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1 Introduction

This is the Online (or Supplementary) Appendix for the paper, “Optimal Contracting with

Dynastic Altruism: Family Size and Per Capita Consumption,” by Roozbeh Hosseini, Larry
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E. Jones and Ali Shourideh. It contains various related examples and results not included

in either the paper or it’s Appendix. Included are:

1. A detailed examination of a two period example including a discussion of the role of

homothetic preferences;

2. A short discussion of what is known when the shocks in the model are persistent;

3. An alternative proof of the existence of a stationary distribution in the goods cost case

from primitives on the sequence problem;

4. A discussion of the homotheticity properties of the aggregate version of the cost mini-

mization problem showing that it can be reduced to the per capita problem;

5. A short, preliminary discussion on what is known about implementation of the optimal

contract using an income tax system.

2 A Two Period Model

In this section, we study a two period version of the model with a more generalized specifi-

cation of preferences.

2.1 Resetting Property in a Two Period Example

In this section, we study a two period example of the model outlined in the paper. To

simplify, we assume that there is no labor supply in the second period, i.e., of the children.

Because of this, the utility of a parent is given by U(c0, l, n, θ) + βnηu(c1),where l is labor

supply of the parent and θ is parent’s productivity. For example, when there is only a time

cost of children, U(c0, y, n, θ) = u(c0) + h(1− l − bn). Suppose that having children has an

additional cost k(n, θ) in terms of parent’s consumption good. The problem of the parent is

given by

V (A0) = max
c0,C1,n,l≥0

U (c0, l, n, θ) + nηu

(
C1

n

)
s.t.

c0 + C1 + k (n, θ) ≤ A0 + θl (1)

The solution of the problem (1) has the following property:
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Lemma 1 Suppose that the solution to problem (1) is interior. Then

η
u
(
C1

n

)
u′
(
C1

n

) − C1

n
= kn(n, θ) + θ

Un(c0, l, n, θ)

Ul(c0, l, n, θ)
. (2)

Proof. The first order conditions for the above problem are given by

Uc = λ

−Ul = θλ (3)

Un + βηnη−1u

(
C1

n

)
− βnη−1C1

n
u′
(
C1

n

)
= λkn(n, θ) (4)

βnη−1u′
(
C1

n

)
= λ (5)

where λ is the multiplier on budget constraint. By combining (3), (4) and (5), we get the

following:

−θUn
Ul

+ η
u
(
C1

n

)
u′
(
C1

n

) − C1

n
= kn(n, θ)

which implies the claim.

Note that if, kn = a and Un/Ul = b, (2) becomes

η
u
(
C1

n

)
u′
(
C1

n

) − C1

n
= a+ bθ.

Given the above characterization for c1 = C1/n, one can state the following result:

Remark 1 Consumption of each child, c1 = C1/n, is independent of parent’s wealth, A0, if

and only if the function

kn(n, θ) + θ
Un(c, l, n, θ)

Ul(c, l, n, θ)

is only a function of θ and does not depend on allocations (c0, y, n).

2.2 A Non-Homothetic Example

As it is argued in Alvarez (1999) and we demonstrated above, Barro-Becker style dynastic

altruism implicitly has a homotheticity property which, if coupled with linear cost of raising

children, delivers a very stark result: The consumption of children is independent of parent’s

wealth (or as we discussed in the paper, independent of promised utility to the parent).

Here we use the two period example presented above to discuss what will happen if we
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drop the homotheticity assumption. We will show that each child’s consumption is no longer

constant and depends on parent’s wealth. However, for very general assumption there is a

lower bound on each child’s consumption. In other words, we show that for very general

assumptions on preferences the consumption allocation of each child does not converge to

zero as the parent’s asset becomes smaller and smaller.

Suppose parents have the following, non-homothetic preferences:

U (c0, l, n, θ) + βg(n)u (C1/n)

and assume that g(n)u(c1) is strictly increasing, strictly concave, differentiable and

ng′(n)/g(n)

c1u′ (c1) /u (c1)
< D <∞ ∀c1, n,

i.e., the (negative of) elasticity of substitution between c1 and n is uniformly bounded above.

Parents solve the following decision problem:

V (A0) = max
c0,C1,n,l≥0

U (c0, l, n, θ) + g(n)u

(
C1

n

)
s.t.

c0 + C1 + k (n, θ) ≤ K0 + θl (6)

Then, the analog of equation (2) is:

n
g′ (n)

g (n)

u
(
C1

n

)
u′
(
C1

n

) − C1

n
= kn (n, θ) + θ

Un(c, l, n, θ)

Ul(c, l, n, θ)
(7)

Replace c1 = C1/n and divide both sides by c1

ng′(n)/g(n)

c1u′ (c1) /u (c1)
= 1 +

kn + θUn/Ul
c1

The term kn+θUn/Ul is the marginal cost of having a child in terms of the parent’s consump-

tion good. The first term is the marginal good’s cost and the second term is the marginal

time cost (or utility cost).1 Suppose this term is bounded below i.e., assume that

kn (n, θ) + θ
Un(c0, l, n, θ)

Ul(c0, l, n, θ)
> d > 0 ∀c0, l, n.

Now consider moving parents’ wealth towards −θ. As parent’s become poorer, they

1Note that θUn/Ul = −Un/Uc.
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choose lower consumption, c0, less leisure (more l), fewer kids,n, and less consumption for

kids, C1. However, if the assumptions above hold the consumption of each child will be

bounded below, away from zero as parent’s wealth moves towards −θ.
Homotheticity in the utility function and linear cost is required to get stark result that

children’s consumption is independent of parent’s wealth (or promised utility). But they are

not required for keeping each child’s consumption away from misery. Rather what is required

is that income expansion paths in (C2, n) space should have a slope that is bounded away

from zero. The example given below illustrates this point.

Example. Suppose g(n) = nη1 + Anη2 with 0 > η1 > η2, k (n, θ) = 0 and Un/Ul = b. In

this case, equation (7) becomes:

η1n
η1−1 + η2An

η2−1

nη1−1 + Anη2−1
u(c2)

u′(c2)
− c2 = θb.

Now suppose that A0 converges to −θ. In this case, one can argue that n has to converge

to zero. To see this, c1 has to converge to 0 because of the budget constraint. This violates

the equation above. Note that

lim
n→0

η1n
η1−1 + η2An

η2−1

nη1−1 + Anη2−1
= η2.

This means that as A0 converges to −θ, the above equation becomes:

η2
u(c1)

u′(c1)
− c1 = θb

which implies that c1 is bounded away from 0. Income expansion paths for this example

are given in Figure 1. Note that at A0 = −θ, c2(W0, θH) is the slope of the income expansion

path at the origin which is positive. Moreover, C1

n
is bounded away from zero for all points

on the curve.

3 Persistent Shocks

Here, we briefly discuss the long-run implications of the model when shocks are persistent.

Unfortunately, due to the known complications of dynamic contracting with persistent pri-

vate information, we cannot fully extend our results to persistent shocks. 2 However, we are

2See Fernandes and Phelan (2000) for a recursive representation of a dynamic contracting problem with
persistent shocks. Pavan et al. (2009), Farhi and Werning (2010), as well as Golosov et al. (2010), extend
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Figure 1: Income expansion path in an example with non-homothetic formulation. The slope
of the income expansion path is per capita consumption. Example for g(n) = nη1 + Anη2 .

able to provide a preliminary analysis that suggests that our result on long run properties

of per capita allocations hold.

We consider an example in which private shocks affect the utility of leisure and there is

a goods cost of rearing children. We assume that the shock takes on two values, {θL < θH},
and it follows a markov process of order 1 with transition probability π (θ|θ−). Given, this

we can use Fernandes and Phelan (2000)’s approach to formulate this problem recursively:

v (w,w−; θ−) = min
∑
i=H,L

π (θi|θ−)

[
ci + ani − yi +

1

R
niv
(
w′i, w

′
−,i; θi

)]

subject to

∑
i=L,H

π (θi|θ−)

[
u (ci) +

1

θi
h (yi) + βnηiw

′
i

]
= w

∑
i=L,H

π
(
θi|θc−

) [
u (ci) +

1

θi
h (yi) + βnηiw

′
i

]
= w−, θ

c
− 6= θ−

u (ci) +
1

θi
h (yi) + βnηiw

′
i ≥

u (cj) +
1

θi
h (yj) + βnηjw

′
−,i

this approach. We are unaware of a general proof of immiseration with persistent private information in
environments without endogenous fertility decision. There are some examples solved in Williams (2009) and
Zhang (2009).
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where w−, as defined by Fernandes and Phelan (2000), is the threat-keeping utility. It is the

continuation utility that type θc− receives if he pretends to be of type θ and tells the truth

from then onward. In what follows, we make the following assumptions:

1. Only donward incentive constraints are binding, i.e., we only need to consider θH

pretending to be θL;

2. The value function is differentiable;

3. Relative fertility: for some ε > 0, nH(w,w−;θ−)
nL(w,w−;θ−)

> ε , for all (w,w−; θ−).

The above assumptions, although, on endogenous variables, help us illustrate our main

point. Furthermore, they all hold with i.i.d. shocks. The first assumption implies that threat-

keeping utility when the previously announced type was been θH , is irrelevant. In other

words, in v (w,w−; θH), we can drop w−. In each state, the following necessary conditions

hold:

v (w′H ; θH)− ηw′Hv′ (w′H ; θH) = aR

v
(
w′L, w

′
−,L; θL

)
− ηw′Lv1

(
w′L, w

′
−,L; θL

)
− ηw′−,Lv2

(
w′L, w

′
−,L; θL

)
= aR

where we have suppressed the dependence on the state (w,w−, θ−). These equations are

equivalent to resetting in the i.i.d. case. The first equation is identical to equation (10) in

the paper and states that promised utility following a high value of the shock is independent

of history. The second equation, however, defines a locus of points (w,w−) that promise and

threat keeping utilities should belong to following a low value of the shock. Together with

the third assumption above, they imply that a stationary distribution exists for per capita

allocation in the long-run.

As we see, when shocks are persistent, we no longer have complete independence from

history in the optimal per capita allocations that holds in the i.i.d. case. However, by using

w′−,L, the planner can provide incentives for the truthful revelation of types. The above

analysis, although not fully derived from first principles, suggests that our main result on

stationarity of per capita allocations holds with persistence.

4 Alternative Proof of Stationarity Based on Sequence

Problem

In this section we state and prove the main result of Section 2.1 (Proposition 1) without

relying on convexity and differentiability.
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Suppose the size of the initial dynasty is N−1 and that promised utility to the head of

the dynasty is W0. Consider the minimization problem (1) in Section 2.1 of the paper:

min
{Ct(θt),Yt(θt),Nt+1(θt)}∞t=0

∞∑
t=0

∑
θt

1

Rt
π
(
θt
) [
Ct
(
θt
)

+ aNt+1

(
θt
)
− Yt

(
θt
)]

(8)

subject to

∞∑
t=0

∑
θt

βtπ
(
θt
)
Nt

(
θt−1

)η [
u

(
Ct (θt)

Nt (θt−1)

)
+ h

(
Yt (θt)

Nt (θt−1)
, θt

)]
= W0

and

∞∑
t=0

∑
θt

βtπ
(
θt
)
Nt

(
θt−1

)η [
u

(
Ct (θt)

Nt (θt−1)

)
+ h

(
Yt (θt)

Nt (θt−1)
, θt

)]
≥

∞∑
t=0

∑
θt

βtπ
(
θt
)
Nt

(
σt−1

(
θt−1

))η [
u

(
Ct (σt (θt))

Nt (σt−1 (θt−1))

)
+ h

(
Yt (σt (θt))

Nt (σt−1 (θt−1))
, θt

)]
for all σ ∈ Σ0

Let C∗t (θt, N−1,W0), N
∗
t+1(θ

t, N−1,W0) and Y ∗t (θt, N−1,W0) be the solution to this problem.

We call this solution the constrained efficient allocation. Define

c∗t (θ
t, N−1,W0) ≡

C∗t (θt, N−1,W0)

N∗t (θt−1, N−1,W0)
,

y∗t (θ
t, N−1,W0) ≡

Y ∗t (θt, N−1,W0)

N∗t (θt−1, N−1,W0)

and

n∗t (θ
t, N−1,W0) ≡

N∗t+1(θ
t, N−1,W0)

N∗t (θt−1, N−1,W0)
.

These are the per capita consumption, effective units of labor supply and per capita fertility

after history θt. We prove that after the initial generation, the per capita allocations of

consumption and effective labor supply do not depend on W0 (the promised utility of the

initial generation). Hence the per capita allocations have stationary distribution.

Proposition 1 Let c∗t (θ
t, N−1,W0), y∗t (θ

t, N−1,W0) and n∗t (θ
t, N−1,W0) be the constrained

efficient per capita consumption, effective units of labor supply and per capita fertility. Then,

c∗t (θ
t, N−1,W0), y∗t (θ

t, N−1,W0) and n∗t (θ
t, N−1,W0) are i.i.d. and are independent of W0 for

any generation t > 0.
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Proof. Let C∗t (θt, N−1,W0), Y
∗
t (θt, N−1,W0) and N∗t+1(θ

t, N−1,W0) be the solution to the

problem (8). For any history θt−1 define

W ∗
t

(
θt−1,W0

)
=
∞∑
s=t

∑
θs|θt−1

βsπ (θs)N∗s (θs−1, N−1,W0)
η

[
u

(
C∗s (θs, N−1,W0)

N∗s (θs−1, N−1,W0)

)

+h

(
Y ∗s (θs, N−1,W0)

N∗s (θs−1, N−1,W0)
, θs

)]
.

First, notice that the allocation
{
C∗s (θs, N−1,W0), Y

∗
s (θs, N−1,W0), N

∗
s+1(θ

s, N−1,W0)
}
θs|θt−1

must be a solution to the following cost minimization problem for any history θt−1:

min
{Cs(θs),Ys(θs),Ns+1(θs)}θs|θt−1

aN1 (θ0) +
∞∑
s=t

∑
θs|θt−1

1

Rs
π (θs) [Cs (θs) + aNs+1 (θs)− Ys (θs)] (9)

subject to

∞∑
s=t

∑
θs|θt−1

βsπ (θs)Ns

(
θs−1

)η [
u

(
Cs (θs)

Ns (θs−1)

)
+ h

(
Ys (θs)

Ns (θs−1)
, θs

)]
= W ∗

t

(
θt−1,W0

)
and

∞∑
s=t

∑
θs|θt−1

βsπ (θs)Ns

(
θs−1

)η [
u

(
Cs (θs)

Ns (θs−1)

)
+ h

(
Ys (θs)

Ns (θs−1)
, θs

)]
≥

∞∑
s=t

∑
θs|θt−1

βsπ (θs)Ns

(
σs−1

(
θs−1|θt−1

))η [
u

(
Cs
(
σs
(
θs|θt−1

))
Ns (σs−1 (θs−1|θt−1))

)
+ h

(
Ys
(
σs
(
θs|θt−1

))
Ns (σs−1 (θs−1|θt−1))

, θs

)]

for all σ ∈ Σ0.

To see this, suppose that this doesn’t hold. Then, we can replace the solution to (8) (after

each history θt−1) by the solution to this problem (for each history θt−1) and reduce the cost

to the planner in problem (8). Note that this allocation satisfies promise keeping in problem

(8) by construction. It is also incentive compatible. This is a contradiction.

The objective in (9) is homogenous of degree one and the constraint set is homogenous

of degree 1/η. It is straight-forward to show that after any history θt−1:

C∗s (θs, N−1,W0) = C̄s(θ
s, N−1)W

∗
t

(
θt−1,W0

)1/η
Y ∗s (θs, N−1,W0) = Ȳs(θ

s, N−1)W
∗
t

(
θt−1,W0

)1/η
N∗s+1(θ

s, N−1,W0) = N̄s+1(θ
s, N−1)W

∗
t

(
θt−1,W0

)1/η
.
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Therefore after any history θt−1:

c∗s(θ
s, N−1,W0) =

C̄s(θ
s, N−1)

N̄s(θs−1, N−1)

y∗s(θ
s, N−1,W0) =

Ȳs(θ
s, N−1)

N̄s(θs−1, N−1)
,

and

n∗s(θ
s, N−1,W0) =

N̄s+1(θ
s, N−1)

N̄s(θs−1, N−1)
.

Note that the problem (9) depends on history θt−1 and W0 only through W ∗
t (θt−1,W0).

Therefore, its solution depends on history θt−1 and W0 only through W ∗
t (θt−1,W0). This

implies that c∗s(θ
s, N−1,W0), y

∗
s(θ

s, N−1,W0) and n∗s(θ
s, N−1,W0) do not depend on θt−1 and

W0 for s ≥ t. In particular c∗t (θ
t, N−1,W0), y

∗
t (θ

t, N−1,W0) and n∗t (θ
t, N−1,W0) depend only

on θt (and N−1), i.e., they are i.i.d.

5 Aggregate and Per Capita Recursive Formulation

In this section, we describe how convexity of the aggregate value function V (·, ·) translates

into the properties of the per capita value function v(·):

Lemma 2 Assume that V (·, ·) is twice differentiable. Then v(w) is convex, strictly increas-

ing and v(w)− ηwv′(w) is increasing.

Proof. It can be shown that V (N,W ) = Nv(N−ηW ). Strict convexity of V (N,W ) implies

that VWW > 0, VNN > 0, VWWVNN > V 2
WN . We have:

VWW = N1−2ηv′′(N−ηW ) = N1−2ηv′′(w)

VWN = (1− η)N−ηv′(N−ηW )− ηN−2ηWv′′(N−ηW ) = N−η ((1− η)v′(w)− ηwv′′(w))

VNN = η(η − 1)N−η−1Wv′(N−ηW ) + η2N−2η−1W 2v′′(N−ηW )

= ηN−1w ((η − 1)v′(w) + ηwv′′(w)) .

After some algebra, we have

VWWVNN − V 2
WN = N−2η ((η − 1)v′(w) + ηwv′′(w)) (1− η)v′(w).

10



Therefore, strict convexity of V (·, ·) implies that:

v′′(w) > 0

(η − 1)v′(w) + ηwv′′(w) =
d

dw
(ηwv′(w)− v(w)) > 0

v′(w) > 0

Furthermore, we show that the solution to the functional equation (P) in the main text

of the paper satisfies:

V (N,W ) = Nv(NηW )

To see this, let v̂(N,w) = N−1V (N,NηW ). Then, v̂ must satisfy the following functional

equation:

Nv̂(N,w) = min
C(θ),Y (θ),N ′(θ),w′(θ)

∑
θ

π (θ)

[
C (θ) + aN ′ (θ)− Y (θ) +

1

R
N ′ (θ) v̂ (N ′ (θ) , w′ (θ))

]

subject to

∑
θ

π (θ)

[
Nη

{
u

(
C (θ)

N

)
+ h

(
Y (θ)

N
, θ

)}
+ βN ′ (θ)η w′ (θ)

]
= Nηw

and

Nη

{
u

(
C (θ)

N

)
+ h

(
Y (θ)

N
, θ

)}
+ βN ′ (θ)η w′ (θ) ≥ Nη

{
u

(
C(θ̂)

N

)
+ h

(
Y (θ̂)

N
, θ

)}
+ βN ′

(
θ̂
)η
w′(θ̂) ∀θ, θ̂ ∈ Θ.

We can rewrite the above in terms of per capita variables and arrive at the following func-

tional equation – the objective has been divided by N and the constrains by Nη:

v̂(N,w) = min
c(θ),y(θ),n(θ),w′(θ)

∑
θ

π (θ)

[
c (θ) + an (θ)− y (θ) +

1

R
n (θ) v̂ (N × n (θ) , w′ (θ))

]

subject to ∑
θ

π (θ) [{u (c (θ)) + h (y (θ) , θ)}+ βn (θ)η w′ (θ)] = w

11



and

u (c (θ)) + h (y (θ) , θ) + βn (θ)η w′ (θ)

≥ u
(
c(θ̂)

)
+ h

(
y(θ̂), θ

)
+ βn

(
θ̂
)η
w′(θ̂), ∀θ, θ̂ ∈ Θ.

The above manipulations show that the transformation associated with the functional

equation (P) in the paper maps the set of the functions of the form Nv̂(N−ηw) to itself.

Since this set is closed, the solution to (P) belongs to this set.

6 Implementation

Here, we discuss the implementation of efficient allocations via decentralized decision making

with taxes. To simplify the presentation we restrict attention to a two period example and

explicitly characterize how tax implementations are used to alter private fertility choices.

We assume that there is a one time shock, realized in the first period.

The constrained efficient allocation c∗1i, l
∗
i , n

∗
i , c
∗
2i solves the following problem:∑

i=H,L

πi [u(c1i) + h(1− li − bni) + βnηi u(c2i)]

s.t. ∑
i=H,L

πi

[
c1i +

1

R
nic2i

]
≤
∑
i=H,L

πiθili +RK0

u(c1H) + h(1− lH − bnH) + βnηHu(c2H) ≥ u(c1L) + h(1− θLlL
θH
− bnL) + βnηLu(c2L).

Now suppose that we want to implement the above allocation with a tax function of the

form T (y, n, c2). Then the consumer’s problem is the following:

max
c1,n,l,c2

u(c1) + h(1− l − bn) + βnηu(c2)

s.t.

c1 + k1 ≤ Rk0 + θl − T (θl, n, c2)

nc2 ≤ Rk1

It can be shown that if T is differentiable and if y is interior for both types Tn(θH l
∗
H , n

∗
H , c

∗
2H) =

Ty(θH l
∗
H , n

∗
H , c

∗
2H) = Tc2(θH l

∗
H , n

∗
H , c

∗
2H) = 0 – there are no (marginal) distortions on the de-

12



cisions of the agent with the high shock. Thus, what we need to do is to characterize the

types of distortions that are used to get the low type to choose the correct allocation.

It is well known that when the type space is discrete, the constrained efficient allocation

cannot be implemented by a continuously differentiable tax function. (This is also true in our

environment.) However, there exists continuous and piecewise differentiable tax functions

which implement the constrained efficient allocation. Next, we construct the analog of this

for our environment.

Let ūL (resp. ūH) be the level of utility received at the socially efficient allocation by the

low (resp. high) type, and define two versions of the tax function:

ūL = u(y − TL(y, n, c2)−
1

R
nc2) + h(1− y

θL
− bn) + βnηu(c2),

ūH = u(y − TH(y, n, c2)−
1

R
nc2) + h(1− y

θH
− bn) + βnηu(c2).

TL, is designed to make sure that the low type always gets utility ūL if they satisfy their

budget constraint with equality while TH , is defined similarly. It can be shown that such TL

and TH always exist, and from the Theorem of the Maximum, they are continuous functions

of (y, n, c2). Moreover, since c1 > 0 (i.e., y − T − 1
R
nc2 > 0) they are each differentiable.

We will build the overall tax code, T (y, n, c2), by using TL as the effective tax code for the

low type and TH as the one for the high type. Given this, it follows that the distortions, at

the margin, faced by the two types are described by the derivatives of TL (TH) with respect

to y and n.

Remark 2 Remark 3 If the allocation is interior,

1. The tax function

T (y, n, c2) = max{TL(y, n, c2), TH(y, n, c2)}

implements the efficient allocation.

2. If the incentive constraint for the low type is slack, there are no distortions in the deci-

sions of the high type – ∂T
∂y

(y∗H , n
∗
H , c

∗
2H) = ∂TH

∂y
(y∗H , n

∗
H , c

∗
2H) = 0 and ∂T

∂n
(y∗H , n

∗
H , c

∗
2H) =

∂TH
∂n

(y∗H , n
∗
H , c

∗
2H) = 0.

3. At the choice of the low type, (y∗L, n
∗
L, c
∗
2L), T = TL and (i) ∂TL

∂y
(y∗L, n

∗
L, c
∗
2L) > 0; (ii)

∂TL
∂n

(y∗L, n
∗
L, c
∗
2L) > 0; (iii) ∂TL

∂c2
(y∗L, n

∗
L, c
∗
2L) = 0.

Proof. First we show, using incentive compatibility, that TL(y∗L, n
∗
L, c
∗
2L) = TH(y∗L, n

∗
L, c
∗
2L).

We know that at the constrained efficient allocation, type θH is indifferent between the

13



allocations (c∗1H , y
∗
H , n

∗
H , c

∗
2H) and (c∗1L, y

∗
L, n

∗
L, c
∗
2L). Hence we have the following equality:

ūH = u(c∗1H) + h(1− y∗H
θH
− bn∗H) + βn∗ηH u(c∗2H) = u(c∗1L) + h(1− y∗L

θH
− bn∗L) + βn∗ηL u(c∗2L)

Replace for c∗1H and c∗1L from budget constraints to get

ūH = u(y∗H − TH(y∗H , n
∗
H , c

∗
2H)− 1

R
n∗Hc

∗
2H) + h(1− y∗H

θH
− bn∗H) + βn∗ηH u(c∗2H)

= u(y∗L − TL(y∗L, n
∗
L, c
∗
2L)− 1

R
n∗Lc

∗
2L) + h(1− y∗L

θH
− bn∗L) + βn∗ηL u(c∗2L)

Moreover, from the definition of TH we know that

ūH = u(y∗L − TH(y∗L, n
∗
L)− 1

R
n∗Lc

∗
2L) + h(1− y∗L

θH
− bn∗L) + βn∗ηL u(c∗2L)

Hence, the last two equalities imply that TL(y∗L, n
∗
L, c
∗
2L) = TH(y∗L, n

∗
L, c
∗
2L). We can also

show that TH(y∗H , n
∗
H , c

∗
2H) > TL(y∗H , n

∗
H , c

∗
2H). We show that this holds as long as the

upward incentive constraint is slack – θL strictly prefers the allocation (c∗1L, y
∗
L, n

∗
L, c
∗
2L) to

(c∗1H , y
∗
H , n

∗
H , c

∗
2H), i.e.:

ūL = u(c∗1L) + h(1− y∗L
θL
− bn∗L) + βn∗ηL u(c∗2L)

> u(c∗1H) + h(1− y∗H
θL
− bn∗H) + βn∗ηH u(c∗2H).

Using the budget constraints, we get

ūL = u(y∗L − TL(y∗L, n
∗
L, c
∗
2L)− 1

R
n∗Lc

∗
2L) + h(1−

y∗L
θL
− bn∗L) + βn∗ηL u(c∗2L)

> u(y∗H − TH(y∗H , n
∗
H , c

∗
2H)− 1

R
n∗Hc

∗
2H) + h(1−

y∗H
θL
− bn∗H) + βn∗ηH u(c∗2H)

By the definition of TLwe have

ūL = u(y∗H − TL(y∗H , n
∗
H , c

∗
2H)− 1

R
n∗Hc

∗
2H) + h(1− y∗H

θL
− bn∗H) + βn∗ηH u(c∗2H)

Hence, we have that TH(y∗H , n
∗
H , c

∗
2H) > TL(y∗H , n

∗
H , c

∗
2H). Given the tax function, the con-

sumer’s problem is the following:

maxc1,y,n,c2 u(c1) + h(1− y

θ
− bn) + βnηu(c2)

s.t. c1 +
1

R
nc2 ≤ y − T (y, n)

14



From above, we know that T (y∗H , n
∗
H , c

∗
2H) = TH(y∗H , n

∗
H , c

∗
2H). Hence, type θH can afford

(c∗1H , y
∗
H , n

∗
H , c

∗
2H) and u(c∗1H , y

∗
H , n

∗
H , c

∗
2H ; θH) = ūH . Let (c1, y, n, c2) be any allocation that

satisfies c1 + 1
R
nc2 = y − T (y, n, c2). Then,

c1 +
1

R
nc2 = y −max{TL(y, n, c2), TH(y, n, c2)} ≤ y − TH(y, n, c2)

But by definition of TH , u(c1, y, n, c2; θH) can be at most ūH . Using a similar argument we

can show that type θL can afford (c∗1L, y
∗
L, n

∗
L, c
∗
2L) and u(c∗1L, y

∗
L, n

∗
L, c
∗
2L; θL) = ūL. Moreover,

any allocation that satisfies the budget constraint has utility at most ūL.

The new finding here is that the planner chooses to tax the low type at the margin for

having more children – ∂TL
∂n

(y∗L, n
∗
L, c
∗
2L) > 0. In the Mirrlees model without fertility choice,

for incentive reasons, the planner wants to make sure that the low type consumes more

leisure (relative to consumption) than he would in a full information world – this makes it

easier to get the high type to truthfully admit his type. This is accomplished by having a

positive marginal labor tax rate for the low type. Here, there is an additional incentive effect

that must be taken care of. This is for the planner to make sure that the low type doesn’t

use too much of his time free from work raising children. This would also make it more

appealing to the high type to lie. To offset this here, the planner also charges a positive tax

rate on children for the low type. These two effects taken together ensure that the low type

has low consumption and fertility and high leisure thereby separating from the high type.

This feature – a positive tax rate on fertility – is somewhat special to the case where

there is no future labor supply after the first period. Indeed, one can show that if the costs

of children are in terms of goods only, the tax rate on fertility is negative in the infinite

horizon case for incentive reasons.
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