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Abstract

We study optimal rating design under moral hazard and strategic manipulation. An in-
termediary observes a noisy indicator of effort and commits to a rating policy that shapes
market beliefs and pay. We characterize optimal ratings via concavification of a gain func-
tion. Optimal ratings depends on interaction of effort and risk: for activities that raise tail
risk, optimal ratings exhibit lower censorship, pooling poor outcomes to insure and encour-
age risk-taking; for activities that reduce tail risk, upper censorship increases penalties for
negligence. In multi-task environments with window dressing, less informative ratings deter
manipulation. In redistributive test design, optimal tests exhibit mid censorship.
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1 Introduction

Many markets rely on information disclosure or ratings to facilitate trade and incentivize quality
provision. ESG rating agencies aim to incentivize companies to improve their environmental and
social impact. Online platforms such as Amazon, Airbnb, Upwork, and eBay design reputation
systems to incentivize and signal providers’ quality. Standardized tests communicate student
ability to universities. In each case, an intermediary observes signals about agent behavior and
must decide how to convey this information to a market that rewards agents based on perceived
quality. A fundamental challenge arises: agents strategically respond to rating policies, and the
information disclosed shapes the incentives. Additionally, these incentives can lead to window-
dressing activities to manipulate the ratings.

Despite the ubiquity of these systems in markets suffering from moral hazard, several core
theoretical questions are yet to be answered: What are the fundamental trade-offs in designing
rating systems when participants can anticipate and react to them? How should an intermediary
design information structures to account for window-dressing incentives? This paper answers
these questions by developing a theoretical framework for optimal rating design under moral
hazard, utilizing a variant of the career concerns model introduced by Holmstrém (1999).

Our model features an agent (e.g., a company seeking an ESG rating or a seller on eBay) who
takes costly actions that create value for a competitive market. These actions also generate a noisy
indicator observed by an intermediary (e.g., an ESG rating firm or an online platform) which must
then decide how to convey this information via a rating. The market, in turn, pays the agent its
expected value based on the signal and its belief about the agent’s action.

Our primary objective is to find the optimal information structure to maximize a flexible wel-
fare function for the intermediary. This function can target a particular action or a particular
distribution of payoffs for the agent, capturing environments where market values do not fully
internalize the social value of actions—such as the positive externalities of ESG activities—or
where a platform has concerns for fairness or redistribution.

Our paper consists of two parts: In the first part, we provide the theoretical foundations of our
analysis, and in the second part, we provide general properties of optimal ratings and apply the
method to a few practical applications. The main technical challenge in formulating the opti-
mal rating problem is the interplay between information structures and the agent incentive con-

straints. We introduce the concept of interim prices—the agent’s interim expectation of market’s

ISince Holmstrém (1999), it is well known that the implicit incentives provided by career concerns do not nec-
essarily lead to efficient effort levels because they fail to fully internalize the social benefit of the agent’s action.
This externality is also present in our model and the intermediary’s objective can be thought of as addressing such
externalities.



posteriors—as the sufficient statistic that determines incentives from the agent’s perspective.”
This object, which can be interpreted as the agent’s second-order belief, allows us to transform
the problem of choosing an information structure into a tractable mechanism design problem. In
Proposition 1, we show that when these interim prices are comonotone with market values, then
a price schedule can be implemented by some rating if and only if they are a mean-preserving
contraction of the market values. This implies that we can cast the problem of rating design as a
standard moral hazard problem with transfers subject to a majorization constraint.

With this result in hand, in Theorem 1, we show that optimal ratings can be characterized
through concavification of a gain function in the quantile space. This gain function depends
both on the distributional motives of the intermediary and the local effect of the agent’s action
on the quantile distribution of the indicator (holding fixed market beliefs). The concavification
approach provides a sharp characterization: regions where the gain function coincides with its
concave envelope correspond to full information disclosure, while regions where concavification
requires linear interpolation correspond to pooling. Thus, the optimal information structure is a
deterministic monotone partition of the indicator space. Intuitively, the intermediary either fully
reveals the indicator on some regions or pools contiguous intervals—a sharp foundation for the
prevalence of coarse, threshold-based rating systems.

The second part of the paper applies this framework to derive general properties of optimal rat-
ings and how they depend on the agent’s technology and the intermediary’s objective. When the
intermediary’s objective is to maximize effort (absent distributional motives), the design problem
reduces to finding the rating that achieves the highest level of effort. Under the canonical Mono-
tone Likelihood Ratio Property (MLRP) assumption in the moral hazard literature, we show that
the gain function in this case is concave and as a result full information disclosure is optimal.

However, many economically relevant activities violate MLRP in systematic ways. Innovative
activities often increase both upside potential and downside risk, i.e., R&D effort can lead to break-
throughs or failures. Conversely, maintenance activities typically reduce variance through more
consistent outcomes. To capture these patterns, we introduce two new distributional properties:
the expanding likelihood ratio property (ELRP), where increased effort expands the distribution’s
tails, and the compressing likelihood ratio property (CLRP), where increased effort compresses
outcomes toward the center. Under ELRP, optimal ratings take the form of lower censorship pro-
viding insurance against downside risk to encourage risk-taking. Under CLRP, optimal ratings
are upper censorship, pooling high realizations while revealing low ones, which punishes poor
outcomes and encourages variance-reducing effort.

We also characterize how distributional concerns interact with incentive provision. When in-

termediary places higher weights on lower realizations of the indicator, either because of fairness

2See also Doval and Smolin (2024).



concerns or redistributive objectives, the gain function may become non-concave even under
MLRP at low quantiles. Thus leading to optimality of lower-censorship ratings. This creates a
fundamental tension between maximizing effort and protecting agents from downside risk.

Finally, in Section 5, we use these insights to study a model of multi-tasking a la Holmstrom
and Milgrom (1991) and redistributive test design. In the multi-task model, the agent allocates
efforts across productive tasks and window-dressing ones (actions that boost the indicator more
than market values) which differentially impact the observed indicator and market value. With
normal additive noise and a convex cost, this model is reducible to a single action model and thus
the results from Section 4 apply.’

Since the additive normal model satisfies MLRP, fully revealing ratings implement the highest
level of effort. However, when window dressing makes those actions welfare-reducing, optimal
policy involves withholding information to temper manipulation incentives. Moreover, similar to
Holmstrém and Milgrom (1991), a decline in the cost of window dressing leads to further reduc-
tions in informativeness. We also study a nonreducible two-task example and show that when
window dressing disproportionately drives extreme indicator realizations, upper censorship can
be strictly welfare-improving relative to full revelation by disproportionately discouraging ma-
nipulative effort. Finally, we apply our framework to redistributive test design with heteroge-
neous students, showing that optimal tests may involve "mid censorship" to balance incentive
provision across student types.

Beyond its technical contributions, our analysis offers practical guidance for regulators and
rating system design. As data collection has intensified, several institutions have formed around
using data to incentivize behavior which in turn has created incentives for manipulation and
window dressing (see for example Mayzlin et al. (2014)). Our results provide guidance on how
ratings should be designed in such environments supporting the observed heterogeneity in the
rating system. For example, platforms have adopted a variety of ratings: some platforms (such
as Shipt or Instacart) allow for low rating forgiveness and fresh start which could be interpreted
as lower censorship; others such as Airbnb have too many high ratings (see for example Zervas
et al. (2021)) that can be interpreted as upper censorship. Our results suggest these differences
may reflect optimal responses to underlying differences in how effort affects outcome distribu-
tions. More broadly, the paper provides a toolkit for evaluating rating policies across domains—
from ESG certification to educational testing to online marketplaces—by connecting observable

features of agent technology to the optimal structure of information disclosure.

SMathematically, this is equivalent to the set of equilibrium actions for arbitrary ratings having dimension one.



1.1 Related Literature

Our paper is related to a few strands of the literature in information economics and mechanism
design. It is closely related to a recent literature that studies information design when strategic
behavior affects the state by the choice of the information structure (e.g., Frankel and Kartik
(2019), Ball (2025), and Perez-Richet and Skreta (2022)). In contrast with Ball (2025) and Frankel
and Kartik (2019), our mathematical result on second-order expectations allows us to study a
larger class of problems without any restrictions on information structures. Our analysis, thus,
identifies both the precise shape of the optimal information structure and when it is optimal to
use uncertain rating systems. In our model, presence of window-dressing incentives is similar
to the falsification model in Perez-Richet and Skreta (2022). The main difference with our setting
is the existence of noise in the ability of the agent to manipulate the signal observed by the
intermediary.

A related paper to ours is Boleslavsky and Kim (2020). They study a model of Bayesian persua-
sion with moral hazard, similar to ours, in which an agent chooses an effort level that affects the
distribution of the state, and a sender affects a receiver’s action using an information structure.
The papers differ in terms of focus and technique. We focus on a career concern model where the
information structure only affects the agent’s incentive. Additionally, we use majorization tools
which allows us to work with larger state spaces.*

From a technical perspective, our results are related to the new literature in information eco-
nomics that uses optimization under majorization constraints; Kleiner et al. (2021). Their solution
method uses the characterization of extreme points of the set of monotone functions that ma-
jorizes a certain function. Similarly, Bergemann et al. (2022a) and Bergemann et al. (2022b) use
the same strategy as our work to cast the problem in terms of quantiles and use concavification to
derive optimal mechanisms. While their focus is on screening models with hidden information,
ours is closer to classic moral hazard.

Our paper is also related to the literature concerned with the problem of certification and its
interactions with moral hazard: Albano and Lizzeri (2001), Zubrickas (2015), Onuchic and Ray
(2023), and Zapechelnyuk (2020). A notable contribution is that of Albano and Lizzeri (2001),
where the key assumption that the intermediary can charge an arbitrary fee schedule leads to an
indeterminacy between using transfers and ratings to implement desired outcomes. Zubrickas
(2015), Zapechelnyuk (2020), and Onuchic and Ray (2023) also study related problems, but they
focus on deterministic technologies where the agent’s effort deterministically translates into val-

ues for the market. In contrast and in our model, the presence of noise allows us to disentangle

“Relatedly, a recent paper by Madsen et al. (2025) studies a moral hazard model with non-monetary incentives.
Our paper is related to their work to the extent that our agent is incentivized using ratings; a non-monetary instru-
ment.



the indicator from market values which in turn leads to an inefficient level of effort under full
information and enables us to study window dressing and manipulation incentives. Relatedly
and in the context of team production, Halac et al. (2021) show that uncertainty about a worker’s
compensation ranking in a team can remove low effort equilibria. Our result on how censorship
for some technologies can improve incentives can be regarded as the single agent version of their
result.

Finally, our paper complements the empirical literature on certification and disclosure in markets
with asymmetric information, such as online platforms (e.g., Hui et al. (2023) and Nosko and
Tadelis (2015)), health insurance markets (Vatter (2025)), food labeling (Barahona et al. (2023)),
and ESG investing (Berg et al. (2022)). We contribute to this literature by developing theoretical
methods and general lessons for the optimal design of rating systems.

The remainder of the paper proceeds as follows. Section 2 presents the model and introduces
interim prices as the key analytical object. Section 3 derives our main characterization result
through concavification of the gain function. Section 4 establishes general properties of optimal
ratings under alternative distributional assumptions, including MLRP, ELRP, CLRP, and redis-
tributive motives. Section 5 applies our framework to multi-task moral hazard with window

dressing and redistributive test design. Proofs are relegated to the Appendix.

2 A Model of Moral Hazard

In this section, we describe our basic model of rating design and provide some preliminary anal-
ysis of the restrictions implied by the fact that incentives are provided through ratings.

We are interested in settings in which an intermediary observes some information about an
agent’s chosen actions and decides how to convey this information to a competitive market,
henceforth “the market,” who then pays its posterior mean as a price to the agent.

More specifically, the agent exerts an effort vector a € A C R” at a cost c(a). This action
generates a random outcome (v, y) € R?, where v represents the value of the output to the market
and y is a noisy indicator observed by the intermediary. We denote the cumulative distribution
function of the indicator y conditional on action a by G(y|a).

The market consists of competitive buyers who value the agent’s output at v. However, the
market observes neither the true value v nor the agent’s action a directly. Instead, it forms expec-

tations based on information provided by the intermediary. If the market observes the indicator

SAli et al. (2022) study a model with adverse selection (i.e., exogenous state), where optimal disclosure involves
uncertainty, but it is a way of uniquely implementing an intermediary’s desirable outcome.



y and holds a belief a regarding the agent’s action, the expected value of the output is given by:
u(y;a) = E[v |y, a = d]

We refer to U (y; a) as market values, i.e., the most informative assessment of the valuation of the

market. Throughout the paper we impose the following monotonicity assumption:
Assumption 1. For all market beliefs a, the market value v (y; a) is increasing in the indicator y.

This assumption states that market values are ranked based on the values of the indicator. With-
out any other assumption on the distribution function G (y|a), e.g., increasing in FOSD, MLRP,
this assumption is innocuous as one can always relabel the values of the indicator according to
the market values. While our main characterization results — Proposition 1 and Theorem 1 — hold
without Assumption 1, we maintain this assumption for tractability and convenience.

The intermediary observes the indicator y (at no cost) and controls the information observed by
the market. Specifically, the intermediary commits to an information structure (.S, 7 (-|y)), where
S is a set of signal realizations and 7 (-|y) € A (S) is the distribution over signals conditional
on realization of y. Having observed s, the market pays its expected payoff E [v|s] to the agent.®
This expectation is calculated using the information available, s, and the common belief about
equilibrium play.’

The timing of the model is as follows. First, the intermediary chooses and commits to an in-
formation structure (S, 7 (:|y)). Subsequently observing the intermediary’s choice, the agent
chooses her action, a, which in turn generates a realization of indicator y for the intermediary.
The intermediary then draws a rating s according to 7 (-|y) and sends it to the market. Finally,
the market observes s, updates its beliefs and pays the agent [ [v|s]. Figure 1 depicts the structure

of the model and actions.

®We assume that the buyers are on the long side of the market, thus willing to pay their expected value. Our
analysis remains unchanged if the market keeps a constant fraction of their expected value.

"An information structure is a family of probability spaces {(S,.”, 7 (:|y))},cy» Where S is the space of signal
realizations and .¥ is a o-algebra. Throughout the paper, we work with S as a compact subset of some Euclidean
space, and . as the Borel o-algebra associated with topology induced by the Euclidean norm and a compact space
for S. Henceforth, we drop references to o-algebra in our analysis. Additionally, when describing subsets, we refer
to Borel subsets.



Agent: a € A Int.: 7(-|y) € A(S)

1865

Market: v — p

Figure 1: General structure of the model

Given an information structure (S, 7 (-|y)) and action a, the agent’s expected payoff is given
by
[ [ Eluls)dn (s19) dG (o1a) ~ (@), )
vy Js

In equilibrium, the agent chooses a to maximize (1).

The ex post market price E [v|s] depends on the information structure (.5, 7) and also on the
market’s prior about the distribution of (a, y), which depends on the agent’s equilibrium strategy
. More specifically, the market uses its beliefs about the equilibrium strategy of the agent a to

form a prior G (y|a) and uses Bayes’ rule to form the posterior expectation E [v|s] satisfying

[ [ Ellsldn 60 a6 i) = [ v ()Gl vs s @
Y Js Y

The above defines a Bayesian Nash equilibrium given the information structure (S, 7). More
specifically, given an information structure (S, 7), an equilibrium is an effort a together with
market beliefs [E [v|s] such that a maximizes expression (1), and given a, the market beliefs satisfy

Bayesian updating as defined in equation (2).®

Examples

To clarify the scope and applicability of our analysis, we now describe several environments that

fit the model above.

1. Reputation Mechanisms in Online Platforms: Online platforms face challenges in de-
signing their reputation systems because of moral hazard. These platforms have access to
performance data about providers (i.e., hosts on Airbnb, sellers on eBay, and freelancers on

Upwork) not available to the market.” The platform’s certification policy, such as Airbnb’s

8We have focused on equilibria in which the agent plays a pure effort strategy. Our main characterization results,
Proposition 2 and Theorem 1, hold when allowing for mixed effort strategy by the agent.

?As documented by Saeedi (2019), Hui et al. (2016), and Nosko and Tadelis (2015), there are many performance
indicators available to eBay that are not conveyed to the market directly, such as total quantities sold, and previous
claims and their outcomes.



Superhost, eBay’s Top Rated Seller or Upwork’s Talent Badge, is based on performance
measures and they can be regarded as the information structure in our model. According
to Hui et al. (2023) among others, the changes in such policies influence provider behavior.

Our model examines the resulting issues and trade-offs for both platform and providers.

2. Manipulation and Window Dressing: Rating systems frequently incentivize agents to
manipulate signals or engage in “window dressing”—costly actions that inflate observed in-
dicators without enhancing fundamental values.'’ Online platforms are frequently plagued
by data manipulation by providers.!’ For example, some third-party sellers on Amazon pay
customers for positive reviews and higher ratings, He et al. (2022). In our model, this can
be captured by letting the agent take costly actions to increase the observed indicator y
without affecting market valuation v. This creates a trade-off in rating design: information
provision incentivizes productive actions but simultaneously raises the incentives for win-
dow dressing. In Sections 5.1 and 5.2, we develop a multi-tasking model a la Holmstrém
and Milgrom (1991) to describe how the presence of window-dressing motives affects the

optimal design of ratings.

3. Career Concerns and Externalities: Since Holmstréom (1999)’s seminal model of career
concerns, it has been known that in absence of long-term contracts and when agents (i.e.,
CEOs or government workers) care about their careers, they exert inefficient levels of ef-
fort."”” In our framework, this occurs when market values ¥ (y;a) change with a. Since
the agent does not account for the effect of her effort on market values, equilibrium is
inefficient. It is thus natural to ask whether ratings can be used to possibly reduce such
inefficiencies. As we will show, our main characterization result can be used to shed light
on this question. Specifically, we show that under the often used MLRP condition (Mono-
tone Likelihood Ratio Property), perfect information implements the highest possible value
of effort.” We also identify properties of the indicators distribution, G (y|a), under which

censoring parts of information is beneficial giving rise to non-trivial rating policies.

¥Tn recent years, several lawsuits have involved rating manipulation in different industries, such as education
(e.g., the case of Temple University, Temple Business School Dean Fraud, and the case of Columbia University in
NYT on Columbia’s ranking manipulation and Michael Thadeuss on ranking manipulation) and financial markets
(e.g., the case of Greenwashing by Deutsche Bank). Along the same lines, Agarwal et al. (2018) show that greater
transparency leads to fund managers’ forgoing long term profits and short-termism.

Feedback manipulation has long been a debated issue on e-commerce platforms (e.g., Hui et al. (2018)).

12See also Prat (2005) for highlighting situations in which information about actions can lead to conformism by
the agent and as a result, inefficient outcome.

BRelatedly, Dewatripont et al. (1999) show that under MLRP, it is always optimal to use all the information
available.


https://www.justice.gov/usao-edpa/pr/former-temple-business-school-dean-sentenced-over-one-year-prison-rankings-fraud-scheme
https://www.nytimes.com/2022/03/17/us/columbia-university-rank.html
http://www.math.columbia.edu/~thaddeus/ranking/investigation.html
https://www.bloomberg.com/news/articles/2022-05-31/deutsche-bank-s-dws-unit-raided-amid-allegations-of-greenwashing

2.1 Interim Prices: Definition and Characterization

In this section, we introduce a mathematical object, interim prices, that allows us to simplify the
problem of rating design in the environment described above.

The notion of interim price is simple. This mathematical object determines the agent’s incen-
tives in choice of effort and will be present in the incentive constraints for the agent. Specifically,

we define interim prices as
p) = [ Elols)dn (sy). ®

In words, p is the expected payment to the agent conditional on the indicator ¥, integrating over
possible signals s given the rating system. Additionally, it is an equilibrium object as it depends
on E [v]s] which depends on the market’s beliefs about the agent’s action profile. It can also be
interpreted as the agent’s “second-order belief”: their beliefs about the beliefs of the market on
values.

Critically, it is a sufficient statistic for the information structure from the agent’s perspective.

Specifically, for any choice of a, the agent’s payoft is given by

/ p(y) dG (yla) — c(a).

Thus, the problem of designing an optimal rating system is isomorphic to the problem of choos-
ing an interim price schedule p, subject to the constraint that p must be implementable via some
information structure (S, 7). Thus, we need to characterize the set of feasible interim prices.

Generally, there are no simple conditions to characterize the set of interim price profiles that
result from a particular information structure and action profiles. However, as we will show next,
under some restriction on information structures, a simple characterization exists.

To understand the notion of interim prices, recall that market values are given by ¥ (y;a) =
[E [v|y]. These are the interim prices associated with a fully revealing information structure, i.e.,
the most informative information structure. Now, from the perspective of the market, E [v|s], is
a garbling of T (y; a). Similarly, from the perspective of an observer that sees the realization of v,
interim price p is a garbling of E [v|s] and thus itself a garbling of T. In other words, if we view
them as random variables, we must have p >, U or equivalently p is mean preserving contraction
of v.1*

Given the results in the literature — see for example Rothschild and Stiglitz (1970) or Gentzkow

and Kamenica (2016) - it is tempting to suggest that the reverse of the above observation is also

4The relation p =, T represents the concave order which implies that for all concave functions ¢ : R — R,
E[¢(p)] > E[¢(T)]. Since Bayes plausibility implies E [p] = E [7], this definition is equivalent to majorization,
second order stochastic dominance and increasing concave order - see for example Shaked and Shanthikumar (2007)
section 4.A.

10



true: that mean preserving contraction is a sufficient condition for existence of ratings. Below we
show that this is indeed true when interim prices and market values are comonotone.”Formally

we say that p and U are comonotone if:

p(y)>py)=>70(y;a) >70(y5a).

In words, higher prices are associated with higher market values, so the two random variables

never move in opposite directions.

Proposition 1. Suppose that p is a function that maps values of y into R such that
1. p is comonotone with U, and
2.p = .

Then, there exists an information structure (S, w) such thatp (y) = [ E[v|s] dr (s|y).

The proof is a straightforward application of Kleiner et al. (2021)’s result on the extreme points
of the set of monotone functions that satisfy a majorization constraint.
This proposition implies that for any arbitrary information structures with an action a and

interim price function p, we can characterize the comonotone equilibria of the game as follows:

1. The action a is incentive compatible,
o € argmax [ p(y)dG (vfa) - c(a) @
ac

2. Interim prices p (y) dominate T (y; a) = E [v|y] according to the concave order.

3. Interim prices and market valuations are comonotone.

This reduction allows us to transform the optimal rating design problem as a standard mechanism
design problem with transfers, where the “transfers” are the interim prices constrained by the

concave order.

3 Optimal Ratings: A General Characterization

In this section, we use Proposition 1 to provide our main theoretical characterization result for
optimal ratings under moral hazard. In the rest of the paper, we discuss various applications and

the implications of our characterization result.

3Tn the Appendix D, we provide an example that illustrates that without comonotonicity mean preserving con-
traction is no longer sufficient and additional conditions are needed. We also discuss its relationship with similar
results in the literature.
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3.1 The Intermediary’s Problem

The intermediary chooses an information structure to maximize an objective that may differ from

total surplus. We consider a class of objectives in the form

W (a) + / p (v) o () dG (y]a) )

where W (a) captures externalities or direct preferences over effort, and « (y) > 0 represents
distributional weights on agent payoffs. This class of objective functions fits several applications

in which rating design interacts with moral hazard:

1. Targeting an Action: It is possible that market values do not necessarily reflect the social
value of the agent’s actions. This may occur for two reasons: first, direct externalities. In
this case, W (a) is different from the total surplus V' (a) = E [v|a] — ¢ (a). The difference of
the two W (a) — V (a) represents the external effects that are not captured by the market.
Second, as discussed in Section 2, when market beliefs directly affect market values, a fully
revealing equilibrium can be inefficient due to career concerns. In this case, the objective

is simply total surplus or V' (a).

2. Distributional Concerns: The weights « (y) can be interpreted as distributional con-
cerns. For example, in the context of platform design, platforms might aim to guarantee
a minimum payoff level for sellers to maintain a minimum market size. In educational
contexts, critics often argue that standardized tests create biases against lower-income stu-
dents and minorities. Given such disparities in outcome distribution, a college or school
with distributional concerns could reweight test outcomes for its admission policies. This

reweighting can be achieved using an objective function similar to that in (5).

Given this class of objectives and the comonotonicity restriction, the problem of optimal rating
design can be stated as maximizing the objective in (5) subject to incentive compatibility (4),

comonotonicity and majorization.

3.2 Quantile Formulation

To simplify working with concave order constraints, we transform the interim prices and market
values to their quantile formulation. This would allow us to characterize of optimal ratings via
concavification of a gain function.'

Let vg (i) denote the market value associated with the i-th quantile of the indicator distribution.

Formally,

18See also Bergemann et al. (2022b) and Bergemann et al. (2022a) for a similar approach.
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vo(i) = 0(G™(ila); a). (6)

Note that we have dropped a from the expression of quantile value for ease of exposition. Sim-
ilarly, let pg(7) be the quantile representation of the interim price. Given the comonotonicity
assumption of p and T, pg (%) is the interim price associated with market value v, (7).

Given this inversion and using integration by part, for any arbitrary integrable function A (y),

we can write

[ npac i = | 1 /{WWQ@)} y) dG (y]a) dpg (i /H i) dpg (i

where

H (7 dG (yla
(i) = / LD @)

collects the contribution of h over all realizations whose associated market value exceeds vg(i).

In the appendix, we use the above and the fact that p =, ¥ to prove the following lemma:

Lemma 1. Let h be an integrable function and H be defined by (7).Let cavH be the concave envelope
of H, i.e., the lowest concave function dominating H (7). Then

1
mac [ h)p)dG ) = [ et (i) dog (1) ®
PP F, 0
D,V : comonotone

Moreover, the optimal p satisfies:

1. p(y) =7 (y: a) when H (G (y]a)) = cavH (G (yla)).

2. IfcavH (i) > H (i) for all i in some maximal interval I C [0, 1], then, p (y) = E [0|G (y|a) € I].

The result of Lemma 1 is depicted in Figure 2. The function H (i) is constructed by integrating
h (y) for values of y above a threshold, y'. This threshold is one for which v (y') = vg (7). When
the concave envelope of H (i) does not coincide with H (i), optimal interim prices are constant
and equal to average market value of the interval. Conversely when it coincides with H (7),
optimal interim prices coincide with market valuations v (y). In the proof of Lemma 2 we make
use of the fact that if p =, U, the reverse is true for their quantiles (or c.d.f’s). We then apply

Blackwell’s theorem to construct a concavification of H as the optimum.

13
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Figure 2: Concavification of H (right) and Construction of Optimal Ratings. The value  is asso-
ciated with the quantile 7.

3.3 Incorporating Incentives: the Main Characterization

In the above, we used a generic unconstrained objective function of the form [ A (y)p (y) dp,.
Our optimal rating design problem is a constrained optimization problem that has to respect in-
centive compatibility constraints (4). One can thus use standard Lagrangian arguments to trans-
form our problem to an unconstrained optimization.

The incentive constraint can be written in quantile space by defining

where F'is the distribution over quantiles when the agent chooses a but quantiles are defined

according to a. Then we can write any incentive compatibility as

- [ Pl () =@ 2 - [ Flaadg)-c@), vaca o

In order to sidestep many of the complications that typically arise in moral hazard problems,
we will use the first order approach (FOA) throughout the paper. That is, we replace the incentive
constraint (9) with its first order condition. In the Appendix C, we will use an approach similar
to Chade and Swinkels (2020) to provide sufficient conditions on the distribution functions for
the validity of the first order approach.

Using the IC in quantile space, FOA, and Lemma 1 we show the following result:

Theorem 1. Ifw* is the highest value of the objective (5) and under the validity of FOA, there exists

14



a real vector A € RY such that

a

w* =max W (a) + / cavl' (i; A, a) dvg (4) (D)
st.i=G{y:v(ya) Svg(i)la})
where

N
0
[ (A a) :/ a(y)dG =Y A\, [TF(”&;G)
{vo(ysa)>vq() } ; oa,,

0
)

We refer to I' as the gain function. It summarizes the weight that the intermediary puts on a
particular type and the associated IC conditions.

Theorem 1 implies that the rating design problem can be solved by solving a one-dimensional
concavification problem of the gain function and then finding optimal values of effort and the
multipliers associated with the incentive compatibility constraints (9). While its intuition is cap-
tured by the discussion above, its proof uses a notion of duality which is rather standard.

The first implication of Theorem 1 is that optimal rating systems are simple. In fact, since
the function to be concavified is only a function of the quantile 7, by Caratheodory theorem any
convex combination of values of I (¢; A, a) can be achieved by using at most two points. This logic
establishes that the optimum in (D) is always achieved by a deterministic monotone partition.
However, the optimum should also satisfy the incentive compatibility. To ensure that this is

indeed possible, we make the following assumption on the distribution function G (y|a):
Assumption 2. Independence. For alla € A:
1. G (yl|a) is full support over a convex subset of R.

2. For any interval I C SuppG (y|a), then the function o (y) g (y|a) cannot be written as a

N
non-zero linear combination of g (y|a) , {%} for all values of y € I.
" n=1

The independence assumption ensures that there is enough variation in y conditional on ef-
fort a.!” Given Assumption 2, Theorem 1, and second part of Lemma 1, we have the following

proposition:

Proposition 2. Suppose that Assumption 2 holds. Then the optimal interim price in (D) is always

associated with a deterministic monotone partitional rating. Moreover, whenever cavl' (i;\,a) =

17 An example that violates Assumption 2 is one in which y = % (a), an increasing function of a. In this case, any
change in the interim price function affects the incentives of the DM. In a previous version of this paper, we have
established that if Assumption 2 is violated, optimal ratings can involve randomization.
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I (i; A\, a), optimal rating reveals the value v = wvg (i) to the market. When cavl' (i;\,a) >

" (i; A\, a), then there exists an interval i € [iy, i2] such that optimal rating reveals thatv € [vg (i1) , vg (i2)]-

As we discuss above, the maximum value of the Lagrangian is always achieved by an interim
price associated with a deterministic monotone partitional signal. The independence assumption
guarantees that the optimum in (D) cannot be achieved by a (non-extreme) supporting point of
the set {p : p,T : comonotone, p =, U} and only a unique extreme point of this set can achieve
the unconstrained optimum in (D)."®

Theorem 1 and Proposition 2 together provides a full characterization of optimal ratings. They
tie the problem of optimal rating to concavification of a simple statistics of the outcome distri-
bution: the response of the quantiles to local changes in actions along each dimension. In what
follows, we describe how properties of the technology that generates the indicator and its corre-

lation with market values determine the general properties of optimal ratings.

4 General Properties of Optimal Ratings

In this section, we provide general properties of optimal ratings and how they depend on the
joint distribution of the indicator function and market values. For clarity, we focus on problems
in which effort is one dimensional. In Section 5.1, we study a multi-tasking application where

effort is allowed to be multi—-dimensional.

4.1 Targeting An Action

We start our analysis by considering objectives that only target an action, i.e., @ (y) = 0 in (5).
In this case, the problem of solving optimal rating design boils down to a characterization of the
set of implementable efforts. As we have shown, an effort a € A is implementable when there
exists an interim price function p (y) such that p (y) is a mean-preserving contraction of market
values ¥ (y; a) and a is incentive compatible given p (y).

To make the model tractable, let us assume the following:
Assumption 3. The action space A and the distribution function g (y|a) satisfy the following
1. The action space is A = [0,a] C R.

2. For all a > 0, the support of g (y|a) is a (potentially unbounded) interval I = [y,7| and
g (yl|a) is twice differentiable.

8Formally, a supporting point of a convex set C'is one that belongs to a supporting hyperplane of C.
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3. Cost function c (a) is non-negative, strictly convex, increasing and twice differentiable for all

ac A
4. For any effort,a € A, T (y; a) is increasing in y.

The first three parts of Assumption 3 are fairly common in the moral hazard literature. The last
assumption notably implies that y is an indicator that is positively correlated with market values.
This assumption on its own is innocuous since the indicator y itself is not payoff relevant.

By Theorem 1, under FOA, the optimal rating is found by a concavification of the function
(N a) = =\ |:—6F(5'|&d;a) )

a
compatibility constraint, and F' (i|a; a) is the induced distribution of the quantiles of the indicator

+c (a)} where ) is the Lagrange multiplier on local incentive-

when the DM chooses effort a while the market believes it to be a. The following calculation ties

the object to be concavified to properties of the distribution function G (y|a):

0* OF (ila)| | & n 0 6a(G7 (d]a) |a)
o ea |, oeC (@ la)le) = =255 (@ T i) o)
9 Ya(yla) 92
_ —A a_ygg(lﬁa) y=G-1(ila) —A dyda logg(yla) =G~ 1(i|a)
g (G~ (ila)|a) g (yla)

In other words, the concavity of I" (i; A, a) at a particular quantile 7 is determined by the sign of
the cross partial of the log-likelihood function log g (y|a). This implies that optimal ratings are
directly tied to the supermodularity of the log-likelihood function log g (y|a). In what follows,
we discuss a few cases and their economic interpretation and implication for optimal rating.

Let us start from the canonical assumption made in the moral hazard literature, the so-called

MLRP assumption:

Definition 1. A distribution function g (y|a) is said to satisfy Monotone Likelihood Ratio Prop-
erty (MLRP) when g (y|a) is log-supermodular. That is 5 5~ 7,108 9 (yla) = gy g;((yﬁl) > 0,Vy €
I,a € A.

MLRP implies that an increase in effort leads to a rightward shift of the distribution of indicator
realizations. Moreover, it also implies that the same is true for the conditional distribution of the
indicator when restricted to an interval of values of 3."

Our first result establishes that in the presence of MLRP, highest implementable effort is indeed

associated with full information:

YFormally, MLRP is equivalent to the statement that an increase in a increases the distributions over the indicator
y according to the likelihood ratio order. See Shaked and Shanthikumar (2007), section 1C.
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Proposition 3. Suppose Assumptions 2 and 3 hold, FOA is valid, and g (y|a) satisfies MLRP. Then
the highest implementable effort is associated with interim price p (y) = U (y;a). That is, it is the
highest effort level that satisfies

apy € arg r({lea}/ﬁ(y; arpr) g (yla) dy —c(a).

The above result states that the often assumed MLRP has strong implications for what can be
achieved via ratings. Specifically, it states that using ratings, it is not possible to increase the level
of effort beyond what the market can achieve by fully observing the indicators.

We should note that the definition of highest implementable effort a; involves calculation of
a fixed point. This is because, market values 7 (y; a) should be calculated under the belief of the
market that the action taken is ay; while the DM is able to deviate from it. In Proposition 3 ap;
is defined as the highest such fixed point.

The proof of Proposition 3 follows straight from Theorem 1. Specifically, under MLRP, the
function I (i; A, a) is either concave or convex for all values of ¢ depending on the sign of A. This
means that when A > 0, I' is concave and coincides with its concavification. Thus given our
construction of optimal ratings in Section 3, optimal rating becomes fully revealing. In turn, if
A < 0, I'is convex in i and thus, its concavification is simply the 0 function - since I" (0; A\, a) =
I' (1; A, a) = 0. In other words, optimal rating involves providing no information which results

in a = 0 which cannot be optimal, so A cannot be negative.

4.1.1 Expanding and Compressing Likelihood Ratios

Many economic activities violate MLRP in systematic ways. For example, activities where greater
effort affects not just the mean outcome but also its variance. Innovative activities often increase
both upside potential and downside risk—greater R&D effort can lead to breakthroughs or fail-
ures. On the other hand, activities such as maintenance typically reduce variance—more careful
attention produces more consistent outcomes. These patterns correspond to distributions where
the cross-derivative of the log-likelihood changes sign.

In what follows, we define two classes of distributions and characterize the optimal ratings.
Definition 2. A distribution function g (y|a) is said to satisfy:

1. Expanding likelihood ratio property (ELRP) if for any a € A, there exists § such that
2 N 2 ~
a05; 102 ¢ (yla) > 0 when y > g and 575-1og g (y|a) < 0 wheny <,

2. Compressing likelihood ratio property (CLRP) if for any a € A, there exists § such that

8?y log g (y|a) < 0 wheny > § and -2 log g (yla) > 0 wheny < 9.

dady

dad
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The terminology reflects how effort affects the signal distribution’s tails. Under ELRP, increased
effort expands the tails, while under CLRP, increased effort compresses the distribution toward
the center.

For example, consider logy ~ N (log a, a”), that is, log y has a normal distribution with mean

log a and variance a”. In this case, we can use the definition of the density of the normal distri-

bution to show that
0? log ¢ (y1a) 1+vlogy/a
0 a) = ———=—
dady S9N a'try

When v > 0, g satisfies ELRP since the above is positive if and only if y/a > e™”. In contrast,
when vy < 0, g satisfies CLRP since the above is negative if and only if y/a < e™7.

A version of these examples are depicted in Figure 3. As it can be seen, in case of ELRP, the
tail densities increase as effort a increases while the densities for mid-realizations decline. In
contrast, under CLRP, tail densities decline while the densities for mid-realizations increase. In

both cases, the two densities intersect exactly twice which is in contrast with single crossing of

MLRP.
9(yla)
7 logy ~ N(a,a?)
," a=1
oa=1.2+
Y Y
(a) ELRP (b) CLRP

Figure 3: Distributions with ELRP (left) and CLRP (right)

Given these definitions, we can state our result on optimal ratings for these classes distributions:

Proposition 4. Suppose Assumptions 2 and 3 hold and FOA is valid.

1. Ifg (y|a) satisfies ELRP, then the highest implementable effort ayc is the highest value of effort
that is incentive compatible for an interim price associated with lower-censorship ratings, i.e.,

ratings that pool values of y below a threshold and reveal higher values.
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2. Ifg (y|a) satisfies CLRP, then the highest implementable effort ay ¢ is the highest value of effort
that is incentive compatible for an interim price associated with upper-censorship ratings, i.e.,

ratings that pool values of y above a threshold and reveal lower values.

As the above proposition establishes, optimal ratings for ELRP and CLRP distributions are fairly
simple. They involve either upper censorship (in case of ELRP) or lower censorship (in case of
CLRP). In what follows we provide an example and discuss its implications for various tasks and
technologies.

Suppose that y ~ N (a, (ka)2), that y determines market values, i.e., U (y; a) = v, and that cost
is ¢ (a) = a*/a. Under a full information rating, p (y) = y, profit of the DM is a — a?/2 which
is maximized at ap; = 1. It can be easily checked that in this case G (y|a) satisfies ELRP. For
any value of i € [0, 1], we can find the highest level of effort that is a best response to pooling
of i lowest realizations of the indicator y. This is depicted in Figure 4 (left panel) for values of
k=1,2,3,4. At the lowest value, 7 = 0, optimal effort is ap; = 1. Optimal effort peaks at some
threshold, 0.56, 0.69, 0.73, 0.75 respectively, and falls to zero as 7 tends to 1. It should be noted that
as variance of y becomes steeper as a function of a, the highest possible value of effort increases.
Figure 4 (right panel) depicts the marginal change in the quantile as a result of an increase in a,
—F, (ila; a), and its concavification (in the case of k = 1). The threshold for pooling on the right

coincides with the peak of the left plot since optimal ratings take the form of lower censorship.

_}Fawa; a)
"pooling”
04k
02k
L d
Ed "
0.0 2 1 1 L L -
0.2 4 0.6 0.8 10
1 1 1 L d -0.2f
02 04 06 0.8 10

(a) Optimal effort for pooling the lowest i realizations of y  (b) Concavification of the marginal change in quantiles

Figure 4: Optimal efforts for lower-censorship policies

We should note that the notion of ELRP and CLRP are tied to whether an increase in ef-
fort a leads to a higher or lower variance of the indicator y. Specifically, suppose that y =

f (0 (a)e +m (a)) withm and f increasing, and ¢ has density ¢"®) such that h (¢) is concave and
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e+ h'(e) /b’ () is increasing in . In this case, y exhibits ELRP (CLRP) only if o (a) is increasing
(decreasing) in a. Several classes distributions satisfy these properties for h: Normal, Gumbel,
Generalized Normal, Logistic, etc. For this class of distributions, a constant ¢ (a) leads to MLRP.

The above findings point to a practical property of optimal ratings in targeting an action.
Namely that how variance of indicator interacts with the desired action determines the best
way to incentivize it. Specifically, an activity where more effort leads to a more precise out-
come (CLRP) such as maintenance activities, full revelation at low values and pooling at higher
values, encourages higher effort to avoid low value punishments. On the other hand, if higher
effort leads to riskier outcome (ELRP) such as innovative activities, then pooling of low realiza-
tion via lower-censorship ratings provides insurance against possible downsides and encourages
risk taking (increasing effort). When effort doesn’t affect variance (MLRP), optimal rating is full
revelation and no pooling is needed.

We should end this section by emphasizing that while we have focused on the highest possible
effort that is implementable, any lower value of effort can also be targeted by rating systems. The
analysis in this section specifically is useful in identifying values of effort that are higher than
those achieved by a fully revealing rating system. Especially in markets with positive externalities
where fully informative ratings lead to inefficiently low levels of effort, one can use ratings (absent

MLRP) to improve market efficiency.

4.2 Redistributive Motives

Here, we discuss optimal ratings in presence of redistributive motives. This could happen because
of societal values — see for example Dessein et al. (2025), to guarantee a minimal level of ex-post
payoff. In an earlier version of this paper Saeedi and Shourideh (2022), we provide examples in
which the intermediary wishes to maximize fees from providing the rating to the market and
showed that this also gives rise to redistributive motives.

To see the effect of redistributive motives, suppose that « (y) is positive, decreasing in y, and
J;a(y)dG (yla) < ooforalla € A. In this case and using Assumption 3, we can apply the result
of Theorem 1 which implies that optimal ratings are determined by concavifying the following

function

| a@dG i) - A6, (6 ().

G—1(i|a)

We have extensively discussed the properties of the second term that captures the incentive effect
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of ratings. The first term is decreasing and convex function of i since®

5 a(y)dG (yla) = = =0

0’ /°° _0a(G7(ia) g (G (ila)|a) o' (G~'(i|a))
G=1(ila) i g9(G~*(ila) |a) g (G~ (ila)|a) —

Evidently, if A = 0, since the above function is convex, optimal ratings must be one that pools all
values of y. Obviously, such a rating does not provide any incentive for exerting effort. The total
gain function combines this convex redistributive term with the incentive effect. Even when the
incentive effect is concave (as under MLRP), strong redistributive preferences can make the total
gain function non-concave for low quantiles.

The following proposition illustrates how redistributive motives affect optimal ratings:
Proposition 5. Suppose that

ima (G (ila ga(G_l(ﬂa)\a) 1a L (ila)) di
g (67 (1) + ¥ty > J, (6 o)

Then there exists an interval around y = G~ (0|a) where the optimal rating is pooling. As a special

ga(G~"(ila)la)

case, the same is true if o (G (ila)) — oo asi — 0 and lim; o ST

< 00

Proposition 5 illustrates the key force of redistributive motives. The assumption implies that the

function I' (i; A, a) satisfies w < —I'(0; A\, a). Since I (1; A, a) = 0, the line connecting
1=0

(0,I'(0; \,a)) and (1, (1; A\, a)) is above I (i; A, a) for an interval of values of i > 0 and thus

the concave envelope of I lies strictly above I" for an interval of values of ¢ above 0. This means

that optimal rating should be pooling for an interval of values above ¢ = 0. Intuitively, when
redistribution motives are high, the redistribution effects of pooling at low values is higher than
the incentive costs due to this pooling.

As an example, suppose that y = ae,loge ~ N (—1/2,1), ¢(a) = a?/2, and a (y) = y* for

some (3 > 0. In this case,

9 iha) = —aly) — 9a (yla)
git ()=l )

1
5+ log¥

y=G~1(ila)

)

The above function is increasing ini = G~! (y|a) for values of y below a threshold and decreasing
for values of y above it. This implies that H is convex below this threshold and concave above

it. As a result, optimal rating must be lower censorship. Figure 5a shows the components of the

2"While we are assuming « to be differentiable, this is really not needed for convexity of the first term.
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function [' when 5 = 2 at the optimum value of effort, a, and multiplier, A\. Since G satisfies
MLRP, the incentive component is concave while adding the redistributive motives makes the
sum convex for low realizations. The resulting sum and its concavification is depicted in Figure

5b. The optimal rating pools the lowest 47.28 percent of realizations of y.

\ A
20l cavl’
15
10+ 10
Sk 5
fG*l(z\a) aly)dG t
0.2 0.4 0.6 0.8 1.0 o 0.2 0.4 0.6 0.8

(a) Components of T" (i; A, a): Redistributive (blue) and in-(b) The function I' (i; A, a) (red) and its concavification (blue)
centives (orange)

Figure 5: Concavification of the marginal change in quantiles

It is useful to conclude this section with a summary of the results:

1. When targeting an effort, the set of implementable efforts is determined by the supermod-

ularity of log g (yla).

2. Optimal rating associated with highest implementable effort is lower (upper) censorship
when ¢ (y|a) exhibits ELRP (CLRP).

3. Strong redistributive motives lead to pooling of low realizations of y.

In what follows, we use the insights in this section to shed light on two important examples:

Multi-tasking and optimal redistributive test design with heterogeneity.

5 Applications

In this section, we illustrate the value of our characterization results above by applying them to

a multi-task moral hazard model and optimal test design.
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5.1 Rating Design, Multi-task Moral Hazard and Window Dressing

Since the seminal work of Holmstrém and Milgrom (1991), the multi-task principal-agent mod-
els have become the workhorse of analyzing incentives in setting where agents can use several
actions to affect the observed outcomes? - see also Baker (1992) and Dewatripont et al. (1999).%
In this section, we consider a variant of the model in Dewatripont et al. (1999) to understand how
rating design can be used to mitigate multi-task incentive problems.

The DM chooses a vector of efforts a = (ay,--- ,ay) € [0,a]", which determines market

values and the indicator as follows:
v=">by-a+¢e,,y="0y-a+eg,

where b,, b, € RY capture the effect of a on market values and indicator, respectively, and:

2
9 g Oy
Yl~Nto T Y ) ow >0
Ey Ovy Oy

In words, choosing a vector of effort levels creates a value for the market while it affects the
indicator observed by the intermediary differently. Since €, and ¢, are positively correlated, high
values of the indicator signal a higher value for the market.

Using properties of the normal distribution, we can show that market values conditional on y

and belief a are:

_ N N Oy A o N
D(;0) = E[olysa] = 22 (y = by @) + by = By + (b, — Bb,) -
Yy

where § = 0,/ JZ > (. Suppose that the cost of effort is

LN
c(a) = ) Z KnG2
n=1

where «,, > 0 is marginal cost of task n.

When b, # b,, the indicator is a distorted measure of market value. A special case is window

#Several empirical studies have looked at variants of the multi-task moral hazard model. A partial list includes
Dumont et al. (2008) and Alexander (2020) for compensation of doctors, Acemoglu et al. (2020) for incentives in
military and security forces, De Janvry et al. (2023) for incentives of government employees, Andrabi and Brown
(2022) for incentives of teachers, and Mayzlin et al. (2014) and Hui et al. (2025) for incentives on online platforms.

22Since Dewatripont et al. (1999) analyze a variant of Holmstréom (1999)’s career concern model, their model is
closer to ours where the agent’s compensation is determined by market expectations as opposed to an endogenous
contract chosen by the principal as in Holmstrém and Milgrom (1991) and Baker (1992).
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dressing: an effort that boosts the indicator without affecting market values. More precisely, we
say that task n exhibits window—dressing if b, ,, > 0 and b, ,, = 0. In this case, efficiency requires
a; = 0 since a; does not add to market values and is costly.

A key feature of this model is that it is reducible to the single effort model of section 4. This
is because the effort vector a affects the distribution of the indicator solely through m, = b, - a.

Additionally given m,,, there is a unique cost minimizing values for vector of efforts:

min — E KnQ,,

aclo,aly

subject to b, - a = m,

The solution to the above is given by

an (My) =
R Z] yJ/ K’J
and the resulting indirect cost function is

m2

C<my) 22] y]/ﬁj

Since the DM can choose the vector a given any level of m,, she will always choose a,, (m,) to
minimize her cost. Thus the rating design problem is reducible to a choice of an interim price
function p () and m,,.

Now, consider the problem of finding the optimal rating that maximizes total surplus. Total

surplus in this environment is given by
by - @ (my) — C (my)

and thus the welfare maximizing m;, is given by

N
o by,nbv,n
Z Kn

n=1

Given that y|m, ~ N (my, 05) and the normal distribution satisfies MLRP, our result in section 4
implies that the highest implementable level of effort is the one associated with full information.

Under full information, the DM solves the following:
me%(@by ~a(m)—C(m)
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whose solution is given by
mpr = Z KL
We thus have the following proposition:

Proposition 6. Ifm; > mj., then the welfare maximizing rating is fully revealing and implements

a(mpy). If my; < mpy, then the welfare maximizing rating implements a (m;:) An optimal rating

*

y) is a lower-censorship rating that pools the realizations of y below y given

that implements a (m

by
Z?{:l by,z'bu,z'/ffz‘ Y- m;j

7Z:

Zﬁl biz/ Ki Ty
where ® is the c.d.f. of the standard normal distribution and ¢ = P'.

¢ (2)°
O (z)

pz¢ (z) + 8 +A-2(3)] = (10)

Given the above discussion and the results of section 4, Proposition 6 is immediate. We should
note that the lower-censorship rating is one of possibly many optimal ratings that implement the
efficient outcome. This is because m;, is an interior point of the set of implementable values of
m,, given by [0, mj;].

Proposition 6 also identifies the sufficient statistic that determines the optimal lower-censorship
Ty SN bysibui/i
vy 3 bz,i/“i

of manipulation or window-dressing on the optimal rating. So, suppose that some effort a;,

rating. This is given by . An object of interest is the effect of changes in cost
exhibits window dressing, i.e., b,; = 0,b,; > 0. An increase in x; reduces the denominator of
the sufficient statistic and thus increases its value. Since the left hand side of (10) is decreasing
in Z, an increase in the sufficient statistic leads to a reduction in Z and hence a more informative

rating. We thus have the following:

Proposition 7. Suppose that a; exhibits window dressing effort, i.e., b,; = 0,b,; > 0 and that

m, < mp;. Then, a decrease in r; leads to a less informative optimal rating.

This result is reminiscent of Holmstrom and Milgrom (1991)’s result on optimality of low-
powered incentives. It highlights that when manipulation becomes easier, optimal ratings should
become less informative in order to reduce window-dressing incentives.

For a general task 7, whether a decline in cost «; leads to a less or more informative rating de-
pends on the relationship between the values of b, ; and b, ;. The following proposition illustrates

this dependence:

Proposition 8. A decline in cost of task i, k; leads to a less informative signal, i.e., higher value of

z, if and only if

by,i N bv,i >0

N N =
ijl bz,j/’fj Zj:l by,jbu.j/Kj
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We should end this section by emphasizing that while an extensive literature has studied multi-
tasking model and their empirical applications, the idea of using rating policy to mitigate issues
like window—dressing remains unexplored. Our analysis here means to illustrate the benefits of

using rating policies to reduce inefficiencies caused by such motives.

5.2 A Nonreducible Two-Task Model

The key benefit of the setup above was that it was reducible to the single effort setup characterized
in section 4. Here we discuss an example that is not reducible to single effort and discuss its
implication on optimal rating design.

Suppose there are two tasks a;, a; and the market values and the indicator are given by

v=ay(e;+1)
y=bay(e1+1)+az(e2+1)

where ¢;’s are standard normal distributions and independent and b > 0. Since v and y are
positively correlated, we can calculate the expected market values using properties of the normal
distribution

2
ba;

R (y —bay —az) + a1 = f(a) X (y —bay — az) + a
1 2

v (y;a)
Using Theorem 1, when the objective of rating design is independent of the distribution of interim
prices, the shape of the optimal rating is determined by a weighted value of the marginal change

in the quantiles:

a=a a=a

Since y ~ N (ba1 + ag, (ba1)2 + a%), we can use properties of the normal distribution to show
that the above is either concave for low values of 7 and convex for high values or vice versa. As

a result, optimal rating must be either upper or low. The following result refines this further:

Proposition 9. Suppose that the cost of effortisc (a) = 5 (af + a3) andb < \/{’/1 +v2 - VV2-1x
0.772. Then, the welfare maximizing rating in the non—reducible two—task model is upper censorship

and delivers welfare that is strictly higher than fully informative rating.

Note that in the two task model of this section both productive effort, a;, and window-dressing
effort a,, increase the mean and variance of the indicator y. However, since the impact of produc-

tive effort on y is lower, censoring higher values of y has a bigger impact on window-dressing.
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Since window-dressing actions only destroy surplus, some pooling of high observations has a
high impact on window—-dressing incentives while its impact on productive effort is mild.
Overall, our analysis of the multi-task model presented here highlights the importance of rat-

ings when the indicator is a distorted measure of market values.

5.3 Redistributive Test Design

Recent public discourse in the education realm has highlighted the biases of standardized testing
(such as the SAT) and testing of difficult subjects (such as math) against students with socioe-
conomic disadvantages.”> Inspired by these observations, there has been a movement for more
relaxation of requiring students to participate in such tests. This includes several universities’
policies to make the SAT optional (see Dessein et al. (2025)) and attempts at making mathemat-
ics education more accessible and easier. Inspired by this debate, in this section, we provide an
alternative answer to this question in the form of optimal test design.

To see this, consider a student that could be of # € {R, P}with probabilities fg, fp . Sup-
pose that both types can exert effort ay which leads to a distribution of an indicator y which is
distributed according to g (y|ag) with support given by I = [y,y] - with the possibility that
y = —oo and J = oo. The cost of effort for each type is kyc (a) where c(a) is a convex and
increasing function where 0 < kg < kp. Finally, let v = y so that the market values are simply
the value of the indicators and let p (y) be the interim price function that is increasing.

Consider a rating designer who wishes to maximize the following objective

arfr { [ p)dG (glar) ~ kpe <ap>} tonfn { [p@)dG iaw) ~ ke an)| )

I 1

where apfp + arfr = 1 and ap > 1 > apr. Let us assume that an increase in a leads to an
increase in ¢ (y|a) in the sense of first order stochastic dominance. This would imply that since
the student of type R has a lower marginal cost, her associated distribution of the indicator is
shifted to the right.

The problem of optimal rating design is then to find p (y) and ag, ap to maximize the objec-
tive in (11) subject to incentive compatibility for both types and that p (y) is mean preserving
contraction of y which is distributed according to fpG (y|ap) + frG (ylar) = G (y|ar, ap). In
this case, a similar proof to that of Theorem 1 implies that under the validity of FOA, the optimal

Z1n 2023, California Board of Education passed the controversial California Mathematics Framework which sets
guidelines for mathematics education in California public schools. Citing the students’ socioeconomic disadvantages,
the framework calls for some relaxations in testing standards and education of mathematics. For more information,
see the article in the New Yorker on the California Mathematics Framework.
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rating can be found by concavification of the gain function

——1

D) = —apfeG (G (i) lar) — arfaG (G (i) ar)
G (@’1 (4) yap) —rGla (E“ (i) \aR)

where in the above i is the quantile of y according to G and \y’s are the multipliers on the
associated incentive compatibility constraint.

The following proposition guarantees that for a class of distribution functions, the second
derivative of the above object switches sign at most three times. This would imply that opti-

mal rating is always switching between at most four regions of pooling and separation:

Proposition 10. Suppose that log g (y|la) = f (y) + r (y) m(a) — b(a) wherer (y),m(a),b(a)
are increasing functions and m (a) > 0. Then optimal rating that maximizes (11) always has at

most four alternating intervals of pooling and revelation.

Note that the class of distributions considered in Proposition 10 includes some of the fairly
common ones that are used in applied work including 1. a normally distributed y where one of
the mean or variance is controlled by the action a, 2. a log—normally distributed ¥ such that a
controls mean of logy, 3. when y is distributed according to a extreme-valued distribution of
type 1 and 2 (Gumbel and Frechet) where the scale parameter is controlled by a, among others.
Moreover, the assumption implies that log ¢ is supermodular in (y, a), i.e., it satisfies MLRP.

Interestingly, one might think that, in light of the results on redistributive optimal ratings in
section 4, it should always be optimal to pool low realizations. However, the difference here
is that there are two incentive constraints. Under certain conditions on the likelihood function
9a/ g for low realizations of y - specifically as it becomes arbitrarily large as y — y, the incentive
effect dominates the redistributive motives for low realizations and optimal ratings become mid

censorship. To see this, let us consider the following example.

Example 1. Suppose that y = a + € where ¢ ~ AN (0,1) and that ¢ (a) = a?/2. Let us also
assume that ap = 1/ fp, ar = 0 so that objective is to maximize the payoff of the high cost type.
As mentioned before, this example satisfies the requirement of Proposition 10 and hence optimal
ratings switch at most three times between pooling and revelation. Our calculations illustrate
that indeed optimal ratings are mid censorship: those that pool middle observations of y and
separate the extreme realizations. We further assume that kgr = 1/2 and that fp = fr = 1/2.
Figure 6 depicts the optimal rating and the concavification of the gain function described above

for different values of costs for type P.** In the left panel, the cost of type P is closer to that

2Tn order for the difference between the concavification and the function to be more visible, we subtract
(arfr+ apfp) (1 —1) from the gain function I' in the plot. Since this subtraction is linear, it does not affect
the resulting concavification in terms of the pooling and separating intervals.
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Figure 6: Determining the optimal rating for Example 1

of type R. In this case, optimal rating pools observations approximately between the 6th and
71st quantile of the y distribution. When the cost for type— P increases to 5/4, the optimal rating
pools observations below the 78th percentile — the lower threshold is at 1.3th percentile. As it
can be seen, as the difference between the two cost types increases the rating policy becomes less

informative in order to redistribute more across the types.

6 Conclusion

In this paper, we have developed a general framework for the design of rating systems in the pres-
ence of moral hazard and strategic manipulation. Our approach makes this problem tractable by
identifying "interim prices" as the sufficient statistic for the agent’s incentives. Under a natu-
ral monotonicity restriction implementability is equivalent to a majorization restriction: feasible
interim prices are mean-preserving contractions of the full-information market value. This con-
verts rating design into the classic moral-hazard problem with a majorization constraint.
Building on this characterization, we provide a general solution method. Under a first-order
approach to incentive compatibility, optimal rating design reduces to concavifying a gain function
in quantile space. This formulation yields two broad takeaways. First, it delivers a set of sufficient
statistics for optimal transparency: the technology matters through how effort shifts the quantile

distribution of the indicator and, in turn, the distribution of market values. Second, it implies
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structure on optimal information policies. Under mild conditions, optimal ratings are simple
deterministic monotone partitions of the indicator space: the intermediary either fully reveals
the indicator on some regions or pools contiguous regions into coarse categories.

The economic insights that emerge from our analysis connect the statistical properties of the
task to the structure of optimal disclosure. In the canonical benchmark with monotone likeli-
hood ratios, full information disclosure achieves the highest implementable effort. Departures
from this benchmark generate systematic and testable patterns of censorship. For innovative ac-
tivities where greater effort expands outcome variance (ELRP), lower-censorship ratings that pool
poor realizations provide insurance against downside risk, encouraging risk-taking. For mainte-
nance activities where effort compresses variance (CLRP), upper-censorship ratings that pool high
realizations punish poor outcomes by deterring negligence and encouraging consistency. Strong
redistributive motives create a fundamental tension between maximizing effort and protecting
agents from downside risk, generally favoring policies that pool low realizations. More broadly,
the framework clarifies why “more transparency” is not a universal remedy: whether additional
information strengthens incentives depends on which parts of the outcome distribution effort
affects.

Two applications illustrate how the theory speaks to current design problems. In multi-task
environments with window dressing, more informative ratings can intensify incentives for ma-
nipulable activities that improve measured performance without an increase in underlying value.
The optimal response is often to reduce informativeness to mitigate manipulation incentives. In
particular, when manipulation becomes cheaper, welfare-optimal rating policies become more
opaque, and in a nonreducible setting upper censorship can strictly dominate full disclosure by
disproportionately discouraging extreme realizations driven by window dressing. In redistribu-
tive test design, we show how the same concavification logic rationalizes mid-censorship rules
that pool intermediate outcomes while separating extremes. These results formalize a common
policy intuition: the optimal granularity of evaluation depends jointly on incentive provision,

manipulability, and distributional objectives.
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A Proofs

A.1 Proof of Proposition 1

Proof. That if p is constructed from some information structure (7, S) then p =, v is immediate
from the text.

Now, suppose that p and v are comonotone and p ’=.,. v. Comonotonicity of p and v implies that
there exists a monotone function p where p (y) = p (v (y; a)). By the main result of Kleiner et al.
(2021), p has to be a linear combination of a set of monotone functions each of which partition
the possible values of ¥ into a collection of intervals Z = {la},c 4 U {Js} . for which either
p(w) =v,Yv € I, or p(v) = E[0|v € Js],Vv € Js. We can represent each function with its
associated partition Z. By the Krein-Milman theorem, p (v) must be a convex combination. For
the sake of convenience, suppose that there are a finite*” number of such function {p, (U)};Izl
with partitions {Z; };.]:1 = {{Ia}ae 4, YU {8} se B, }j and a probability distribution {7; };.]:1 so
that

J
(o) =2 i (v) 7,0

j=1

51t is fairly straightforward to see that this proof generalizes to arbitrary distributions. In order to avoid clutter
we omit the general case.



We can define S = [J; {s;} x (U I, U Bj> and

OleAj

J
7 (s, Clv) :Zle[UECorﬂb’EC,UE Js],¥C C U I, U B,

J=1 QGAj

In words, 7 is associated with a signal that reveals which partition Z; is used with probability 7;
and then reveals v if the signal associated with Z; reveals v and otherwise the interval Jp that v
belongs to. Under this signal, the market posterior [E [v|s;] is either 7 if 7 is fully revealed in Z; or
itisE[v|v € Js], 5 € B;if s; and interval J are revealed. Since these values are equal to p; (v)
, it implies that p (v) = E [E [0|s]]. This concludes the proof. O

A.2 Proof of Lemma 1

Proof. In this proof, we assume that —oo < vg (0) < vg (1) < oco. The cases with vg (1) = oo
or vg (0) = —oo can be proved using a limiting argument. Before proceeding, we prove the

following lemma:

Lemma 2. Let p, U be comonotone and pq (i) ,U¢ (i) be their associated quantile representation as
defined in (6). If F, (v), F, (v) are the cumulative distribution functions of p,U respectively, then
P = U ifand only if F, (v) =, F, (v) where v is uniformly distributed over V = [vg (0) , vg (1)].

In other words,

/0 ¢ (pq (i) di > /0 ¢ (g (1)) di, ¥V : V' — R : concave <
/V@D (Fy (v))dv > /V@D (F, (v))dv,¥ : [0,1] — R : concave

An example that illustrates Lemma 2 is depicted in Figure 7. On the left, we have an example
of p, v (not their quantile version) where p is a mean—preserving contraction of v while this is
reversed for their c.d.f’s. The idea behind Lemma 2 is simple. Since c.d.f’s are inverses of the
quantile functions mean preserving contraction for one implies mean preserving spread for the
other. We provide its proof in the online Appendix. Note that in the above, we can view i = F}, (v)
as having a distribution according to % and j = F, (v) as having a distribution %

vg(1)—pe(l)
vg(1)—vq(0)
Now, if p *=, U, Lemma 2 implies that F, >=., F},. By Blackwell’s theorem (see also Kolotilin

with probability onj=1.

(2018) and Gentzkow and Kamenica (2016)), there must exist a signal structure (or a garbling)

where F, (v) = i is the conditional mean of F}, = j upon realization of the signal with ¢ having
distribution dvg (7) / (vg (i) — vg (0)) and similarly for j. Let p (-|¢) € A0, 1] be the posterior
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Figure 7: Example of p »=., ¥ (left) and their associated CDF’s (right) that satisfy I, =, F},

associated with F, (v) = i. Since the distribution of 7 is given by duvg (i) / (vg (i) — vg (0)) we

can write Bayes plausibility as

Ldvg (i) [, dpg (7)
/ Al S = AT A ) (12)
such that
— [ dauli) ¥i € .1 (13

where in the above |A| is the Lebesgue measure of A and |V| = vg (1) — vg (0). Note that (13)
simply states that i = F), (v) is the posterior mean of j = F, (v) according to the distribution

e (-12)-

We can then write

/Yp(y

i) dvg (1) dH (j) by setting A=|0, j] in (12)

||
\\

u
= / / H (j) dvg (i) Fubini’s Theorem
= [ / H (j)du(ji )} dvg (i) Int. by parts for inside integral

= / / H (7)dp (j]7) dvg (i) since by construction H (1) =0
0 Jo

Now, consider the expression fol H (j)dpu (j]7). In this expression j (i) is a probability dis-

tribution over j whose mean value is 7. In other words, this is a convex combination of val-
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ues of H (j) with average of i. Given the definition of the concave envelope, we have that
fol H (j)dp(7]7) < cavH (i). Moreover, since the space of measures over [0, 1] is compact accord-
ing to weak-"* topology (Banach-Alaoglu theorem) for each i there must exist p (-|i) € A [0, 1]
such that fol H (j)dp (jli) = cavH (i). We can then use the above procedure to construct an
interim price function that delivers [ cavH (i) dvg (i). This proves the equality (8).

To prove the second part, note that by Caratheodory theorem, for any i either cavH (i) = H (i)
or that there exists 7; < 7 < 15 such that

1o — 1@ 1—1

cavH (i) =

H (Z1) +

o
b2 — iy to — iy (i2)

In the first case, 1 ({i} |1) = 1 and in the second case u ({i1} |i) = ﬁ = 1—p({i2} |7). In other

words, concavification of H partitions the range of [0, 1] into subintervals (i1 4, %2,4), [i1,3,72,]

where for any « there exists /3 such that i3 , = 7; g and another 3 for which ¢; , = i3 3 where for

alli € [i1.5,05], 1t ({i} i) = Landforalli € (i1.a,i2.0), pt ({i1a} i) = —22= = 1—p ({iz.a} |9).

i2,a_i1,oz
From above we know that )
po )= [ (03]l duo ()
0
Given the construction of 1, we have
1[5 > 1] cavH (i) = H (i)

p(0, 511 =9 . .
12,6 —1 1 [iZ,a > ] > il,a] +1 [] > @'2701] otherwise

i2,a*il,a

Now, suppose that j € [i; g, i2 5] for some 3. This means that if i > j, 11 ([0, j] |¢) = O since all
higher quantiles either put weights only on ¢ or on values of the form 7, ,, i3 , which are higher

than j. Then we can write

po (j) = / (0.1 18) deg (i)
:/Ojdv@m:v@(j)

Moreover, if j € (41,4, 12,,) for some «, then it has to be that if i > iy ,, then u ([0, j] i) = 0. So
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we can write

po (j) = / (0, 911i) dvg (i)

0

= [T+ [ oo

il,a

. 12,0 i N — .
= UQ (ll,a) + / Z,27—dUQ (2)

1,0 2,o¢_i1,o¢
. , e g (i)
=gl —volina) + [ 20
1,0 ZQ,a Zl,a

=E[vg (1) |i € (i1,0,i24)]

This establishes the claim. O]

A.3 Proof of Theorem 1

Proof. Consider the problem of finding the best interim price function in quantile form for a given
action a:

max W (a) — /pQ (i) dH (i;a) = max W (a) + Tupg

PQ b
subject to pg *=cv T, monotonicity of pg and the first order IC constraints. We will show that
for any a € A, Lagrange multipliers associated with the first order IC constraints exist so that
the constrained optimization gives the same value as the unconstrained optimization of the La-
grangian over the space of py’s that are a mean preserving contraction of U and are monotone.
This combined with Lemma 1 implies the desired result.

We view pg as a member of any arbitrary L, ([0, 1]) space for some p > 1. Let us refer to the
first order IC constraints with respect to a,, as T,,pg = 0 where T, is an affine transformation that
maps L, ([0, 1]) to R (same is true for T) and we can define T'pg = (T1pg, - - - , Tnpg) which is
an affine transformation from L, ([0, 1]) to RY. Finally, let us refer to the set of py’s that satisfy
PQ e Ug and monotonicity of pg as P and the subset of P that satisfies T'pg = 0 as Q.

For any subset S C {1,--- , N}, let S¢ = {1,---, N} \S and let us consider the following sets

P (S) ={pg € L, ([0,1]) |pg #ev. vo, po increasing, T,po > 0,n € S, Typg < 0,n € S}

Lemma 3. There exists S such that max,,ep(s) Tupg = max,,co Tupg-

Proof. Since all members of Q satisfy T,,pg = 0, it must be that @ C P (S) for all S. This
implies that max,,ep(s) Tapg > max,,co Trpg. Now, suppose to the contrary that for all S,
the left hand side is strictly higher than the right hand side. This implies that for any S C
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{2,--- ,n}, there exists p € P (5),p’ € P(SU{1}) such that Typ, Typ' > maxy,co Tupq.
Since T1p < 0 < Typ' there must exists A such that 7} (\p + (1 — A)p’) = 0. Let p()% =
Ap + (1 — \) p’ and recall that p) € P (S). Note that we must also have that Tpp)% >
max,,co Tpg. Now, we know that Top™¥ < 0 < TopMS) for any S C {3,--- ,n}. By
using the same argument, we can find p"?)3 such that Ty p"2)° = Toph2:S = 0, ph:2):5 ¢ P (S)

and Typ'?5 > max,,eco Tupg. By continuing this construction, we can find p*>~") such

that TypN) = ... = TypN) = 0 and that Typ*™) > max,,co Tupqg which is a
contradiction since p(l’“' N e 0. L]
Now, suppose that S C {1,---, N} satisfies the condition in Lemma 3. Let us define P =

{polpg *=ev. vg, o increasing}. Then, T' maps members of P into R". Moreover, 7' maps mem-
bers of P <S’> into a convex cone. Since the image of P (5‘ ) under T is convex in RY, it must
have a non-empty relative interior.”® This implies that we can apply standard results for exis-
tence of Lagrange multipliers (strong duality) — see for example, Theorem 8.3.1. in Luenberger
(1997). Hence, it must be that A # 0 € R" exists such that \, > 0 for all n € Sand \, < 0 for
all n € S¢ such that

max W (a) — /pQ (i) dH (i;a) =

pQ€EP
N N
: 0 a dc (a)
gzggw (a) +/ H (i;a) — ;)\n 8_&nF (ila;a) &:J dpg — ;)\nﬁ—an
The rest of the claim follows from Lemma 1. OJ

A.4 Proof of Proposition 2

Proof. Given the statement of Theorem 1, we know that the unconstrained objective in (D) can
be achieved by a monotone partition. Note that by Kleiner et al. (2021), the extreme points of the
convex set P — the set of pg’s that are mean preserving contractions of v and are monotone - are
associated with the monotone partitions. In what follows, we show that under the Assumption

2, no two extreme points of P can deliver the same value of the Lagrangian

L@Q,A;@=W<a>—/pQ<é>d(H<i;a>—ZAn a%F“‘W - ) —Z)\na%na)

This would imply that L (pg, A; a) has a unique maximand for any A which establishes the claim.

%See for example Theorem 6.2 in Rockafellar (1970).
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Suppose that there are two interim price functions p;, p» € P that are associated with mono-
tone partitions. If p; # po, then there must exist an interval [ C [0, 1] so that all of its members
satisfy p1 ¢ (i) = v1¢ (7) and pa g () is constant for all i € I. By Lemma 1, if py ¢ (i) = v1 ¢ (i) is
optimal for an interval /, then " (7;a,\) = H (i;a) — 25:1 An %F (ia; a) ‘ ~ should coincide
with its concave envelope. Moreover, suppose that the maximal interval Congianing I for which
Pa,q is constant is [ = (i1, 45). Suppose that the value of py ) is f over this interval.

We show that this implies that I" (i; a, \) is linear over the interval /. Suppose to the contrary

that for some sub—interval I’ C I, I' (i; a, A) is strictly concave. Then,

- / pa (i) dT (150, ) = —p[T (i, A) — T (ir;a, A)

We also have that

Let us define

2_9 (S (]7 22)
where _ ,
Flogtydi [P vq(i)di
p="——"—p= "
J—Uu 92— ]
We have

- /ﬁg@ (0)dL (i; A\, a) + /pg,Q (2)dL (i3 A, a) =

I v (i) di g (i) di

[T (s a,A) =T (in50, )] = [ (i2;a, A) = ' (j; a, A)]

R 19— J
200 (1) di
+f“z'Q—(z’) I (ig;a, A) = T (41; a, A)]
9 — 11

In the above, since I (i; a, \) is strictly concave over parts of I, we must have that

L(ia,A) =T (@3aA)  Tlisia, ) —T(Gia,N)

J—10 io—J
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Let us also define m; = 4= = 1 — m, . Since p < Jj,we can write

ig—1i1

F(],CL,)\)—F(217CL,)\) F(227aa)‘)_1—‘(]7a7)‘)<

TP — + mop . .
- J—u 22—
I'(j;a,\) =T (i15a, A I'(9;a,\) =T (5;a, A
(mp + m2p) <7T1 U ;—il(l )—1-71'2 (i2 iz—j(] )>:
J20q (1) diT (ig;a, \) — T (ir; 0, \)
Z.2—1'1 ig—il

which implies that

—/m@@ﬁ@xw+/mgwﬂ@x@>o
and thus p, ¢ cannot be optimal. Therefore,
I (i;a,\) =c,Viel

for some c. Using the definition of /{ and F', we have

' (i;a,\) = —a (G_l (z|a)) _ y (;|a) Z)\nag (G_aa(j‘a) la) —©c

This is indeed in contradiction with the independence assumption which establishes the claim.

]

A.5 Proof of Proposition 3

Proof. In this case, the function I (i; a, \) satisfies

g (G~" (ila) |a) 1
da g9(G~1 (ila)|a)

IV (i;a,\) = =\

Since g exhibits MLRP, if A\ > 0 then, I is decreasing in 7 and so I is concave. If A < 0, then I
is increasing in ¢ and so I is convex.

By Lemma 1, if I is concave, optimal rating should be fully informative which proves the desired
result. If on the other hand, I is convex, then the optimal rating should be uninformative and as

aresult [ %—idpQ = 0 which means that no effort with a positive cost can be incentivized. O
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A.6 Proof of Proposition 4

Proof. Recall that T" (i; A\, a) = —\ % ~and as we have shown in section 4,

1 9logg (yla)
(yla) dady y=G~1(iJa)

I (i;a,\) = =)\
(5 a, A) g

Given our definition of ELRP, when A is negative, the above is concave-convex and when A is
positive, the above is convex—concave. We wish to show that under ELRP, ) is positive and thus
optimal rating has to be lower censorship.

Suppose to the contrary that A is negative. In this case, since I" (0;a, \) = I' (1;a, A) = 0, there
are two possibilities: 1. IV (0; a, A) < 0 in which case I" (¢; a, A) is non—-positive for all values of i
and its concave envelope is the zero function associated with no information; 2. I (0;a, A) > 0
in which case for an interval [0, i,] the concave envelope coincides with I" and for higher values
cavl' is linear. This is associated with an upper-censorship optimal rating. This is depicted in
Figure 8 on the left. In the first case, the marginal return to effort is zero and effort with positive

marginal cost cannot be supported.

c aV,F— 7/‘\

l )

T(i;\a) 1

Figure 8: Concave envelope of the marginal change in distribution is concave-convex (left) and
convex—concave (right).

In the second case, let 7; be the value of indicator associated with 7;. In this case, the marginal

benefit of effort is given by

/ p(y) % é‘zm dy =

n_ dlog g (yla) _ (Y 9g (y|a)
v (y;a) —dG+p/ dy
/y da y da

1

where in the above D is the average value of © when y > y;. Since I' is concave over [0, 1],

8log8+;(y|a) is decreasing in y over the interval @, yl} and thus, using the fact that v is increasing
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in y, we can use Chebyshev’s sum inequality to write the above as

& Olo a V0 a
/ 5 (y:a) %iQIMG+ﬁ/ ggﬁhwg
Yy Y1

[P0 (y;a)dG pn v
y / 810gg(y|a)dG+1_9/ dg (y|a>dy _
G<y1’a) y Y

y da . Oa
Jy D@D 9C oG ()a) 06 (1))
G (y1]a) da da
where in the above we have used the fact that % = 0. Since I' (i;) = —)\% > 0, the

above expression satisfies

(EWWSyd—EWW>ym§§QiQ

<
- Oa <0

which cannot be the case since the cost of effort is increasing. Hence, A\ > 0 and thus optimal
rating is lower censorship. When g exhibits CLRP, the argument is the mirror of the current

argument. [

A.7 Proof of Proposition 5

Proof. To show the result, it is sufficient to show that cavl' cannot coincide with I' for an in-
terval of values of i including 0. Suppose that to contrary that there exists an interval [0, 7]
where cavl' = F and as a result T is concave in [0,7,]. Consider the linear function I' (i) =
(1—i fo (i|a)) di. This function coincides with I (i; A, a) ati = 0, 1 since 2& (G~' (0|a) |a) =
%f (G (1|a) |a) = 0. This implies that any concave function that is above I" is also (weakly)
higher than I" and thus for all values of 7, cavI (i; A\, a) > I" (7). Since by our contrary assumption

for all values of i € [0, 4], I is concave and by the Assumption in the statement of the Proposition

I'(0;a,\) = —a (G (0]a)) — )\8G (G (Ola) |a) <T' ()

Oa
we must have that for all values of i € [0, 7],
T (i;a,\) < T (i)
As we argued, I (i) < cavl (i;a, \) which with the above gives a contradiction. ]
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A.8 Proof of Proposition 9

Proof. If we let ¢ (a) = a?/2, then the optimal rating design in this case is given by

max a; — k¢ (ay) — ké (az)

p,a1,a2
subject to

/ ) y"”’“?)dy = ' (a1)

o 8@1

(e e}

g9 (ylai, az) N
————=dy = K¢ (a

| oy - v )

P Zev. U (y; @) ,p: non-decreasing

The proof that in the above, p is determined by the concavification of

AlaG (yla) , 9G (yla)

(s N\ a) = 0, 9 0,

y=G~1(ila)
is identical to that of Theorem 1. Note that

yla~ N (n(a),0(a)?),

w(a) =bay +as,o(a) = (bal)2 + a3

This implies that G (y|a) = ® (%a()a)) and therefore

y—ula)
(G i) = o) <ij)’ )

— (@) BPag Ay + ash
<A1b+A2+y ila) ks + o 2)

o (a) o (a)

P /2

where ¢ (z) = e

with ¢/ (x) = —x¢ (). As a result,

—u(a)
62(11)\1 + ag)\2 + gb, (%) (

Yy
Ab+ Ao +
(@) o (a)o ()

(G (yla); A\, a) =

— K (CL) 62&1)\1 + ag)\Q)
o (a) o (a)

_62a1/\1+a2)\2_y w(a) y — (@) b2aih + asha
- o 7 (a) (M” 2T @ 0@ )
I (G (yla); X, a) g (yla) = —ﬁ (Alb + 2+ 272 - (Z@ b alil(;r)azx\g)
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The right hand side of the last expression is linear in y and thus changes sign only once. This
means that optimal rating is either lower or upper censorship.

Now, consider a lower-censorship rating that pools values of y below ¢ and reveals those above
it. In Online Appendix, we show that the welfare increases as y decreases. This implies that full
information ratings deliver higher level of welfare than lower censorship. Additionally, we show
that the welfare associated with an upper-censorship rating that pools values of y above g, is

decreasing at § = oo. Since § = oo is full revelation, this proves the result. O

A.9 Proof of Proposition 10

Proof. It is immediate by using an argument similar to Theorem 1 that optimal ratings can be

found by concavification of the function

1

D (i) = —apfpG (@‘1 (i)]ap>—aRfRG (é‘l (i)\aR> MGl (G ()yap) MGl (6‘ (i) yaR)

for some Lagrange multipliers Ap, Ar. We have

1

0(C lar) (G Wan) | a (G Olor) g (G0 o)
(@) (“1 ) a@e) T oa(@ )

where in the above § (v) = fpg (y|ap) + frg (y|ar). Given the functional form of g, we have

P/ (Z) = —Oépfp

g (yla) = ol W+r(y)m(a)—b(a)
Ey:ap; o (W)(m(ap)—m(ar))+h(ar) ~bap)
g\ylar
9a (yla)
7 (yla) =m'(a)r (y) — V' (a)

Replacing in the formula for I implies

! e s e
F/(a(y)):—Oépfp anfr g(ylap “Ap g(ylap g glylap) gylar
gylar) 9(ylar) gylar) gylar)

T+ TRgtylar) Jp+ IRty fe+ giglar) fe+ TR yyan

If we refer to m (ar) — m (ap) as Am and similarly for b (ar) — b (ap), we can write the above

as

apfp 4+ arfre™™ A 4 Xp (mlpr — bp) + Mg (mpr — bly) e"Am=A0
fP + fReTAm—Ab

46



If we define x = "™, then the above has the form

_Al + Asx + Azlogx + Ayxlogx
Bl +Bgl’

Note that we can argue that Ay > 0. This is because if we consider the problem by replacing the
IC for the R type with its inequality version imposing that the marginal return to ar be higher
than its cost. In this problem, if this constraint remains slack, one can simply increase ap and
shifts all p (y)’s upwards by the same amount and improve the payoffs. Hence, Az > 0. Since

m’, > 0 by assumption, we must have that A4 > 0.

We then have
I (Gy)g
(Bl + BQZ’)Q ( (i)) J (y) = <B2A3 — B1A4) 10g[E — BlA3/[E — BQA4ZL‘
dy

+ BQ (Al — Ag) — Bl (A1 + A4)
:B2A4 (Oél logx + Oég/l‘ — T+ Oég)

Note that in the above A4B; > 0. The derivative of the above with respect to z is given by

arz—ay—? Suppose that as > 0. Since the numerator is a quadratic function, it

AUy frt—1=
x
has at most two roots and this means that [ switches sign at most three times. This establishes

the claim. O
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Online Appendix

B Proof of Optimality of Upper Censorship in Section 5.2

Proof. We have established that the optimal rating is either upper or lower censorship.

Consider a rating that pools that values of y below 4. Since y ~ N (,u (a),o (a)Q) and that

dv
dy

mean and the variance of the distribution. Specifically, the expected interim price when the mean

= [ (a), we can decompose the marginal return to each action, ay, as, into their effect on the

and variance chosen by the agent are m and s? and the market belief is y, o2 is given by

o en(55) 2 (5) )

f_ ydq)(u M)

where p;, = e If we let 2 = sm, then we can rewrite the above as

o

g@x (o) + [ szt moa)

The derivatives of the term in the bracket with respect to m and s after imposing m = p and

éqﬁé /¢
2

() =m0 () + it o () + [ 200 d:

s = o are given by

ro(2) = —poo6 () + (

Qlt

Additionally, we can use integration by parts and write
( ) o ffoo 20 (2)dz
a“) ®(2)
®(2)
o (2)

We can replace for py inry, (2) and ¢, (2) to arrive at

pL:

‘D(
L

—I—,LL—|—02

D (2)dz
=200 11 e

F P (2)dz o0
w =2 D04 [ = s (e



Taking a derivative of the above gives us

r’L(é):/z q)(z)dzid)(é) <0

. Az 0 (2)
5 (5) = %%)?(@—Fﬁozd)(z) dz _ %%éqﬁ(iwrzﬂ_qp(z)wrf;(l —®(2))d=
g ¢ H1-2(3) ’ Lt (5) 41— 0 (2)
_d, . [TO-eE)d _ 1-9() [FO-®E)der ()
4= %¢(2)+1_<p(2) rr (%) L (2) rr (2)

where the above holds because ¢ (2) /® (2) is decreasing or ¢ (z) is log—concave. The last in-
equality holds because 1 — ® (2) < rz (2) and that 7} (£) < 0. Note further that rj, (—o0) =
1,7y, (00) = 0. Since ry, is strictly decreasing, we can thus define the function §;, (1) = s, (r;' (r)).
By varying r between 0 and 1, the function 5y, () decreases to 0 as r increases to 1.

Given ), the best response of the agent should satisfy

@)+ 5 (@) s 1) = )
§(a)r+ 0 (@) 5rsn () = e (a2)

Since 3 (a) = ba?/o (a)®, if we let z = bf (a), then, a; = %5, as = 0+/1 — x and we can write

the above as

which determine z, o for a given value of r. Since x and ¢ determine a;, as, we can refer to the
values as a; (1) , as (r) If we divide the top equation by the bottom one, we have

b2 1+\/E§L(7‘) . X

1++1—25.(r) 1 —x

and this implies that

0 () = s (- (19
S r) = ——m _—
g 1-2\Vz VIi—z
Let us refer to the solution of this as & (r). The right hand side of the above is decreasing in z

while the LHS is decreasing in r. This means that an increase in r increases z (r). Thus, the
b4

T We also have

highest value of x is associated with » = 1 and §;, (1) = 0 which is given by
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that

The function z= <1 — ﬁ) is maximized at 7 = 1 — % N 2*4*& — %\3/ QJFT‘T 0.262 and is

increasing below this value. This implies that as long as +b4 <7 — b < 0.772, an increase in

r leads to an increase in x and as a result a;. Hence, the highest value of @, is attained atr = 1

b4
Kk 14+b4°

Note also that a; = ba; /=% and thus total surplus is given by

W () = s (1) — ( oy el ) =i (1)~ i (1) (1 pplztl) ;(x§>)

and is given by 1

The unconstrained optimal value of a, for a given z is + This value is decreasing in x

1+b2—1x‘
and since v < 5 +b4, it attains its lowest value at + =1 ﬁ) 5 = ilj’er. Since the above function is

hump-shaped in a4, and is maximum value is always above a; (1) and from above we know that

ap (r) < aq (1), it must be that total surplus satisfies

which implies that the best lower-censorship rating is full revelation, i.e, 7 (2) =1 — 2 = —o0.
Now, consider an upper-censorship rating that pools values of y above 9. In this case, when the

mean and variance chosen by the agent are m and s? and the market belief is y, o2 is given by

1 (555)) (5 )

57y (M2

() ) Ifwelet 2 =

where p;, = y;m,

z

s@x (ma-o@)+ [ ermoa:)

—00

The derivatives of the term in the bracket with respect to m and s after imposing m = p and
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s = o are given by

ro(2) =p—0(2) — (£ 4

Qlt

5 ¢;:« /¢
() =9 ()~ 03w 0@+ [ 0()an

We can use the same simplification as above and write

B f;o (1—®(2))dz

o) =T R e
ty (2) = J (11—_5((;)”22@25 (2) + /_Z 2¢(2)dz = sy (2) 1y (2)

Similar to the above, we can show that r; is increasing with values between 0 and 1 while s is
increasing and negative with values between —oo and 0.

Similar to before, FOCs are given by

oV

z (14 Vs (r) =& 2
r% (1+ V1 -8y (r)) = kovV1—z = Kay

= Ray

From before, atr =1,z = and we have

b4
1+b%>

§U(T):ﬁ(%_\/%)

Taking a derivative of the above at = 1, we have

s lr) = 1—1b2 <_2:1:b\2/5_2(1—x; 1—x> (")

Since §}; () > 0, the above implies that 2’ (r) < 0. Note also that
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We know that 5y (ry (2)) = sy (2) = 8 (rv (2)) = T;U—Ez; and hence,
U

We have that

t (3
lim (,J(Z;) = lim -
2—00 Ty (Z) 2—00 iA ( P(2)

= lim

e % <1ib<(1>z()z)>
. d [ $(2) 26 (2)(1-2(2) 0 (2)°
21550 dz (1—@(2)) glinélo (1_@(5))2

o () (=8 (2) + 226 (2) (1 @ (9)) + 20 (2)° — 256 (2)°
iroe ~26(2) (1 - ®(2)

om0 eE) 2 -0 (3) 26 (2)
500 —2(1— @ (2))

o SO 4251 (2) — 26(2) — 0 (8) + 226 (2)
Z—00 2qb (7:’)

:hmi(l (ID(,%)):hml—(I)(é)—é(b(é)_l
Z—00 (ﬁ(i) Z—00 —ﬁcﬁ :;f)

Since ry (2) — las 2 — oo and sy (£) — 0 as Z — 0o, we must have that

. At o
ll_r}l% Sy (r) =00

This implies that 2’ (1) = —oo and moreover since & (1) = ——

limglUr 1 & + !
=1 @ (r) 1=\ 28 (1) 2 (1) 201—2(1)/1-2(1)




Let us also calculate the value of ¢/ (1). We have

d (r) =ri (r) (14 VE ()30 (1)

&' (r)3y(r) Al =
. BT 4+ 8 (r) T (1)
1 @' (r 2\/E(r U
=ay (r) [ -+ (r) )

ro z(r) * 1+ /% (r)su (1)

Hence,
, su(1) ,
1 1 NE S T (1
lim Cf} (r) =ay (1) ~ + | = + 2V + lim Sf{ (r) z(1)
r=1 & (r) (1) \2(1) 1+ EMsp (1) ] & (r) 1+ /7 1)s0 (1)

Tkl bt I bi2(1—b?) b
1 (1+b4_ (14 b%)? )_1(1_b2(1+b4))

1w (0+1+b4 b (1+b4)3)

r1+bt bt 2(1—b2) b2 K 2(1—0?)
2 — 3b2 — 1
— T T > 0ifb<0.772

(=5 >0ifb<0.77

The above expression is positive for the same cutoff for b as in the lower-censorship case. There-

fore, a} (1) = —o0.

Finally, the derivative of welfare at = 1 satisfies

/ —d (r) — kd (r)as (r 21_:%(7’) Ea 7'2 2@’(7’)
W () =, () -kt () an () (1422507 ) 4 S (02
W (- L))y 60 | s (1)
71~—>1 @ (r) (1 1(1) <1+b (1) ))}—n i’(r)+2b z (1)
B o1+ . dl(r) b? x b
—(1_1+b4 b? )7‘—>1:1z"'(7‘)+2li(1+b4)
1-0%, aj(r) be

N = ' (r)  2k(140b%)

Hence, W’ (1) = —oo which implies that pooling some observations at the top improves welfare.

This concludes the proof. ]
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C Validity of the First Order Approach for Upper and Lower-

censorship Ratings

In this section, we describe conditions that make the first order approach valid. To do so, we use
an approach similar to that of Jewitt (1988) and more recently Chade and Swinkels (2020). More
specifically, it is sufficient to show that given our optimal ratings, (lower— or upper— censorship),
the payoff of the agent is quasi-concave in her effort. To show quasi-concavity of the payoff, it
is sufficient to show that U’ (a) = 0 implies U” (a) < 0 if U is twice continuously differentiable.
This would imply that U cannot have more than one local maximum, i.e., it is single peaked, and
is thus quasi—concave.

To see this, suppose that there are two points a; < as such that U’ (a;) = U’ (a2) = 0. Since
U” (a1) < 0 it must be that there is an interval of values above a; for which U’ (a) < 0. Now,
without lost of generality, let us assume that a; = inf,~q, v7(ary=0 @’. Since U is assumed to be
twice continuously differentiable, U’ is continuous and thus U’ (a3) = 0 and since U’ (a) < 0 for
an interval around a1, a; < as. Moreover, we must have that for all a € (ay,as), U’ (a) < 0.
This implies that U’ (a) < U’ (a2) = 0 for values of a below ay. Since U is assumed to be twice
continuously differentiable, we must have that U” (ay) > 0 which is a contradiction. This implies
that U is single peaked.

This allows us to make the following claim:

Lemma 4. Suppose that the family of distributions {G (y|a)} . 4 is twice continuously differentiable
and A is a convex subset of R. Suppose further that G satisfies the following properties

J N 0 ga (yla) N N
0> / (U (y7a) [U’y = y]) Ja ¢ (CL) dy7 a,a Y € K,

> 9 ga (yla)
0> a) — E <y|) ———>dy,Va,a € A,y € R.
|0 Bl <) 505 Sy v e A5
Then the FOA is valid under a lower- and upper-censorship policy.
Proof. Consider an upper-censorship policy that pools realizations of y above y. If market believes

the agent chooses effort a, then the payoff of the agent is given by

Ula) =

y . [0 (y,a) g (yla) dy )
| vestiady+ G (1= G ) (o

— 00
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Ifwelet py =E[v(y,a)|y > 9] > v (g,a), we can write

U’ (a)

v (y7 d) Ya (y|a) dy - pHGa (gla) - C/ (CL)
(v (y,a) — p) ga (yla) dy — ¢ (a)

Now, suppose that U’ (a;) = 0 at some effort level a;. Then,

U (ay) = / " (0 () — pit) ga (lar) dy — ¢ (a1)

- _y (v (Y, @) = prr) Gaa (ylar) dy
B C// (al)cl .
< (a1) (o)
:/_ (v (y, @) = Prr) Gaa (y]ar) dy
_ ?/, ((311)) /_io (v (y,a) — pr) ga (y|ar) dy
- [ wwa-mm [gaa (vlar) = ((Zj; 9a (yloa) | dy
[ 0w - @) . "y

Since ¢ (a;) > 0, the assumption on G in the statement of lemma guarantees that U” (a;) < 0.
Given our argument above, this implies that U is quasi—concave and thus FOA is valid. The

argument for lower-censorship ratings is the mirror of this argument. O]

The essence of the conditions Lemma 4 is that they put a restriction on how convex the cost is,
captured by ¢’ (a) /¢ (a) relative to that of expected interim price. Indeed, the conditions can be

rewritten as - o
Joo 2 (Y39, @) gaa (yla) dy

oo p(W39,a) ga (yla) dy

C// (a)
A
< o (a) ,Va €
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where in the case of lower and upper censorship respectively, interim prices are

o v (y,a) y>9

p(y;9,a) = ) )

Ealoly <9l y<9

. Es[vly>9] yv>y
p(y;9,a) =

In the special case where 8%1} (y,a) = f(a) andy = a + ¢ with ¢ ~ H (¢) and density

h(e) = H' (¢), these become

J? (=B lyly > 3)) gua (W) dy ¢ (a)
S —Ealyly > 9) g (yla)dy ¢
157 (v = Fa lyly < 9)) aa (yla) dy _ @
S5 (= Ealyly <)) ga (yla)dy —~ ¢ (a)

and we have

/ "y~ Ealyly > §]) g (yla) dy =

/y (v — §— Ealy — ily > ) G (y]a) =

—00

_/y G (yla) dy — Eq [y — gly > §) Ga (7la) =

/ (y—a)dy —Ealy - y\y>y]§aH<g_a):
H@—a)+E[y—ily> 9k (@ —a)

/_: (v = Ea[yly > 9)) gaa (yla) dy =
—h(§—a)—Eily—gly > 9k (§ — a)

Let us make the following assumption on H:

Assumption 4. The cumulative distribution function H () satisfies:
1. log (1 — H (¢)) is concave in ¢,

2. log H (¢) is concave in ¢,

h(x—d h(x—d h(x
3.Vd > 0, ks — (1t <y (d), 5= — 12 <k (d)



The first two conditions are standard log—concavity conditions while the last condition implies
that the variations in the derivative of log (1 — H (x)) are uniformly bounded above. A sufficient
condition for the latter is that the expressions &’ () / (1 — H (z)) + h(z)* /(1 — H (z))* and
W (z)/H (x) — h(z)* ] (H ())” are bounded above.

Under the above assumptions, h (¢) / (1 — H (¢)) is increasing in ¢ and therefore,

[°(y—9)dH (y - a)

Ealy —9ly > 9] = T H (G —a)
] H(z
:fy al Z))dH(Z><]-_H(Q_&)
1-H(g—a) — h(g—a)

We then have that

[7 (v = Ea[yly > 9]) gaa (y]a) dy _
J' (v —Ealyly > 9]) ga (yla) dy
h(yg—a)+Ealy—gly >glh (§—a)
)

H(j—a)+Ealy—gly>9]h()—a
1 h(§—a) . h(g—a) _ h'(g—a) .
_ Ey iz ha) h(—a) (_1 S () B D) ) h(y—a)
1 hi—a) H (§j — 1 h(g—a) | H (§j —
Ea—osy T Ay W) moosn T aoeg /) -9

By log—concavity of H, h/H — h'/h > 0 and hence, we have the following inequality

hi—a) _ W(j—a) hi=a) _ M(j—a) h=a) | I(i=a)

14 A=) T Ay L4 G T o) THG-a) " Ry—e)
I hi=a) __ h(i=a) hG—a) _ h(i=a)
Ealy—olv=3] | H(j—a) —H(j-a) | H(j—a) —H(j-a) | H(j—a)

by the above property of E; [y — §]y > g]. If we define § — a = 2 and d = @ — a, then

: U h(z—d) R (z)
[P (v —Ealyly > 0]) gaa (y]a) dy Ll S )
ooy —Balyly > 3D ga Gy dy — ity + g H @)

h(z—d) R (x)
R )
h(z—d) H(x) +1

1-H(z—d) h(zx)

Since 1 — H is concave, then h’'/h > —h/ (1 — H) and the right hand side of the above inequality

satisfies
h(z—d) + K (x) h(z) h(z—d)
_ 1-H(z—d) h(zx) 1-H(x) 1-H(z—d)
h(z—d) H(x) h(z—d) H(z)
1—H(z—d) h(z) +1 1—H(z—d) h(z) +1

Note that in the above if d < 0, since h/ (1 — H) is increasing (log—concavity of 1 — H) the RHS
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of the above inequality is negative which is guaranteed to be less than ¢ (a) /¢’ (a) since c is
convex.
By Assumption 4, the RHS of the above is less than x; (d). If A = [0, @], then the highest value

of d is 2a which means that it is sufficient to for c to satisfy

P (d) < d (a)

In a similar fashion, we can show that for lower-censorship ratings to satisfy the requirement of

Lemma 4, we must also have

C// (a)
<
2%%}5( iz (d) < d (a)

Thus validity of FOA is equivalent to ¢ having a high enough curvature.

D Importance of Comonotonicity in Proposition 1

The following counterexample demonstrates that there exist price schedules satisfying the mean-

preserving contraction property that cannot be generated by any information structure.

Example 2. Suppose that A = {0,1/3,1} = {a1, as, as}, v = a;. The indicator is deterministic:
G ({a;} |a;) = 1, and prior is uniform y ({a;}) = 1/3. In words, the market cares only about the
action of the seller, and y coincides with it. Figure 9 depicts the feasible interim prices in the space
of (p(a1),p (az)); (the third coordinate is pinned down by Bayes rule since E[p] = E[v] = 3).
Area A shows the set of random variables that are mean preserving spread of (0,1/3,1). They
are depicted by their first two variables while the third is agin pins down by Bayes rule. ? The
set of interim prices is denoted by area B in Figure 9. We find this set by solving the optimization
problem associated with the highest and lowest value of p (a3) as a function of p (a;).”® Evidently,
the set B does not coincide with A. This is mainly due to the restrictions put by the second order
expectations. For example, it can be easily shown that the coefficient of ¥ (@) in p (a) is at least
1/3 which means that p (a3) cannot become lower than 4/9.

Finally, note that the points a, b, ¢, d are associated with deterministic ratings that either sepa-
rate or pool the states and for which p (a1) < p (a2) < p(a3). Interestingly, if we consider the set
of random variables whose realizations are less dispersed than v (a) and satisfy monotonicity, this

coincides with the convex hull of the points a, b, ¢, and d. In Proposition 1 below, we show that

“’The conditions are 0 < z; < 1,1/3 < x; + x; <4/3,forall 4, j, and z1 + zo + x3 = 4/3.
%The upper and lower bound of p(a2) can be found via standard concavification method. The lower

bound is given by 2(4 —p(a1))/ <1O —3p(ay) + \/(8 —3p(a1))* - 12) and the upper bound is 3 —
(6 —2p(a1)) /(6 = 3p(ar)).
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4/3

1/3 4/3 play)

Figure 9: The set of interim prices and mean-preserving contractions of market valuations for
Example 2. The green area, A, represents the three state random variables that are a mean-
preserving contraction of a. The yellow area, B, is the set of feasible interim prices under some
information structure.

this insight holds generally and allows us to significantly simplify the problem of rating design

under a comonotonicity condition.

The result in Proposition 1 is reminiscent of the result of Blackwell (1953) and Rothschild and
Stiglitz (1970), the general version of which can be found in Strassen (1965). That result states
that for any two random variables = and y, there exists a random variable s such that E [z|s] has
the same distribution as y if and only if y second-order stochastically dominates z.

While similar, our result is different in two aspects. First, it is stated for the second-order
conditional expectation, and thus Blackwell’s result cannot be applied. The key intricacy is that
the same signal structure that generates the random variable E [v|s] must be used to generate
E [E [v]s] |y]. Second, as illustrated by Example 2, the equivalent of Blackwell’s result does not
hold in general and can be shown only when v and p are comonotone.

We also note that the comonotonicity is effectively a form of uni-dimensionality for the indi-
cator. Since the indicator y matters for the market and payoffs only through its effect on @ (y; a),
we can relabel the indicator to be T (y; a). Under this reformulation, comonotonicity implies that
interim prices p (y) are a well-defined function of T (y; a). In other words, comonotonicity means

that the indicator can always be reduced to a one-dimensional signal.
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