |a)

∂an
= c

This is indeed in contradiction with the independence assumption which establishes the claim.

A.5 Proof of Proposition 3

Proof. In this case, the function Γ (i; a, λ) satis�es

Γ′ (i; a, λ) = −λ∂g (G−1 (i|a) |a)

∂a

1

g (G−1 (i|a) |a)

Since g exhibits MLRP, if λ > 0 then, Γ′ is decreasing in i and so Γ is concave. If λ < 0, then Γ′

is increasing in i and so Γ is convex.

By Lemma 1, if Γ is concave, optimal rating should be fully informative which proves the desired

result. If on the other hand, Γ is convex, then the optimal rating should be uninformative and as

a result

∫
∂F
∂a
dpQ = 0 which means that no e�ort with a positive cost can be incentivized.
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A.6 Proof of Proposition 4

Proof. Recall that Γ (i;λ, a) = −λ ∂F (i;â,a)
∂â

∣∣∣
â=a

and as we have shown in section 4,

Γ′′ (i; a, λ) = −λ 1

g (y|a)

∂2 log g (y|a)

∂a∂y

∣∣∣∣
y=G−1(i|a)

Given our de�nition of ELRP, when λ is negative, the above is concave–convex and when λ is

positive, the above is convex–concave. We wish to show that under ELRP, λ is positive and thus

optimal rating has to be lower censorship.

Suppose to the contrary that λ is negative. In this case, since Γ (0; a, λ) = Γ (1; a, λ) = 0, there

are two possibilities: 1. Γ′ (0; a, λ) < 0 in which case Γ (i; a, λ) is non–positive for all values of i

and its concave envelope is the zero function associated with no information; 2. Γ′ (0; a, λ) > 0

in which case for an interval [0, i1] the concave envelope coincides with Γ and for higher values

cavΓ is linear. This is associated with an upper-censorship optimal rating. This is depicted in

Figure 8 on the left. In the �rst case, the marginal return to e�ort is zero and e�ort with positive

marginal cost cannot be supported.

i
Γ(i;λ, a)1

cavΓ

i
Γ(i;λ, a) 1

cavΓ

Figure 8: Concave envelope of the marginal change in distribution is concave–convex (left) and

convex–concave (right).

In the second case, let y1 be the value of indicator associated with i1. In this case, the marginal

bene�t of e�ort is given by ∫
p (y)

∂g (y|a)

∂a
dy =∫ y1

y

v (y; a)
∂ log g (y|a)

∂a
dG+ p

∫ y

y1

∂g (y|a)

∂a
dy

where in the above p is the average value of v when y ≥ y1. Since Γ is concave over [0, i1],
∂ log g(y|a)

∂a
is decreasing in y over the interval

[
y, y1

]
and thus, using the fact that v is increasing
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in y, we can use Chebyshev’s sum inequality to write the above as∫ y1

y

v (y; a)
∂ log g (y|a)

∂a
dG+ p

∫ y

y1

∂g (y|a)

∂a
dy ≤∫ y1

y
v (y; a) dG

G (y1|a)

∫ y1

y

∂ log g (y|a)

∂a
dG+ p

∫ y

y1

∂g (y|a)

∂a
dy =∫ y1

y
v (y; a) dG

G (y1|a)

∂G (y1|a)

∂a
− p∂G (y1|a)

∂a

where in the above we have used the fact that
∂G(y|a)
∂a

= 0. Since Γ (i1) = −λ∂G(y1|a)
∂a

> 0, the

above expression satis�es

(E [v|y ≤ y1]− E [v|y ≥ y1])
∂G (y1|a)

∂a
≤ 0

which cannot be the case since the cost of e�ort is increasing. Hence, λ ≥ 0 and thus optimal

rating is lower censorship. When g exhibits CLRP, the argument is the mirror of the current

argument.

A.7 Proof of Proposition 5

Proof. To show the result, it is su�cient to show that cavΓ cannot coincide with Γ for an in-

terval of values of i including 0. Suppose that to contrary that there exists an interval [0, i1]

where cavΓ = Γ and as a result Γ is concave in [0, i1]. Consider the linear function Γ̃ (i) =

(1− i)
∫ 1

0
α (G−1 (i|a)) di. This function coincides with Γ (i;λ, a) at i = 0, 1 since

∂G
∂a

(G−1 (0|a) |a) =
∂G
∂a

(G−1 (1|a) |a) = 0. This implies that any concave function that is above Γ is also (weakly)

higher than Γ̃ and thus for all values of i, cavΓ (i;λ, a) ≥ Γ̃ (i). Since by our contrary assumption

for all values of i ∈ [0, i1], Γ is concave and by the Assumption in the statement of the Proposition

Γ′ (0; a, λ) = −α
(
G−1 (0|a)

)
− λ∂G (G−1 (0|a) |a)

∂a
< Γ̃′ (i)

we must have that for all values of i ∈ [0, i1],

Γ (i; a, λ) < Γ̃ (i)

As we argued, Γ̃ (i) ≤ cavΓ (i; a, λ) which with the above gives a contradiction.
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A.8 Proof of Proposition 9

Proof. If we let ĉ (a) = a2/2, then the optimal rating design in this case is given by

max
p,a1,a2

a1 − κĉ (a1)− κĉ (a2)

subject to ∫ ∞
−∞

p (y)
∂g (y|a1, a2)

∂a1

dy = κĉ′ (a1)∫ ∞
−∞

p (y)
∂g (y|a1, a2)

∂a2

dy = κĉ′ (a2)

p <c.v. v (y; a) ,p: non-decreasing

The proof that in the above, p is determined by the concavi�cation of

Γ (i;λ, a) = −λ1
∂G (y|a)

∂a1

− λ2
∂G (y|a)

∂a2

∣∣∣∣
y=G−1(i|a)

is identical to that of Theorem 1. Note that

y|a ∼ N
(
µ (a) , σ (a)2) ,

µ (a) = ba1 + a2, σ (a) =

√
(ba1)2 + a2

2

This implies that G (y|a) = Φ
(
y−µ(a)
σ(a)

)
and therefore

Γ (G (y|a) ;λ, a) =
φ
(
y−µ(a)
σ(a)

)
σ (a)

(
λ1b+ λ2 +

y − µ (a)

σ (a)

b2a1λ1 + a2λ2

σ (a)

)

where φ (x) = e−x
2/2

√
2π

with φ′ (x) = −xφ (x). As a result,

Γ′ (G (y|a) ;λ, a) =
b2a1λ1 + a2λ2

σ (a)2 +
φ′
(
y−µ(a)
σ(a)

)
σ (a)φ

(
y−µ(a)
σ(a)

) (λ1b+ λ2 +
y − µ (a)

σ (a)

b2a1λ1 + a2λ2

σ (a)

)

=
b2a1λ1 + a2λ2

σ (a)2 − y − µ (a)

σ (a)2

(
λ1b+ λ2 +

y − µ (a)

σ (a)

b2a1λ1 + a2λ2

σ (a)

)
Γ′′ (G (y|a) ;λ, a) g (y|a) = − 1

σ (a)2

(
λ1b+ λ2 + 2

y − µ (a)

σ (a)

b2a1λ1 + a2λ2

σ (a)

)
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The right hand side of the last expression is linear in y and thus changes sign only once. This

means that optimal rating is either lower or upper censorship.

Now, consider a lower-censorship rating that pools values of y below ŷ and reveals those above

it. In Online Appendix, we show that the welfare increases as ŷ decreases. This implies that full

information ratings deliver higher level of welfare than lower censorship. Additionally, we show

that the welfare associated with an upper-censorship rating that pools values of y above ŷ, is

decreasing at ŷ =∞. Since ŷ =∞ is full revelation, this proves the result.

A.9 Proof of Proposition 10

Proof. It is immediate by using an argument similar to Theorem 1 that optimal ratings can be

found by concavi�cation of the function

Γ (i) = −αPfPG
(
G
−1

(i) |aP
)
−αRfRG

(
G
−1

(i) |aR
)
−λPGa

(
G
−1

(i) |aP
)
−λRGa

(
G
−1

(i) |aR
)

for some Lagrange multipliers λP , λR. We have

Γ′ (i) = −αPfP
g
(
G
−1

(i) |aP
)

g
(
G
−1

(i)
) −αRfR

g
(
G
−1

(i) |aR
)

g
(
G
−1

(i)
) −λP

ga

(
G
−1

(i) |aP
)

g
(
G
−1

(i)
) −λR

ga

(
G
−1

(i) |aR
)

g
(
G
−1

(i)
)

where in the above g (y) = fPg (y|aP ) + fRg (y|aR). Given the functional form of g, we have

g (y|a) = ef(y)+r(y)m(a)−b(a)

g (y|aP )

g (y|aR)
= er(y)(m(aP )−m(aR))+b(aR)−b(aP )

ga (y|a)

g (y|a)
= m′ (a) r (y)− b′ (a)

Replacing in the formula for Γ′ implies

Γ′
(
G (y)

)
= −αPfP

1

fP + fR
g(y|aR)
g(y|aP )

−αRfR
g(y|aR)
g(y|aP )

fP + fR
g(y|aR)
g(y|aP )

−λP
ga(y|aP )
g(y|aP )

fP + g(y|aR)
g(y|aP )

−λR
g(y|aR)
g(y|aP )

ga(y|aR)
g(y|aR)

fP + fR
g(y|aR)
g(y|aP )

If we refer to m (aR) −m (aP ) as ∆m and similarly for b (aR) − b (aP ), we can write the above

as

Γ′
(
G (y)

)
= −αPfP + αRfRe

r∆m−∆b + λP (m′P r − b′P ) + λR (m′Rr − b′R) er∆m−∆b

fP + fRer∆m−∆b
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If we de�ne x = er∆m, then the above has the form

−A1 + A2x+ A3 log x+ A4x log x

B1 +B2x

Note that we can argue that λR > 0. This is because if we consider the problem by replacing the

IC for the R type with its inequality version imposing that the marginal return to aR be higher

than its cost. In this problem, if this constraint remains slack, one can simply increase aR and

shifts all p (y)’s upwards by the same amount and improve the payo�s. Hence, λR ≥ 0. Since

m′R ≥ 0 by assumption, we must have that A4 > 0.

We then have

(B1 +B2x)2 Γ′′
(
G (y)

)
g (y)

dx
dy

= (B2A3 −B1A4) log x−B1A3/x−B2A4x

+B2 (A1 − A3)−B1 (A1 + A4)

=B2A4 (α1 log x+ α2/x− x+ α3)

Note that in the above A4B2 > 0. The derivative of the above with respect to x is given by

α1

x
−α2/x

2−1 = α1x−α2−x2
x

. Suppose that α2 > 0. Since the numerator is a quadratic function, it

has at most two roots and this means that Γ′′ switches sign at most three times. This establishes

the claim.
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Online Appendix

B Proof of Optimality of Upper Censorship in Section 5.2

Proof. We have established that the optimal rating is either upper or lower censorship.

Consider a rating that pools that values of y below ŷ. Since y ∼ N
(
µ (a) , σ (a)2)

and that

dv
dy

= β (a), we can decompose the marginal return to each action, a1, a2, into their e�ect on the

mean and the variance of the distribution. Speci�cally, the expected interim price when the mean

and variance chosen by the agent are m and s2
and the market belief is µ, σ2

is given by

β (a)×
(
pLΦ

(
ŷ −m
s

)
+

∫ ∞
ŷ

y

s
φ

(
y −m
s

)
dy

)

where pL =
∫ ŷ
−∞ ydΦ( y−µσ )

Φ( ŷ−µσ )
. If we let ẑ = ŷ−m

s
, then we can rewrite the above as

β (a)×
(
pLΦ (ẑ) +

∫ ∞
ẑ

(sz +m)φ (z) dz

)
The derivatives of the term in the bracket with respect to m and s after imposing m = µ and

s = σ are given by

rL (ẑ) = −pL
1

σ
φ (ẑ) +

(µ
σ

+ ẑ
)
φ (ẑ) +

∫ ∞
ẑ

φ (z) dz

tL (ẑ) = −pL
ẑ

σ
φ (ẑ) + (σẑ + µ)

ẑ

σ
φ (ẑ) +

∫ ∞
ẑ

zφ (z) dz

Additionally, we can use integration by parts and write

pL =

∫ ŷ
−∞ ydΦ

(
y−µ
σ

)
Φ
(
ŷ−µ
σ

) =
σ
∫ ẑ
−∞ zφ (z) dz

Φ (ẑ)
+ µ

= −σ
∫ ẑ
−∞Φ (z) dz

Φ (ẑ)
+ µ+ σẑ

We can replace for pL in rL (ẑ) and tL (ẑ) to arrive at

rL (ẑ) =

∫ ẑ
−∞Φ (z) dz

Φ (ẑ)
φ (ẑ) + 1− Φ (ẑ)

tL (ẑ) =

∫ ẑ
−∞Φ (z) dz

Φ (ẑ)
ẑφ (ẑ) +

∫ ∞
ẑ

zφ (z) dz = sL (ẑ) rL (ẑ)
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Taking a derivative of the above gives us

r′L (ẑ) =

∫ ẑ

−∞
Φ (z) dz

d

dẑ

φ (ẑ)

Φ (ẑ)
< 0

s′L (ẑ) =
d

dẑ

∫ ẑ
−∞ Φ(z)dz

Φ(ẑ)
ẑφ (ẑ) +

∫∞
ẑ
zφ (z) dz∫ ẑ

−∞ Φ(z)dz

Φ(ẑ)
φ (ẑ) + 1− Φ (ẑ)

=
d

dẑ

∫ ẑ
−∞ Φ(z)dz

Φ(ẑ)
ẑφ (ẑ) + ẑ (1− Φ (z)) +

∫∞
ẑ

(1− Φ (z)) dz∫ ẑ
−∞ Φ(z)dz

Φ(ẑ)
φ (ẑ) + 1− Φ (ẑ)

=
d

dẑ
ẑ +

∫∞
ẑ

(1− Φ (z)) dz∫ ẑ
−∞ Φ(z)dz

Φ(ẑ)
φ (ẑ) + 1− Φ (ẑ)

= 1− 1− Φ (ẑ)

rL (ẑ)
−
∫∞
ẑ

(1− Φ (z)) dz

rL (ẑ)

r′L (ẑ)

rL (ẑ)
> 0

where the above holds because φ (z) /Φ (z) is decreasing or Φ (z) is log–concave. The last in-

equality holds because 1 − Φ (ẑ) < rL (ẑ) and that r′L (ẑ) < 0. Note further that rL (−∞) =

1, rL (∞) = 0. Since rL is strictly decreasing, we can thus de�ne the function ŝL (r) = sL
(
r−1
L (r)

)
.

By varying r between 0 and 1, the function ŝL (r) decreases to 0 as r increases to 1.

Given ŷ, the best response of the agent should satisfy

β (a) rb+ β (a)
b2a1

σ (a)
rŝL (r) = κĉ′ (a1)

β (a) r + β (a)
a2

σ (a)
rŝL (r) = κĉ′ (a2)

Since β (a) = ba2
1/σ (a)2

, if we let x = bβ (a), then, a1 = σ
√
x
b
, a2 = σ

√
1− x and we can write

the above as

rx
(
1 +
√
xŝL (r)

)
= κ

σ
√
x

b

r
x

b

(
1 +
√

1− xŝL (r)
)

= κσ
√

1− x

which determine x, σ for a given value of r. Since x and σ determine a1, a2, we can refer to the

values as â1 (r) , â2 (r) If we divide the top equation by the bottom one, we have

b2 1 +
√
xŝL (r)

1 +
√

1− xŝL (r)
=

√
x

1− x

and this implies that

ŝL (r) =
1

1− b2

(
b2

√
x
− 1√

1− x

)
(14)

Let us refer to the solution of this as x̂ (r). The right hand side of the above is decreasing in x

while the LHS is decreasing in r. This means that an increase in r increases x̂ (r). Thus, the

highest value of x is associated with r = 1 and ŝL (1) = 0 which is given by
b4

1+b4
. We also have
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that

κâ1 (r) = rx̂ (r) (1 + x̂ (r) ŝL (r)) = rx̂ (r)

(
1−

√
x̂ (r)

1− x̂ (r)

)

The function x
(

1−
√

x
1−x

)
is maximized at x = 1 − 1

2
3

√
2−
√

2
4
− 1

2
3

√
2+
√

2
4
≈ 0.262 and is

increasing below this value. This implies that as long as
b4

1+b4
≤ x → b ≤ 0.772, an increase in

r leads to an increase in x and as a result a1. Hence, the highest value of â1 is attained at r = 1

and is given by
1
κ

b4

1+b4
.

Note also that a2 = ba1

√
1−x
x

and thus total surplus is given by

Ŵ (r) = â1 (r)− κ

(
â1 (r)2

2
+
â2 (r)2

2

)
= â1 (r)− κ

2
â1 (r)2

(
1 + b2 1− x̂ (r)

x̂ (r)

)

The unconstrained optimal value of a1 for a given x is
1
κ

1
1+b2 1−x

x

. This value is decreasing in x

and since x ≤ b4

1+b4
, it attains its lowest value at

1
κ

1
1+b−2 = 1

κ
b2

1+b2
. Since the above function is

hump–shaped in a1, and is maximum value is always above â1 (1) and from above we know that

â1 (r) ≤ â1 (1), it must be that total surplus satis�es

Ŵ (r) ≤ â1 (1)− κ

2
â1 (1)2

(
1 + b2 1− x̂ (r)

x̂ (r)

)
≤ â1 (1)− κ

2
â1 (1)2

(
1 + b2 1− x̂ (1)

x̂ (1)

)
= Ŵ (1)

which implies that the best lower-censorship rating is full revelation, i.e., r (ẑ) = 1→ ẑ = −∞.

Now, consider an upper-censorship rating that pools values of y above ŷ. In this case, when the

mean and variance chosen by the agent are m and s2
and the market belief is µ, σ2

is given by

β (a)×
(
pH

(
1− Φ

(
ŷ −m
s

))
+

∫ ŷ

−∞

y

s
φ

(
y −m
s

)
dy

)

where pL =
∫∞
ŷ ydΦ( y−µσ )
1−Φ( ŷ−µσ )

. If we let ẑ = ŷ−m
s

, then we can rewrite the above as

β (a)×
(
pH (1− Φ (ẑ)) +

∫ ẑ

−∞
(sz +m)φ (z) dz

)
The derivatives of the term in the bracket with respect to m and s after imposing m = µ and
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s = σ are given by

rU (ẑ) = pH
1

σ
φ (ẑ)−

(µ
σ

+ ẑ
)
φ (ẑ) +

∫ ẑ

−∞
φ (z) dz

tU (ẑ) = pH
ẑ

σ
φ (ẑ)− (σẑ + µ)

ẑ

σ
φ (ẑ) +

∫ ẑ

−∞
zφ (z) dz

We can use the same simpli�cation as above and write

rU (ẑ) =

∫∞
ẑ

(1− Φ (z)) dz

1− Φ (ẑ)
φ (ẑ) + Φ (ẑ)

tU (ẑ) =

∫∞
ẑ

(1− Φ (z)) dz

1− Φ (ẑ)
ẑφ (ẑ) +

∫ ẑ

−∞
zφ (z) dz = sU (ẑ) rU (ẑ)

Similar to the above, we can show that rU is increasing with values between 0 and 1 while sU is

increasing and negative with values between −∞ and 0.

Similar to before, FOCs are given by

rx
(
1 +
√
xŝU (r)

)
= κ

σ
√
x

b
= κa1

r
x

b

(
1 +
√

1− xŝU (r)
)

= κσ
√

1− x = κa2

From before, at r = 1, x = b4

1+b4
, and we have

ŝU (r) =
1

1− b2

(
b2

√
x
− 1√

1− x

)
Taking a derivative of the above at r = 1, we have

ŝ′U (r) =
1

1− b2

(
− b2

2x
√
x
− 1

2 (1− x)
√

1− x

)
x′ (r)

Since ŝ′U (r) ≥ 0, the above implies that x′ (r) ≤ 0. Note also that

s′U (ẑ) rU (ẑ) + sU (ẑ) r′U (ẑ) = t′U (ẑ)∫ ∞
ẑ

(1− Φ (z)) dz
d

dẑ

(
ẑφ (ẑ)

1− Φ (ẑ)

)
= t′U (ẑ)∫ ∞

ẑ

(1− Φ (z)) dz
d

dẑ

(
φ (ẑ)

1− Φ (ẑ)

)
= r′U (ẑ)
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We know that ŝU (rU (ẑ)) = sU (ẑ)→ ŝ′U (rU (ẑ)) =
s′U (ẑ)

r′U (ẑ)
and hence,

ŝ′U (rU (ẑ)) =
s′U (ẑ)

r′U (ẑ)
=

t′U (ẑ)

rU (ẑ) r′U (ẑ)
− sU (ẑ)

rU (ẑ)

We have that

lim
ẑ→∞

t′U (ẑ)

r′U (ẑ)
= lim

ẑ→∞

d
dẑ

(
ẑφ(ẑ)

1−Φ(ẑ)

)
d
dẑ

(
φ(ẑ)

1−Φ(ẑ)

)
= lim

ẑ→∞

ẑ d
dẑ

(
φ(ẑ)

1−Φ(ẑ)

)
+ φ(ẑ)

1−Φ(ẑ)

d
dẑ

(
φ(ẑ)

1−Φ(ẑ)

)
lim
ẑ→∞

d

dẑ

(
φ (ẑ)

1− Φ (ẑ)

)
= lim

ẑ→∞

−ẑφ (ẑ) (1− Φ (ẑ)) + φ (ẑ)2

(1− Φ (ẑ))2

= lim
ẑ→∞

−φ (ẑ) (1− Φ (ẑ)) + ẑ2φ (ẑ) (1− Φ (ẑ)) + ẑφ (ẑ)2 − 2ẑφ (ẑ)2

−2φ (ẑ) (1− Φ (ẑ))

= lim
ẑ→∞

− (1− Φ (ẑ)) + ẑ2 (1− Φ (ẑ))− ẑφ (ẑ)

−2 (1− Φ (ẑ))

= lim
ẑ→∞

φ (ẑ) + 2ẑ (1− Φ (ẑ))− ẑ2φ (ẑ)− φ (ẑ) + ẑ2φ (ẑ)

2φ (ẑ)

= lim
ẑ→∞

ẑ (1− Φ (ẑ))

φ (ẑ)
= lim

ẑ→∞

1− Φ (ẑ)− ẑφ (ẑ)

−ẑφ (ẑ)
= 1

Since rU (ẑ)→ 1 as ẑ →∞ and sU (ẑ)→ 0 as ẑ →∞, we must have that

lim
r→1

ŝ′U (r) =∞

This implies that x̂′ (1) = −∞ and moreover since x̂ (1) = b4

1+b4
:

lim
r→1

ŝ′U (r)

x̂′ (r)
= − 1

1− b2

(
b2

2x̂ (1)
√
x̂ (1)

+
1

2 (1− x̂ (1))
√

1− x̂ (1)

)

= − 1

2 (1− b2)

 b2

b6

(1+b4)3/2

+
1
1

(1+b4)3/2

 = − (1 + b4)
5
2

2 (1− b2) b4
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Let us also calculate the value of a′1 (1). We have

a′1 (r) =rx̂ (r)
(

1 +
√
x̂ (r)ŝU (r)

)
=a1 (r)

1

r
+
x̂′ (r)

x̂ (r)
+

x̂′(r)ŝU (r)

2
√
x̂(r)

+ ŝ′U (r)
√
x̂ (r)

1 +
√
x̂ (r)ŝU (r)


Hence,

lim
r→1

a′1 (r)

x̂′ (r)
= a1 (1)

 1

x̂′ (1)
+

 1

x̂ (1)
+

ŝU (1)

2
√
x̂(1)

1 +
√
x̂ (1)ŝU (1)

+ lim
r→1

ŝ′U (r)

x̂′ (r)

√
x̂ (1)

1 +
√
x̂ (1)ŝU (1)


=

1

κ

b4

1 + b4

(
0 +

1 + b4

b4
− b2

√
1 + b4

(1 + b4)
5
2

2 (1− b2) b4

)

=
1

κ

b4

1 + b4

(
1 + b4

b4
− (1 + b4)

2

2 (1− b2) b2

)
=

1

κ

(
1− b2 (1 + b4)

2 (1− b2)

)
=

2− 3b2 − b6

2κ (1− b2)
≥ 0 if b ≤ 0.772

The above expression is positive for the same cuto� for b as in the lower-censorship case. There-

fore, a′1 (1) = −∞.

Finally, the derivative of welfare at r = 1 satis�es

W ′ (r) = a′1 (r)− κa′1 (r) a1 (r)

(
1 + b2 1− x̂ (r)

x̂ (r)

)
+
κ

2
a1 (r)2 b2 x̂

′ (r)

x̂ (r)

lim
r→1

W ′ (r)

x̂′ (r)
=

(
1− κa1 (1)

(
1 + b2 1− x̂ (1)

x̂ (1)

))
lim
r→1

a′1 (r)

x̂′ (r)
+
κ

2
b2a1 (1)2

x̂ (1)

=

(
1− b4

1 + b4

1 + b2

b2

)
lim
r→1

a′1 (r)

x̂′ (r)
+

b2 × b4

2κ (1 + b4)

=
1− b2

1 + b4
lim
r→1

a′1 (r)

x̂′ (r)
+

b6

2κ (1 + b4)
> 0

Hence,W ′ (1) = −∞which implies that pooling some observations at the top improves welfare.

This concludes the proof.
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C Validity of the FirstOrderApproach forUpper andLower-

censorship Ratings

In this section, we describe conditions that make the �rst order approach valid. To do so, we use

an approach similar to that of Jewitt (1988) and more recently Chade and Swinkels (2020). More

speci�cally, it is su�cient to show that given our optimal ratings, (lower– or upper– censorship),

the payo� of the agent is quasi–concave in her e�ort. To show quasi–concavity of the payo�, it

is su�cient to show that U ′ (a) = 0 implies U ′′ (a) < 0 if U is twice continuously di�erentiable.

This would imply that U cannot have more than one local maximum, i.e., it is single peaked, and

is thus quasi–concave.

To see this, suppose that there are two points a1 < a2 such that U ′ (a1) = U ′ (a2) = 0. Since

U ′′ (a1) < 0 it must be that there is an interval of values above a1 for which U ′ (a) < 0. Now,

without lost of generality, let us assume that a2 = infa′>a1,U ′(a′)=0 a
′
. Since U is assumed to be

twice continuously di�erentiable, U ′ is continuous and thus U ′ (a2) = 0 and since U ′ (a) < 0 for

an interval around a1, a1 < a2. Moreover, we must have that for all a ∈ (a1, a2), U ′ (a) < 0.

This implies that U ′ (a) < U ′ (a2) = 0 for values of a below a2. Since U is assumed to be twice

continuously di�erentiable, we must have that U ′′ (a2) ≥ 0 which is a contradiction. This implies

that U is single peaked.

This allows us to make the following claim:

Lemma4. Suppose that the family of distributions {G (y|a)}a∈A is twice continuously di�erentiable
and A is a convex subset of R. Suppose further that G satis�es the following properties

0 >

∫ ŷ

−∞
(v (y, â)− E [v|y ≥ ŷ])

∂

∂a

ga (y|a)

c′ (a)
dy,∀a, â ∈ A, ŷ ∈ R,

0 >

∫ ∞
ŷ

(v (y, â)− E [v|y ≤ ŷ])
∂

∂a

ga (y|a)

c′ (a)
dy,∀a, â ∈ A, ŷ ∈ R.

Then the FOA is valid under a lower- and upper-censorship policy.

Proof. Consider an upper-censorship policy that pools realizations of y above ŷ. If market believes

the agent chooses e�ort â, then the payo� of the agent is given by

U (a) =

∫ ŷ

−∞
v (y, â) g (y|a) dy +

∫∞
ŷ
v (y, â) g (y|â) dy

1−G (ŷ|â)
(1−G (ŷ|a))− c (a)
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If we let pH = E [v (y, â) |y ≥ ŷ] > v (ŷ, â), we can write

U ′ (a) =

∫ ŷ

−∞
v (y, â) ga (y|a) dy − pHGa (ŷ|a)− c′ (a)

=

∫ ŷ

−∞
(v (y, â)− pH) ga (y|a) dy − c′ (a)

Now, suppose that U ′ (a1) = 0 at some e�ort level a1. Then,

U ′′ (a1) =

∫ ŷ

−∞
(v (y, â)− pH) gaa (y|a1) dy − c′′ (a1)

=

∫ ŷ

−∞
(v (y, â)− pH) gaa (y|a1) dy

− c′′ (a1)

c′ (a1)
c′ (a1)

=

∫ ŷ

−∞
(v (y, â)− pH) gaa (y|a1) dy

− c′′ (a1)

c′ (a1)

∫ ŷ

−∞
(v (y, â)− pH) ga (y|a1) dy

=

∫ ŷ

−∞
(v (y, â)− pH)

[
gaa (y|a1)− c′′ (a1)

c′ (a1)
ga (y|a1)

]
dy

=

∫ ŷ

−∞
(v (y, â)− pH) c′ (a1)

∂

∂a

ga (y|a1)

c′ (a1)
dy

Since c′ (a1) > 0, the assumption on G in the statement of lemma guarantees that U ′′ (a1) < 0.

Given our argument above, this implies that U is quasi–concave and thus FOA is valid. The

argument for lower-censorship ratings is the mirror of this argument.

The essence of the conditions Lemma 4 is that they put a restriction on how convex the cost is,

captured by c′′ (a) /c′ (a) relative to that of expected interim price. Indeed, the conditions can be

rewritten as ∫∞
−∞ p (y; ŷ, â) gaa (y|a) dy∫∞
−∞ p (y; ŷ, â) ga (y|a) dy

<
c′′ (a)

c′ (a)
,∀a ∈ A
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where in the case of lower and upper censorship respectively, interim prices are

p (y; ŷ, â) =

v (y, â) y ≥ ŷ

Eâ [v|y ≤ ŷ] y ≤ ŷ

p (y; ŷ, â) =

Eâ [v|y ≥ ŷ] y ≥ ŷ

v (y, â) y ≤ ŷ

In the special case where
∂
∂y
v (y, a) = β (a) and y = a + ε with ε ∼ H (ε) and density

h (ε) = H ′ (ε), these become∫ ŷ
−∞ (y − Eâ [y|y ≥ ŷ]) gaa (y|a) dy∫ ŷ
−∞ (y − Eâ [y|y ≥ ŷ]) ga (y|a) dy

<
c′′ (a)

c′ (a)∫∞
ŷ

(y − Eâ [y|y ≤ ŷ]) gaa (y|a) dy∫∞
ŷ

(y − Eâ [y|y ≤ ŷ]) ga (y|a) dy
<
c′′ (a)

c′ (a)

and we have ∫ ŷ

−∞
(y − Eâ [y|y ≥ ŷ]) ga (y|a) dy =∫ ŷ

−∞
(y − ŷ − Eâ [y − ŷ|y ≥ ŷ]) dGa (y|a) =

−
∫ ŷ

−∞
Ga (y|a) dy − Eâ [y − ŷ|y ≥ ŷ]Ga (ŷ|a) =

−
∫ ŷ

−∞

∂

∂a
H (y − a) dy − Eâ [y − ŷ|y ≥ ŷ]

∂

∂a
H (ŷ − a) =

H (ŷ − a) + Eâ [y − ŷ|y ≥ ŷ]h (ŷ − a)∫ ŷ

−∞
(y − Eâ [y|y ≥ ŷ]) gaa (y|a) dy =

−h (ŷ − a)− Eâ [y − ŷ|y ≥ ŷ]h′ (ŷ − a)

Let us make the following assumption on H :

Assumption 4. The cumulative distribution function H (ε) satis�es:

1. log (1−H (ε)) is concave in ε,

2. logH (ε) is concave in ε,

3. ∀d > 0,
h(x)

1−H(x)
− h(x−d)

1−H(x−d)
≤ κ1 (d) , h(x−d)

H(x−d)
− h(x)

H(x)
≤ κ2 (d)
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The �rst two conditions are standard log–concavity conditions while the last condition implies

that the variations in the derivative of log (1−H (x)) are uniformly bounded above. A su�cient

condition for the latter is that the expressions h′ (x) / (1−H (x)) + h (x)2 / (1−H (x))2
and

h′ (x) /H (x)− h (x)2 / (H (x))2
are bounded above.

Under the above assumptions, h (ε) / (1−H (ε)) is increasing in ε and therefore,

Eâ [y − ŷ|y ≥ ŷ] =

∫∞
ŷ

(y − ŷ) dH (y − â)

1−H (ŷ − â)

=

∫∞
ŷ−â

1−H(z)
h(z)

dH (z)

1−H (ŷ − â)
≤ 1−H (ŷ − â)

h (ŷ − â)

We then have that ∫ ŷ
−∞ (y − Eâ [y|y ≥ ŷ]) gaa (y|a) dy∫ ŷ
−∞ (y − Eâ [y|y ≥ ŷ]) ga (y|a) dy

=

−h (ŷ − a) + Eâ [y − ŷ|y ≥ ŷ]h′ (ŷ − a)

H (ŷ − a) + Eâ [y − ŷ|y ≥ ŷ]h (ŷ − a)
=

−
1

Eâ[y−ŷ|y≥ŷ]
+ h′(ŷ−a)

h(ŷ−a)

1
Eâ[y−ŷ|y≥ŷ]

+ h(ŷ−a)
H(ŷ−a)

h (ŷ − a)

H (ŷ − a)
=

(
−1 +

h(ŷ−a)
H(ŷ−a)

− h′(ŷ−a)
h(ŷ−a)

1
Eâ[y−ŷ|y≥ŷ]

+ h(ŷ−a)
H(ŷ−a)

)
h (ŷ − a)

H (ŷ − a)

By log–concavity of H , h/H − h′/h ≥ 0 and hence, we have the following inequality

−1 +

h(ŷ−a)
H(ŷ−a)

− h′(ŷ−a)
h(ŷ−a)

1
Eâ[y−ŷ|y≥ŷ]

+ h(ŷ−a)
H(ŷ−a)

≤ −1 +

h(ŷ−a)
H(ŷ−a)

− h′(ŷ−a)
h(ŷ−a)

h(ŷ−â)
1−H(ŷ−â)

+ h(ŷ−a)
H(ŷ−a)

= −
h(ŷ−â)

1−H(ŷ−â)
+ h′(ŷ−a)

h(ŷ−a)

h(ŷ−â)
1−H(ŷ−â)

+ h(ŷ−a)
H(ŷ−a)

by the above property of Eâ [y − ŷ|y ≥ ŷ]. If we de�ne ŷ − a = x and d = â− a, then∫ ŷ
−∞ (y − Eâ [y|y ≥ ŷ]) gaa (y|a) dy∫ ŷ
−∞ (y − Eâ [y|y ≥ ŷ]) ga (y|a) dy

≤ −
h(x−d)

1−H(x−d)
+ h′(x)

h(x)

h(x−d)
1−H(x−d)

+ h(x)
H(x)

h (x)

H (x)

= −
h(x−d)

1−H(x−d)
+ h′(x)

h(x)

h(x−d)
1−H(x−d)

H(x)
h(x)

+ 1

Since 1−H is concave, then h′/h ≥ −h/ (1−H) and the right hand side of the above inequality

satis�es

−
h(x−d)

1−H(x−d)
+ h′(x)

h(x)

h(x−d)
1−H(x−d)

H(x)
h(x)

+ 1
≤

h(x)
1−H(x)

− h(x−d)
1−H(x−d)

h(x−d)
1−H(x−d)

H(x)
h(x)

+ 1

Note that in the above if d < 0, since h/ (1−H) is increasing (log–concavity of 1−H) the RHS
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of the above inequality is negative which is guaranteed to be less than c′′ (a) /c′ (a) since c is

convex.

By Assumption 4, the RHS of the above is less than κ1 (d). If A = [0, a], then the highest value

of d is 2a which means that it is su�cient to for c to satisfy

max
d≤2a

κ1 (d) ≤ c′′ (a)

c′ (a)

In a similar fashion, we can show that for lower-censorship ratings to satisfy the requirement of

Lemma 4, we must also have

max
d≤2a

κ2 (d) ≤ c′′ (a)

c′ (a)

Thus validity of FOA is equivalent to c having a high enough curvature.

D Importance of Comonotonicity in Proposition 1

The following counterexample demonstrates that there exist price schedules satisfying the mean-

preserving contraction property that cannot be generated by any information structure.

Example 2. Suppose that A = {0, 1/3, 1} = {a1, a2, a3}, v = ai. The indicator is deterministic:

G ({ai} |ai) = 1, and prior is uniform µ ({ai}) = 1/3. In words, the market cares only about the

action of the seller, and y coincides with it. Figure 9 depicts the feasible interim prices in the space

of (p (a1) , p (a2)); (the third coordinate is pinned down by Bayes rule since E[p] = E[v] = 4
3
).

Area A shows the set of random variables that are mean preserving spread of (0, 1/3, 1). They

are depicted by their �rst two variables while the third is agin pins down by Bayes rule.
27

The

set of interim prices is denoted by area B in Figure 9. We �nd this set by solving the optimization

problem associated with the highest and lowest value of p (a2) as a function of p (a1).
28

Evidently,

the setB does not coincide with A. This is mainly due to the restrictions put by the second order

expectations. For example, it can be easily shown that the coe�cient of v (a) in p (a) is at least

1/3 which means that p (a3) cannot become lower than 4/9.

Finally, note that the points a, b, c, d are associated with deterministic ratings that either sepa-

rate or pool the states and for which p (a1) ≤ p (a2) ≤ p (a3). Interestingly, if we consider the set

of random variables whose realizations are less dispersed than v (a) and satisfy monotonicity, this

coincides with the convex hull of the points a, b, c, and d. In Proposition 1 below, we show that

27
The conditions are 0 ≤ xi ≤ 1, 1/3 ≤ xi + xj ≤ 4/3, for all i, j, and x1 + x2 + x3 = 4/3.

28
The upper and lower bound of p (a2) can be found via standard concavi�cation method. The lower

bound is given by 2 (4− p (a1)) /

(
10− 3p (a1) +

√
(8− 3p (a1))

2 − 12

)
and the upper bound is 3 −

(6− 2p (a1)) / (6− 3p (a1)).
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p(a1)

p(a2)

4/3

4/3
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1/3

B c
a

b

d

Figure 9: The set of interim prices and mean-preserving contractions of market valuations for

Example 2. The green area, A, represents the three state random variables that are a mean-

preserving contraction of a. The yellow area, B, is the set of feasible interim prices under some

information structure.

this insight holds generally and allows us to signi�cantly simplify the problem of rating design

under a comonotonicity condition.

The result in Proposition 1 is reminiscent of the result of Blackwell (1953) and Rothschild and

Stiglitz (1970), the general version of which can be found in Strassen (1965). That result states

that for any two random variables x and y, there exists a random variable s such that E [x|s] has

the same distribution as y if and only if y second-order stochastically dominates x.

While similar, our result is di�erent in two aspects. First, it is stated for the second-order

conditional expectation, and thus Blackwell’s result cannot be applied. The key intricacy is that

the same signal structure that generates the random variable E [v|s] must be used to generate

E [E [v|s] |y]. Second, as illustrated by Example 2, the equivalent of Blackwell’s result does not

hold in general and can be shown only when v and p are comonotone.

We also note that the comonotonicity is e�ectively a form of uni-dimensionality for the indi-

cator. Since the indicator y matters for the market and payo�s only through its e�ect on v (y; a),

we can relabel the indicator to be v (y; a). Under this reformulation, comonotonicity implies that

interim prices p (y) are a well-de�ned function of v (y; a). In other words, comonotonicity means

that the indicator can always be reduced to a one-dimensional signal.
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