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Abstract

We study the design of optimal rating systems in the presence of moral hazard. First,

an intermediary commits to a rating scheme. Then, a decision-maker chooses an action that

generates value for buyers. The intermediary then observes a noisy signal of the decision-

maker’s choice and sends a signal to the buyer consistent with the rating scheme. . We provide

a full characterization of the set of allocations that can arise in equilibrium under any arbi-

trary rating system. We use this characterization to study various design aspects of optimal

rating systems. Speci�cally, we study the properties of optimal ratings when the DM’s e�ort

is productive and when they can manipulate the intermediary’s signal with a noise. With

manipulation, rating uncertainty is a fairly robust feature of optimal rating systems.

1 Introduction

Information disclosure policies are at the heart of designing markets with asymmetric informa-

tion. For example, in the ever growing digital markets such as Airbnb, Amazon Marketplace and

Uber, where transactions are not repeated, buyers rely on the market designer to convey infor-

mation about the sellers to them. An important role of disclosure policies, henceforth ratings,

is to address moral hazard. By providing better information, market designers can incentivize

providers to o�er better service. While better information alleviates moral hazard, it also a�ects

the terms of trade among market participants. In this paper, we study the trade-o�s involved in

the design of rating systems under moral hazard. What properties do such ratings systems have?

∗
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comments.
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How informative are they? What are the pitfalls of using deterministic versus stochastic rating

systems?

We study a setting in which an intermediary observes some information about the actions

chosen by a decision maker (DM) and decides how to convey this information to a third party,

i.e., market or a buyer – henceforth market. We assume that the actions taken by the DM are

costly. Additionally, these actions are valued by the market. Finally, we assume that the market

is willing to pay up to its expected value for the item or service based on the signal it received

from the intermediary and its prior.

To answer the above questions in this setting, �rst one must describe the set of achievable

outcomes. Perhaps surprisingly, relatively little is known about this question. The key di�culty

is that DM’s choice of action is endogenous and is a�ected by the disclosure policy. Our �rst

result provides a parsimonious formulation of the set of achievable outcomes.

Our characterization of the set of achievable outcomes relies on the concept of interim prices.

Interim prices characterize the DM’s expectation of market’s expectation of their valuation. In

presence of random signals, the DM is uncertain about market’s beliefs. We de�ne interim prices

as DM’s expected price given the state and buyers’ beleif. In other words, they are the second

order expectation of the state. In general, these interim prices cannot be fully characterized in a

simple fashion. However we have a sharp result when the interim prices and market valuation are

comonoton, move in the same direction. We show that in these situations existence of a signal

structure is equivalent to second order stochastic dominance. This characterization allows us to

cast the information design problem as a mechanism design problem with transfers, i.e., interim

prices, where transfers have to satisfy a certain feasibility constraint, i.e., second-order stochastic

dominance relative to market valuation.

We use this mathematical characterization to study various applications. First, we study the

problem of Pareto optimal rating design in standard moral hazard where the DM chooses a costly

e�ort that changes the distribution of market payo�s. We �nd that under some general condi-

tions, any Pareto-optimal rating system is deterministic and exhibits monotone partition. Ad-

ditionally, we can identify the main forces that determine optimal ratings. There are two forces

that shape the properties of the optimal rating system: redistributive forces and incentives forces.

Pooling of realizations, allows for redistribution across di�erent types of DMs with di�erent costs

which might be desirable. In contrast, since e�ort is productive, provision of incentives requires

revelation of information. The relative tractability of our characterization allows us to character-

ize conditions under which optimal rating is pooling for middle values of realizations while it is

fully revealing for extreme values where the incentive e�ects are the strongest.

Our second application is rating design under manipulation where the DM can ex-post ma-

nipulate the observed output by the intermediary. Optimal ratings in this case have to balance
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ex-ante incentive for productive e�ort with ex-post incentive for manipulation. Our main �nding

is that rating uncertainty is a robust feature of optimal rating design. We show this by showing

that the interim price function associated with an optimal rating is continuous. Since manipula-

tion implies that the rating system cannot be fully revealing, it must involve uncertainty. In other

words, the partition ratings are never optimal because they lead to discontinuities in the interim

price function.

Interestingly, rating uncertainty must be present when cost of manipulation is high, i.e., when

manipulation is arduous. This is because when manipulation is arduous it is possible to use rating

uncertainty – and thus partially pool ex-post realizations – to induce ex-ante e�ort without hav-

ing to allow for manipulation. When manipulation is e�ortless, i.e., its marginal cost is low, op-

timal rating always involves manipulation. However, the feasibility restriction on interim prices

imply that rating uncertainty should be mixed with deterministic disclosure. Some mid-value re-

ports should be revealed fully to the market while extreme-values should face rating uncertainty.

In other words, optimality of some level of manipulation together with full revelation of some

outcomes implies that all the parties involved – the intermediary, the DM and the market is aware

of manipulation and yet the rating system fully reveals the manipulated outcome.

Finally, we show that our characterization result for interim prices can also be used in more

general environments. Namely, when the market has a dogmatic prior about actions of the DM

and when the market uses the information disclosed by the intermediary to take an action which

in turn a�ect interim prices. In each of these case, we can use the simplicity of our main charac-

terization result to shed light on some properties of optimal rating systems.

Beyond its technical contributions, our paper has important implication for regulation and

design of rating systems in practice. We should note that an important interpretation of rating

uncertainty is that of opaqueness of the rating system. There are various examples in which rating

opaqueness is used. For example, in the context of consumer credit, credit scores are notoriously

opaque in that while it is possible to determine rough statistics that increase credit scores, the

exact cuto�s and formulas are unclear. In the context of eBay, Nosko and Tadelis (2015) conduct

an experiment where they use a particular measure of seller quality and use it in the search result

ranking without announcing it to the sellers. They show that this change of policy improved the

quality choice of the sellers. The results in our paper, particularly those on optimal ratings in the

presence of manipulation, provide a justi�cation for this experiment.

1.1 Related Literature

Our paper is related to a few strands of literature in information economics and mechanism

design. Most closely, it is related to the Bayesian persuasion literature, as in Kamenica and
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Gentzkow (2011), Rayo and Segal (2010), Alonso and Câmara (2016), and Dworczak and Martini

(2019), among many others. However, in our setup, the states are endogenous and determined

by the choice of information structure. A notable exception is the paper by Boleslavsky and Kim

(2020) where they consider a model with moral hazard where an agent controls the distribution of

state with her e�ort. They show that Kamenica and Gentzkow (2011)’s concavi�cation method

extends to their environment. In our setup, we are able to provide a sharp characterization of

the set of implementable outcomes. Furthermore, we are able to solve the resulting mechanism

design problem under fairly general assumptions on the cost function and distribution of types.

Kolotilin et al. (2017) study a problem of information transmission where one of the parties is

privately informed. However, in their setup, the informed party possesses information about her

payo� which is independent of the state. In contrast, in our model sellers are informed about the

state (their cost type), and the information disclosure a�ects their choice of quality.
1

From a technical perspective, our paper is also related to a subset of the Bayesian persua-

sion literature that studies problems in which receivers’ actions depend on their posterior mean.

For example, Gentzkow and Kamenica (2016), Kolotilin (2018), Dworczak and Martini (2019),

and Roesler and Szentes (2017) use Blackwell (1953)’s result that the existence of an informa-

tion structure is equivalent to the distribution of the posterior mean second-order stochastically

dominating (SOSD) the prior. However, in our study �nding this posterior mean is not enough,

since sellers’ incentives depend on the expected prices, which are themselves determined by the

expectation of the posterior mean conditional on the state. Our contribution to this literature is

to show that any pro�le of second-order expectations that dominates full-information valuations

in the sense of Second Order Stochastic Dominance can be derived from some information struc-

ture. Moreover, we use the majorization ranking in order to shed light on key properties of all

the information structures that induce a certain distribution of second-order expectations.

In our formulation, we use the majorization ranking for the functions representing interim

prices and action pro�les by the DM. Thus our mechanism design problem is equivalent to a

mechanism design problem with transfers in which the transfer function majorizes the market

valuations function. Similar to this problem, Kleiner et al. (2020) solve a class of problems where

majorization appears as a constraint. Their solution method uses the characterization of extreme

points of the set of functions that majorizes a certain function. In contrast, our solution of the

mechanism design problem involves calculus of variations due to the lack of linearity that is

present in their model.
2

1
Few other papers have also focused on the joint problem of mechanism and information design; Guo and Shmaya

(2019) and Doval and Skreta (2019) are notable examples.

2
Gershkov et al. (2020) study optimal auction design with risk-averse bidders who have dual risk aversion a

la Yaari (1987). In their problem, the feasibility of allocations implies a majorization constraint on quantities, i.e.,

probability of allocation of the object to each bidder. Similar to our paper, they use calculus of variations to solve
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Our paper is also related to the extensive literature on contracting and mechanism design.

Where as often the main assumption is that monetary transfers are available to provide incentives,

in our setup incentives for quality provision are provided using the rating system. In fact, this

is often the case in multi-sided platforms: seller badges in eBay and Airbnb as well as rider and

driver ratings in Uber and Lyft are a few examples. A few notable exceptions are models that

study the problem of certi�cation and its interactions with moral hazard: Albano and Lizzeri

(2001), Zubrickas (2015), and Zapechelnyuk (2020).
3

An important contribution is that of Albano

and Lizzeri (2001) where a key assumption is that the intermediary can charge an arbitrary fee

schedule. The presence of an unrestricted fee schedule potentially reduces the importance of the

certi�cation mechanism. This is in contrast with our model where monetary transfers are not

�exible. More recently, Zubrickas (2015), Zapechelnyuk (2020) and **RayOhunchic also study

variants of this problem. Their focus is, however, on deterministic ratings. As we show, rating

uncertainty is an important feature of optimal ratings.

Finally, a recent series of papers have studied information design where “senders” (our DM)

are strategic vis-a-vis the information structure. Notably **FrankelKartik, **Ball, and **Pereze-

RichetSkreta all study similar problems. Compared to this strand of the literature, our mathemat-

ical result on second order expectations allows us to study a large class of problems without any

restrictions on information structures (in contrast with **Ball and **FrankelKartik). While our

focus is on moral hazard as opposed to adverse selection, we believe that our techniques can also

be used to study models with adverse selection.

The rest of the paper is organized as follows: we start with an example in section 2; in section

3 we set up the model; in sections 4 and 5, we describe two applications of the model; in section

6 we consider some extensions of our model; �nally, section 7 concludes. All the proofs are

relegated to the appendix unless otherwise indicated.

2 An Example

Before diving into the model, we explore a simple example which illustrates the di�culties that

can be arisen from endogenous state. Sellers choose to exert e�ort a ∈ [0, 1] which determines

this problem. In contrast, our mechanism design problem is equivalent to a problem in which transfers must be

majorized by qualities. This together with incentive compatibility puts more restriction on the set of implementable

allocations.

3
Evidently, our paper is also related to the extensive and growing literature that studies the problem of certi�ca-

tion and information disclosure (e.g., Lizzeri (1999), Ostrovsky and Schwarz (2010), Boleslavsky and Cotton (2015),

Harbaugh and Rasmusen (2018), and Hopenhayn and Saeedi (2020)).

5



the distribution of quality, y ∈ [0, 1], given by

G (ŷ|a) = Pr (y ≤ ŷ|a) =
aŷ − 1

a− 1
.

The seller are of two types, θ ∈ {1, 4}, which determines the cost of exerting e�ort, c (a, θ) = a
θ
.

Suppose that Pr (θ = 1) = 1/4 and that θ is private information to the seller and not observed

by other market participants.

An intermediary, such as a platform or a certi�er, commits to an information structure (S, π (·|y))

where π (·|y) ∈ ∆ (S).
4

The intermediary charges a tari�, t, to the seller in exchange for this

information. The buyer payo� is y but she only observes the signal realization sent by the inter-

mediary. She then uses her prior and the signal from the intermediary to update her beliefs, and

pays her posterior mean, p (s) = Eπ [y|s] to the seller.
5

The payo� of the seller from choosing

e�ort a is thus given by ∫ 1

0

∫
S

p (s) π (ds|y) dG (y|a)− t− c (a, θ) .

Suppose that the outside option of the seller has a payo� of 0. The intermediary wishes to max-

imize its own revenue from the tari� t. What is the optimal signal structure that achieves this

goal? Having a full disclosure policy leads to optimal choice of e�ort for the seller. On the other

side hiding some information leads to redistribution of pro�ts among sellers which can increase

the revenue of the intermediary.

First, let’s consider full disclosure policy, i.e., S = [0, 1], π ({y} |y) = 1. In this case, p (y) = y.

Hence, conditional on participation each type of seller choose a to maximize∫
ydG (y|a)− a

θ
=

a

a− 1
− 1

log a
− a

θ
.

This objective is concave and single-peaked in a and is maximized at a (θ = 1) = 0.057, a (θ = 4) =

0.312. Given these choices, the before tari� payo� of each type of seller are u (θ = 1) = 0.2316

and u (θ = 4) = 0.327, respectively for the high- and the low-cost types. This implies that the

intermediary can charge u(1) and therefore keep both types of sellers, orshe can charge u(4)

in which only the low-cost sellers participate. Comparing the two cases, optimal tari� and the

intermediary’s expected revenue are given by t = 0.327, and Revenue = 0.245. Thus, here, full

disclosure policy leads to exclusion of high-cost sellers.

4
Throughout the paper, we will use ∆ (S) to denote the set of all probability measures over the set S.

5
Throughout the paper, we assume that buyers outside option is zero and they are on the long side of the market,

so they are willing to pay their expected value of the item to the seller.
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Next, we want to examine if the intermediary can increase its revenue by hiding some infor-

mation. There are numerous possibilities that intermediary can choose from, various partitions,

pooling various intervals of realizations while reporting the rest, or having a random signals.

In this example, we consider a particular partial pooling that we later show can be optimal in

this class of problems. Let’s consider a partial pooling equilibrium where the intermediary pools

the realizations of y above 0.16 but fully discloses realizations of y below 0.16. In this case,

S = [0, 0.16] ∪ {H} and π ({y} |y) = 1, y ≤ 0.16, π ({H} |y) = 1, y > 0.16. In response to this

information structure, both seller types will shade their e�orts which in turn changes the beleif

of the market and thus value of p (H), price paid following a realization of s = H . Speci�cally,

p (H) =
1/4

∫ 1

0.16
ydG (y|a (1)) + 3/4

∫ 1

0.16
ydG (y|a (4))

1− 1/4G (0.16|a (1))− 3/4G (0.16|a (4))

In equilibrium, market’s belief about e�ort by di�erent seller types should be consistent with

their choices. The unique pure strategy equilibrium of this game is given by a (1) ≈ 0.049 and

a (4) ≈ 0.2197. In this case the optimal tari� includes both high and low types in the market and

is given by t = 0.254 which is higher than the revenue under full disclosure policy.

Hiding information has two e�ects here. First, it reduces the incentives to exert e�ort by both

types of sellers. Second, since the two types of sellers generate di�erent distributions of qualities,

by pooling some values, it redistributes pro�ts from the low-cost seller to the high-cost one. If

this redistribution is big enough, it leads to the intermediary charging a lower tari� to encourage

participation by both types of sellers and higher revenue for the intermediary.

While the “upper-censorship” information structure considered here increases the revenue of

the intermediary, it turns out not to be optimal. Indeed, as we show in section 4, the optimal in-

formation structure for this example is of “lower-censorship” form, i.e., one that pools an interval

of qualities for low values of y and fully reveals the values of qualities outside of this interval.

The threshold for censorship is given by ŷ ≈ 0.72.

Several questions arise from this exercise. First, given that we have shown that it is optimal for

the intermediary to hide some information, what is the optimal information structure? Second,

would randomized signals ever be optimal? In what follows, we develop techniques to solve

for a general solution of this problem. Speci�cally, in section 4, we show that in this example,

lower-censorship is optimal.
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3 General Model and Interim Prices

In this section, we describe our general model of rating design and provide a sharp characteri-

zation result for the set of feasible payo�s. In general, we are interested in settings in which an

intermediary observes some information about the actions chosen by a decision maker (DM) and

decides how to convey this information to a third party, i.e., market or a buyer, who then pays

their posterior mean as a price to the DM.

More speci�cally, consider a DM who chooses an action a ∈ A ⊂ RN
. This action creates a

possibly random realization y ∈ Y ⊂ RM
with σ (·|a) ∈ ∆ (Y ) describing the distribution of y

given the action chosen by the DM. The action and the outcome generates value of v (a, y) for a

market or a buyer who then is willing to pay her expected payo� E [v (a, y) |s] conditional on the

information available to her as well as her beliefs about equilibrium play.
6

The information struc-

ture is chosen by an intermediary who observes y ∈ Y and chooses a signal structure (S, π (·|y))

where S is a set of signal realizations and π (·|y) ∈ ∆ (S) for all y ∈ Y .
7

Figure 1 depicts the

structure of the model and actions.

DM: a ∈ A
y ∈ Y, y ∼ σ(·|a)

Int.: π(·|y) ∈ ∆(S)

s ∈ S

Market: v(a, y)

pay p = E [v|s]

Figure 1: General Structure of the Model

The DM has a type θ ∈ Θ with probability distribution given by F ∈ ∆ (Θ).8 This type a�ects

their cost of exerting e�ort, a. Hence, the payo� of the DM is given by∫
Y

∫
S

E [v|s] dπ (s|y) dσ (y|a)− c (a, θ) (1)

6
We maintain the assumption that the buyers are on the long-side of the market thus willing to pay their expected

value. One can extend our analysis by allowing buyers to have positive outside options or positive bargaining power.

7
More formally, an information structure is a family of probability spaces {(S,S , π (·|y))}y∈Y where S is the

space of signal realizations and S is a σ-algebra. All throughout the paper, we work with S as a compact subset of

some Euclidean space and S as the Borel σ-algebra associated with topology induced by the Euclidean norm and a

compact space for S. Hence, we drop the σ-algebra in our analysis. Additionally, when describing subsets, we refer

to Borel subsets.

8
We will often assume that Θ ⊂ R has a discrete distribution over a �nite set of types or it has a continuous

distribution with c.d.f. F . Using F as denoting the probability measure governing θ is a slight abuse of notation to

avoid clutter.
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where c (·, ·) is the cost of exerting e�ort. In a pure strategy equilibrium, DM chooses a (θ) to

maximize (1).

In the above, the ex-post market price E [v|s] not only depends on the information structure,

π (·|·), but also it depends on the market’s prior about the distribution of (a, y) which in turn de-

pends on the strategy pro�le of the DM. In other words, it is an equilibrium object. More specif-

ically, the market uses their prior about the distribution of θ – given by F – together with their

beliefs about the equilibrium strategies of the DM types, a (θ), to form a prior µ ∈ ∆ (A× Y )

and uses Bayes’ Rule to form the posterior expectation E [v|s] satisfying∫
A×Y

∫
S′
E [v|s] dπ (s|y) dµ =

∫
A×Y

v (a, y) π (S ′|y) dµ,∀S ′ ⊂ S. (2)

The above de�nes an equilibrium given the information structure. More speci�cally, given an

information structure (S, π) an equilibrium is an action pro�le a (θ) by di�erent types of the DM

where: First, given market beliefs µ ∈ ∆ (A× Y ) and E [v|s], a (θ) maximizes (1); Second, given

a (θ) market beliefs satisfy

µ (A′ × Y ′) =

∫
A′

∫
Y ′
dσ (y|a (θ)) dF (θ) , ∀A′ ⊂ A, Y ′ ⊂ Y

together with Bayesian updating as de�ned in (2).

3.1 Examples

To clarify the scope and applicability of our analysis, we describe a few examples of the above

environment:

1. ReputationMechanisms in Online Platforms: Consider the problem of an online plat-

form such as Airbnb or eBay in designing its reputation system. It is a long-standing fact that

online platforms su�er from adverse selection and moral hazard. The platform observes various

performance parameters about a provider (a host on Airbnb and seller on eBay) that is not ob-

served by the market.
9

These performance measures forms the basis of the platforms certi�cation

policy (such as Super Host in case of Airbnb or eBay Top rated Seller program in case of eBay) As

noted by Hui et al. (2020), details of the certi�cation policy a�ects the behavior of the providers.

One can, thus, think about the certi�cation policy of the platform as the information structure

described in our model. Our model then addresses the issues and tradeo�s for the platform and

9
As documented by Saeedi (2019), Hui et al. (2016), and Nosko and Tadelis (2015), there are many performances

indicators available to eBay which are not conveyed to the market directly. Some examples include total quantities

sold, previous claims and their outcomes, the standing of the seller with eBay, exact distribution of detailed sellers

ratings, etc.
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providers arising from the e�ect of certi�cation policy on provider behavior.
10

2. Ratings in asset markets: Similar to platforms, certi�cation in �nancial markets is done

based on data and forecasting models which are proprietary to the rating agencies. The major

rating agencies in the United States, Moody’s, Fitch, and S&P, operate under the so called “issuer-

pay” model in which the issuer of a security pays for the rating and then the rating score for a

security is freely available to the public. One can thus view our analysis as the e�ect of credit

rating models on the behavior of issuers. Arguably, e�orts such as investments that increase value

for bond holders as opposed to equity holders or insiders are not fully observable by the credit

rating agencies. However, their rating models a�ect the behavior of the issuers similar to our

model. An important topic is the issue of regulation of the credit rating models, as discussed in

Rivlin and Soroushian (2017). We show that a fully deterministic rating model, one that is set by a

regulator and thus observable to the issuer, is desirable when manipulation of an indicator is not

an issue, see section 4. In presence of manipulation, as we show in section 5, rating uncertainty

is desirable and thus regulators should allow for some degree of uncertainty when designing the

certi�cation policies.

3. Manipulation of Ratings: Rating manipulations are very common.
11

This often occurs

through misrepresentation of the data by the party being rated. In online platforms, data manip-

ulation by providers has a constant presence.
12

For example, as discussed by He et al. (2022), third

party sellers on Amazon.com, sometimes pay customers to leave positive reviews and in�ate their

ratings. One can view this in the context of our model. For example, the DM can have access

to a costly action to increase the indicator y observed by the intermediary without a�ecting the

market valuation. If this indicator is also related to another productive action – one that increases

market valuation – this creates a trade-o� for rating design. Information provision increases in-

centives for undertaking productive action while it increases incentives for data manipulation

10
Given our assumption about inability of the intermediary to o�er non-linear pricing schedules, this is most

applicable to settings where pricing and transactions are not set and controlled by the platform.

11
There has been several lawsuits involving manipulation of ratings in various industries. In the con-

text of education, a notable example is the indictment of the Dean of Business School at Temple University

who was convicted of U.S. News ranking manipulations using falsi�ed data in 2022 and was sentenced to

prison. See https://www.justice.gov/usao-edpa/pr/former-temple-business-school-dean-sentenced-over-one-

year-prison-rankings-fraud-scheme, accessed August 16, 2022. Recently, Columbia University has been ac-

cused of manipulating its U.S. News ranking – see https://www.nytimes.com/2022/03/17/us/
columbia-university-rank.html and http://www.math.columbia.edu/~thaddeus/
ranking/investigation.html, accessed August 16, 2022. In the context of �nancial markets, the

issue of “greenwashing” in ESG ratings (Environmental, Social and Governance) has gained signi�cant

interest by regulators, see https://www.bloomberg.com/news/articles/2022-05-31/
deutsche-bank-s-dws-unit-raided-amid-allegations-of-greenwashing, accessed

August 16, 2022.

12
He et al. (2022) show that amazon sellers try to buy fake reviews to boost their ranking and overall rating on

amazon marketplace. The issue of feedback manipulation has been a long debated issue in case of eBay, for example

see Hui et al. (2017).

10
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which makes the information less valuable. In section 5, we study this application.

3.2 Interim Prices: De�nition and Characterization

In this section, we introduce a mathematical object, interim prices, that allows us to tractably

analyze the problem of rating design in the environment described above. Our �rst major result

is a novel characterization of these interim prices that allows us to solve the problem of rating

design in various applications.

The notion of interim prices are simple. They are the mathematical object that indicates the

DM’s incentives. Speci�cally, we de�ne interim prices as

p (y) =

∫
E [v|s] dπ (s|y) (3)

Given that E [v|s] is an equilibrium object which depends on the beliefs of the market about

the DM’s action pro�le, so is p (y). Nevertheless, it is a su�cient statistics for the information

structure from the DM’s perspective. Speci�cally, the payo� of the DM is given by∫
p (y) dσ (y|a)− c (a, θ)

Interim prices are essentially the DM’s beliefs about the beliefs of the market/buyer. More pre-

cisely, at the interim time of realization of y and before realization of the signal, the DM faces a

distribution over the realization of signals – when random signals are used – and thus over the

market’s beliefs. One can thus interpret them as second order beliefs of the DM.

Example 1. Interim Prices To get a sense of interim prices and their relationship with an in-

formation structure, we consider two examples as depicted in Figure 2. Suppose that A = Y =

[0, 1] , v (a, y) = a, σ (Y ′|a) = 1 [a ∈ Y ′]. That is, market only values the DM’s action and the

intermediary observes it. Then an example of an information structure is one in which a deter-

ministic signal is sent

π (s|a) =


1 s = l, a < a

1 s = a, a ∈ [a, a]

1 s = h, a > a

In words, the above information structure pools values of a below a, fully separates values of
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a ∈ [a, a], and pools values of a above a. Its associated interim prices are given by

p (a) =


∫
a≤a adµ

µ((−∞,a))
a < a

a a ∈ [a, a]∫
a>a adµ

µ((a,∞))
a > a

Another example of an information structure is a partially mixing one in which we have

π (s|a) =

α (a) s = a

1− α (a) s = N

In words, the above information structure reveals the state with probability α (a) and sends a

generic signal with probability 1 − α (s). Thus, the DM faces uncertainty regarding its ratings.

In this case, interim prices are given by

p (a) = α (a) a+ (1− α (a))

∫
[1− α (a)] adµ∫
[1− α (a)] dµ

0 a

p(a)

1a a 0 a

p(a)

1

Figure 2: Examples of interim prices as in Example 1. Left panel is a deterministic signal structure;

right panel is partial mixing signal structure with α (a) constant

Figure 2 depicts the interim prices associated with each signal structure and its relationship

with market valuations.

Given our de�nition of interim prices, instead of viewing an equilibrium as an action pro-

�le a (θ) and the distribution of market prices, E [v|s], it induces, we can view it as an action

pro�le a (θ) and an interim price function p (y). Evidently, given p (y), a (θ) must be incentive

compatible, i.e.,

a (θ) ∈ arg max
a∈A

∫
p (y) dσ (y|a)− c (a, θ) .

12



An important question that arises in characterization of interim prices is whether simple con-

ditions exist to characterize the set of interim price pro�les that result from a particular informa-

tion structure and action pro�les. As we discuss below through a series of examples, in general,

the answer to this question is no. However, our main result is that under some restriction on

information structures, a simple characterization exists.

First, let us examine interim prices. Suppose that the sets Y , A, and S are �nite so we can

easily write conditional expectations. We have that interim prices are given by

p (y) =
∑
s∈S

∑
(a,ŷ)∈A v (a, ŷ)µ (a, ŷ) π (s|ŷ)∑

(a,ŷ)∈A µ (a, ŷ) π (s|ŷ)
π (s|y) .

Since

∑
s π (s|y) = 1, it can readily be seen that p (y) is weighted average of values of v (a, ŷ)

where the weights depend on y. In fact, we can go further and write the above as

p (y) =
∑
s∈S

∑
(a,ŷ)∈A v (a, ŷ)µ (a, ŷ) π (s|ŷ)∑

(a,y′)∈A µ (a, y′) π (s|y′)
π (s|y)

=
∑
s∈S

∑
ŷ∈Y

(∑
a∈A v (a, ŷ)µ (a, ŷ)

)
π (s|ŷ)∑

y′∈Y
(∑

a∈A µ (a, y′)
)
π (s|y′)

π (s|y)

=
∑
s∈S

∑
ŷ∈Y v (ŷ)µy (ŷ) π (s|ŷ)∑
y′∈Y µy (y′) π (s|y′)

π (s|y)

=
∑
ŷ∈Y

v (ŷ)
∑
s∈S

π (s|ŷ) π (s|y)µy (ŷ)∑
y′∈Y µy (y′) π (s|y′)

(4)

where in the above v (ŷ) = E [v (a, y) |ŷ] is the mean of v (a, y) conditional on realization of y

while µy (ŷ) =
∑

a∈A µ (a, ŷ) is the marginal distribution of µ along the y-direction. We make

the following assumption about v:

Assumption 1. The range of v (·), i.e., v (Y ) is a �nite collection of closed subintervals of R.

Assumption 1 is a technical assumption that allows us to prove our main result on character-

ization of interim prices, i.e., Theorem 1. It holds for example if Y is a �nite collection of disjoint

connected sets and v (·) is continuous.

The expression (4) states that p (y) is a weighted average of v (y). Hence, it is natural to think

that p (y) is a less dispersed version of v (y), i.e., a mean-preserving contraction. Indeed, we have

the following lemma:

Lemma 1. For any information structure (S, π) and p (y) de�ned by (3), p (·) second order stochas-
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tically dominates v (·), i.e., for all concave and increasing function u : R→ R,∑
y∈

µy (y)u (v (y)) ≤
∑
y∈

µy (y)u (p (y))∑
y∈

µy (y) v (y) =
∑
y∈

µy (y) p (y)

While the above result is a necessary requirement for interim prices, in general its reverse is

not true. To see this, consider the following example:

Example 2.
Suppose that A = Y = {0, 1, 3}, v (a, y) = v (a) = a, σ (Y ′|a) = 1 [a ∈ Y ′], and µ ({a}) =

1/3. In words, the consumers only care about the action of the seller and y coincides with it.

Figure 3 depicts the values of p(0) and p(1), note that the sum of the three interim prices are

always equal to 4 given the Bayes’ Rule. Area A shows the set of vectors x = (x1, x2, x3) that

second order stochastically dominate (0, 1, 3). Each random variable is represented by (x1, x2),

the third element is the distance from the x1 + x2 = 4 line. The conditions are: 0 ≤ xi ≤ 3, 1 ≤
xi +xj ≤ 4, for all i, j and x1 +x2 +x3 = 4. However, the set of interim prices does not coincide

with the set A and is depicted by set B. To �nd the set of all interim prices, one can consider cases

where the intermediary reveal one of the states fully while mixing the other two, in another two

extremes the intermediary reveals all the information or non. Moreover, interim prices are not

necessarily monotone. A signal that pulls a = 0, 3 and reveals a = 1 leads to an interim price of

3/2 for a = 0 and 1 for a = 1 – depicted by point C in Figure 3.
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p(0)

p(1)

4

4

A

1

B
C

Figure 3: Depiction of the set of interim prices and mean-preserving contractions of market val-

uations for Example 2; The green area, A, represents the three state random variables that are

mean-preserving contraction of a. The yellow area, B, is the set of interim prices arising from

some information structure.

The above example illustrates the di�culties associated with identifying the set of all interim

prices for all information structure. Nevertheless, we are able to show a somewhat general result

when market valuations have the same ranking as interim prices, comonotonicity. Our main

mathematical result is that when market valuations v (y) and p (y) are comonotone then existence

of a signal structure is equivalent to second order stochastic dominance. The following theorem

states this result:

Theorem 1. Consider an action pro�le a (θ) and its associated v (y) as de�ned in (4). Suppose that
p (y) is a function that maps Y into R such that:

1. p (·) is comonotone with v (·), i.e., p (y) > p (y′)⇒ v (y) > v (y′),

2. p (·) second order stochastically dominates v (·).

Then, there exists an information structure (S, π) such that p (y) =
∑

s∈S E [v|s] π (s|y).

The proof is relegated to the Appendix. Here are the intuitive steps. We prove this theorem

in two steps: First, we show it when Y is �nite. Second, we use an approximation argument for

an arbitrary compact Y . For �nite Y , our proof is based on the separating hyperplane theorem.

In particular, we consider the set

S =

{
p̂ (·)

∣∣∣∣∣∃ (S, π) : p̂ (y) =
∑
s∈S

π (s|y)E [v|s]

}
.
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In Example 2, the set S is the part of set B in Figure 3 above the 45-degree line. If n = |Y |,
then S ⊂ Rn

. It is fairly straightforward to show that S is a convex and compact subset of

Rn
. Thus, by the separating hyperplane theorem, for a p (y) not to belong to S , there must exist

λ ∈ Rn
, with λ 6= 0 such that

∑
y λ (y) p (y) >

∑
y λ (y) p̂ (y) ,∀p̂ ∈ S . Hence, if we show that

for any λ 6= 0, there exists p̂λ ∈ S such that

∑
y λ (y) p (y) ≤

∑
y λ (y) p̂λ (y), then it must be

that p ∈ S . We show existence of p̂λ by construction of signal structures which depend on the

monotonicity properties of λ (y). Speci�cally, we index members of Y in the increasing direction

of v, i.e., v (yi) ≥ v (yi−1) , n ≥ i ≥ 2. When λ (yi) /µ (yi) ≥ λ (yi−1) /µ (yi−1) ,∀i ≥ 2, then

p̂λ (y) = v (y), i.e., full disclosure. When λ (yi) /µ (yi) < λ (yi−1) /µ (yi−1), for some i, we pool

states yi−1 and yi and use an inductive argument to construct p̂λ (y).

For arbitrary compact Y , we approximate the distribution of µy (·) with a sequence of discrete

distributions whose supports are ordered according to the subset order, i.e., they are a �ltration.

We can then apply the result from the �nite case to construct an information structure associated

with each of these discrete approximations. By compactness of the space of measures over the

posterior mean and y, these information structures must have a convergent subsequence with a

limiting information structure. It thus remains to be shown that the expectation of the posterior

mean conditional on y under this limiting information structure coincides with p (y). To show

that, we resort to the martingale convergence theorem. This �ltration and the realization of y

and posterior mean form a bounded martingale. As a result, we can apply Doob’s martingale

convergence theorem to show that the limiting information structure generates interim price

p (y). We formalize this argument in the appendix.

The above Theorem implies that we can characterize “co-monotone” equilibria of the game

for arbitrary information structure with an action pro�le {a (θ)}θ∈Θ and interim prices p (y) such

that:

1. it is incentive compatible:

a (θ) ∈ arg max

∫
p (y) dσ (y|a)− c (a, θ) ,∀θ ∈ Θ, (5)

2. Interim prices p (y) dominate v (y) = E [v (a, y) |y] according to the second order stochastic

order.

3. interim prices and market valuations are co-monotone.

We use this implication of Theorem 1 in the rest of the paper to characterize optimal rating

systems in various settings.
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Remark on Theorem 1 The result in Theorem 1 is reminiscent of the result of Blackwell

(1953) and Rothschild and Stiglitz (1970) – the general version can be found in Strassen (1965).

That result states that for any two random variables x and y, there exists a random variable

s such that E [x|s] has the same distribution as y if and only if y second-order stochastically

dominates x. While similar, this result is di�erent in two ways. First, it is stated for the second

order conditional expectation and thus Blackwell’s result cannot be applied. The key intricacy is

that the same signal structure that generates the random variable E [v|s] must be used to generate

E [E [v|s] |y]. Second, as illustrated by Example 2, the equivalent of Blackwell’s result does not

hold in general and can only be shown when v and p are co-monotone.

Majorization In the rest of the paper, we will use Theorem 1 to characterize optimal rating

systems in various applications. When Y ⊂ R, the majorization formulation – see Hardy et al.

(1934) – of second order stochastic dominance helps us use a Lagrangian method to solve for the

optimal rating systems. When Y = R, we can write

p <SOSD v ⇐⇒
∫ y

−∞
p (ŷ) dµy (ŷ) ≥

∫ y

−∞
v (ŷ) dµy (ŷ) ,∀y ∈ R.

4 Application 1: Rating Design with Moral Hazard

Our �rst application of rating design is a general version of the model in section 3. We will show

that for a large class of objective functions, optimal ratings are deterministic. We then provide

speci�c characterization of optimal ratings and characterize how they depend on the distribution

of outcomes.

More speci�cally, suppose that A = [0, a] for some a > 0, Y = [0, 1], v (y, a) = y and

Θ = {θ1, · · · , θm}. We assume that the cost function c (a, θ) is decreasing in θ, increasing in a

and submodular. This implies that higher θ’s are more e�cient in exerting e�ort. Additionally,

we assume that y conditional on a is distributed according to a continuously di�erentiable c.d.f.

G (y|a). We make the following assumption:

Assumption 2. The distribution of y conditional on a is decreasing with respect to a, i.e.,Ga (y|a) ≤
0.

This assumption implies that an increase in a shifts the distribution of y to the right, i.e.,

increases G (·|a) according to �rst order stochastic dominance.

We consider the class of pareto optimal objectives. That is, if payo� of the DM of type θ is

given by u (θ), then the objective is given by

∫
λ (θ)u (θ) dF . For example, the monopoly problem

of section 2 is a special case of this objective. There, the intermediary wishes to maximize his
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revenue from certi�cation fees which translate into maximizing the utility of the lowest quality

seller who is active in the market, if that type is θ then the objective will be to maximize u (θ) .

Under our characterization result, the problem of rating design is to choose p (y) and a (θ) to

maximize ∑
θ∈Θ

f (θ)λ (θ)

[∫
p (y) dG (y|a (θ))− c (a (θ) , θ)

]
subject to the incentive compatibility constraint (5), monotonicity of p (y) and majorization con-

straint ∑
θ∈Θ

f (θ)

∫ y

0

p (ŷ) dG (ŷ|a (θ)) ≥
∑
θ∈Θ

f (θ)

∫ y

0

ŷdG (ŷ|a (θ)) (6)

∑
θ∈Θ

f (θ)

∫ 1

0

p (ŷ) dG (ŷ|a (θ)) =
∑
θ∈Θ

f (θ)

∫ 1

0

ŷdG (ŷ|a (θ))

Our �rst result illustrates that Pareto optimal ratings are always deterministic:

Proposition 1. Suppose that the �rst-order approach is valid, then Pareto-optimal rating systems
are monotone partitions.

It is worth mentioning that, �rst, we assume that the �rst-order approach is valid. This is

because in our proof of this theorem, we use the existence of Lagrange multipliers on the incentive

compatibility constraint. The �rst-order approach ensures that such Lagrange multipliers exist

and our proof is valid. We suspect that the result holds even in the absence of the �rst-order

approach yet our proof no longer works. Second, our proposition illustrates that not only optimal

rating systems are deterministic but also monotone partitions. In other words, for any y, either y

is revealed perfectly or there exists an interval around y where only it is revealed that y belongs

to this interval.

The above proposition implies that moral hazard in the form described above does not lead to

rating uncertainty. While this is informative about general properties of optimal ratings, the num-

ber of partitions and the precise design of optimal ratings depends on the distribution function

g (y|a). In what follows, we discuss two cases for the optimal disclosure policy of the monopolist

intermediary.

Two-Type Case Suppose that Θ = {θ1, θ2} with θ1 < θ2, f (θj) = fj , and λ (θ1) = 1, λ (θ2) =

0. This is the problem of a monopolist that wishes to serve both types of sellers and thus wants

to maximize the pre-tari� payo� of the high-cost seller.

Before stating our formal result, we provide a heuristic analysis of the main determinants of

optimal rating. Suppose that the Lagrange multipliers on the incentive compatibility constraints
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of each type of seller are γj , j = 1, 2. Then, given e�ort level of a1 and a2, �nding the optimal

interim price is equivalent to

max
p(·)

∫
Γ (y) p (y)h (y) dy

subject to the majorization and monotonicity constraints. In this formulation h (·) is the uncon-

ditional density of y, i.e., h (y) = f1g (y|a1) + f2g (y|a2). The function Γ (y) is the gain function

associated with optimal rating design and is given by:

Γ (y) =
g (y|a1)

h (y)

(
1 + γ1

ga (y|a1)

g (y|a1)
+ γ2

ga (y|a2)

g (y|a2)

g (y|a2)

g (y|a1)

)
. (7)

Analyzing the terms in the gain function identi�es two forces that shape the properties of the

optimal rating system:

1. Redistributive: The �rst term in the gain function g (y|a1) /h (y) is a decreasing function of

the likelihood ratio g (y|a2) /g (y|a1). Under the monotone likelihood ratio property, this

likelihood function is increasing in y and as a result the term g (y|a1) /h (y) is decreasing

in y. Thus, when γ1 = γ2 = 0, i.e., when we do not have to worry about the e�ect of

the rating system on incentives, then optimal rating system is simply one that provides

no information. Intuitively, absent the incentive constraints, holding a1 and a2 �xed, the

payo� of the high-cost seller is maximized when no information is provided.

2. Incentive: The second and third term in the gain function represents the importance of in-

centive provision for types 1 and 2. The function ga (y|a) /g (y|a) is an increasing function;

negative for low values of y and positive for higher values of y. As a result, the second term

creates a force for information revelation. In fact, when γ1 and γ2 are very large, the gain

function Γ (y) becomes increasing and as a result it is optimal to reveal all information.

At the optimum, the exact nature of the optimal rating system depends on how these forces

interact. While the guiding principle for the design of rating systems is Proposition 2, in what

follows, we provide conditions for which revelation must occur for high and low values. As we

show later, various classes of distribution functions g (y|a) satisfy this assumption:

Assumption 3. The distribution function g (y|a) satis�es:

1. Monotone likelihood ratio, i.e., ga (y|a) /g (y|a) is increasing in y for all a.

2. For arbitrary a2 > a1, de�ne the function ŷ (z) as the solution of z = g (ŷ (z) |a2) /g (ŷ (z) |a1).
The function ŷ (z) must satisfy the following properties:

(a) The function φ (z) = ga (ŷ (z) |a) /g (ŷ (z) |a) satis�es φ′′ (z) ≤ 0,
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(b) The function ψ (z) = zga (ŷ (z) |a) /g (ŷ (z) |a) satis�es ψ′′ (z) ≥ 0,

(c) The function φ′′ (z) /ψ′′ (z) is increasing in z.

Using the above assumption, we have the following proposition:

Proposition 2. Suppose that Assumption 3 hold. If at the optimum a2 ≥ a1, then there exists two
thresholds y1 < y2 where optimal monopoly rating system is fully revealing for values of y below y1

and above y2 while it is pooling for values of y ∈ (y1, y2).

Under Assumption 3, the incentive e�ects are strongest for extreme values of y while the the

redistributive force is strongest for mid values of y. As the Proposition illustrates optimal rating

system pools intermediate values of y while fully reveals extreme values. Roughly speaking the

full revelation of extreme values of y are associated with incentive provision for types 1 and 2.

Under Assumption 3, the incentive e�ect for type 1 – the second term in the gain function (7) –

is steepest for low values of y while the incentive e�ect for type 2 – the third term in the gain

function (7) – is steepest for high values of y. Thus, mid-values of y are pooled since redistributive

e�ect dominates, while at the extremes incentive e�ects dominate.

Some examples of distributions that satisfy Assumption 3 are:

1. C.d.f. is a power of y: G (y|a) = yα·a for α > 0.

2. C.d.f. is a power of 1− y: G (y|a) = 1− (1− y)
α
a for α > 0.

3. C.d.f. is exponential of y : G (y|a) =
(
eψ(a)y − 1

)
/
(
eψ(a) − 1

)
for some increasing function

ψ (a). A similar property holds for G (y|a) = 1−e−ψ(a)y

1−e−ψ(a) .

Note that the example in section 2 is the last example above for ψ (a) = log a. We can then simply

use Proposition 2 and impose the “mid-pooling” information structure. It turns out that for that

example, the information structure is lower-censorship, i.e., the lower bound of the mid-pooling

region is y1 = 0 and the upper bound is given by y2 ≈ 0.72.

5 Application 2: Rating Design under Manipulation

In this section, we consider another application of our result in section (3) to a setting where the

DM can manipulate the statistic observed by the intermediary.

More speci�cally, consider a special case of the model in section (4) where there is only one

type θ. Suppose that market valuation is v (y, a) = y and that Y = [0, 1]. More importantly,

suppose that the intermediary does not observe the true realization of y. It instead observes x

which the DM can manipulate at a cost. In particular, the DM, after observing y can pay a cost and

20



reveal x to the intermediary. The cost of manipulation is given by cm (x− y) = k (x−y)2

2
+τ |x− y|

where k, τ ≥ 0 and τ < 1. We assume that the intermediary wishes to maximize the surplus

generated by the DM which is given by

∫
[y − cm (x̂ (y)− y)] dG (y|a)− c (a) where x̂ (y) is the

manipulation strategy of the DM for each realization of y ∈ [0, 1].

We make the following assumption about the distribution:

Assumption 4. The c.d.f of y, G (·|·) satis�es the following properties:

1. G (y|a) is a C2 function of y and a.

The above assumption helps us prove our main result about the shape of optimal ratings in

Proposition 2.

In this setup, a rating system is a signal structure (S, π (s|x)), i.e., an information structure

that maps manipulated values x into signals for the market/buyers. In equilibrium, there is com-

mon knowledge of strategies by the DM and thus the buyers’ interpretation of the signals depends

on manipulation strategy of the DM. This updating takes the form of

E [y|s] = E
[
x̂−1 (x) |s

]
where x̂−1

is the inverse correspondence of the DM’s equilibrium manipulation strategy.
13

The

DM’s interim price from reporting x′ to the intermediary is given by

E [E [y|s] |x′] = E
[
E
[
x̂−1 (x) |s

]
|x′
]

= p̂ (x′) (8)

Since payo� function of the DM is supermodular between x and y, this implies that the equilib-

rium manipulation function x̂ (y) is increasing in y. Moreover, equilibrium interim price p̂ (x̂ (y))

is also increasing. Therefore, the co-monotonicity assumption of Theorem 1 holds. Hence, ex-

istence of a signal structure that satis�es (8) is equivalent to p (y) = p̂ (x̂ (y)) dominating y

according to second order stochastic dominance. Thus, we have the following corollary:

Corollary 1. Consider any manipulation strategy x̂ (y) together with an information structure
(π, S). Then x̂ (·) is an equilibrium strategy if and only if there exists an increasing interim price
function, p (y), such that:

1. The function p (y) second order stochastically dominates y (given the distribution of y,G (y|a)),

13
When there are multiple y’s that report x to the intermediary, set Ŷ ⊂ [0, 1], the conditional expectation

E
[
x̂−1 (x) |s

]
pools them together and treats them as one observation with its value given by conditional expectation

of E
[
y|y ∈ Ŷ

]
.
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2. The pair of functions p (·) , x̂ (·) satis�es incentive compatibility

p (y)− cm (x̂ (y)− y) ≥ p (y′)− cm (x̂ (y′)− y) ,∀y, y′ ∈ [0, 1] (9)

Corollary 1 implies that the problem of optimal rating design in this application is given by

max
p(·),x̂(y),a

∫
[p (y)− cm (x̂ (y)− y)] g (y|a) dy − c (a) (P1)

subject to:

1. ex-post incentive compatibility of the manipulation strategy:

p (y)− cm (x̂ (y)− y) ≥ p (y′)− cm (x̂ (y′)− y) ,∀y, y′ ∈ [0, 1] (10)

2. ex-ante incentive compatibility of the e�ort:

a ∈ arg max
a′

∫
[p (y)− cm (x̂ (y)− y)] g (y|a′) dy − c (a′) (11)

3. Feasibility of the interim prices for some information structure∫ ŷ

0

p (y) g (y|a) dy ≥
∫ ŷ

0

yg (y|a) dy (12)∫ 1

0

p (y) g (y|a) dy =

∫ 1

0

yg (y|a) dy (13)

It is perhaps worth commenting that in this environment, there is no reason for the intermediary

to rule out manipulation in equilibrium. When the cost of manipulation is high, e.g., τ is close

to 1, we will show that it is optimal for the interim prices to have a slope of τ . This will then

imply that marginal cost of manipulation at x̂ (y) = y is equal to the increase in the interim

prices and thus it rules out manipulation in equilibrium. However, when τ is low, e.g., τ = 0,

then manipulation always occur in equilibrium.

We proceed by stating our main result of this section:

Theorem 2. Suppose that Assumption 4 holds. If p (·) is an interim price function that achieves the
maximum in (P1), then p (·) is continuous.

The result in Theorem 2 is in sharp contrast with that in Proposition 1. In Proposition 1, we

established that optimal information structures are monotone partitions. This means that the DM

does not face any uncertainty with respect to the determination of its rating. In contrast, when
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Figure 4: A Mean Contracting Perturbation of Interim Prices for Discontinuous Allocations

p (·) is continuous and when not all information is revealed, then the rating system must involve

randomization or rating uncertainty.

The proof of Theorem 2 uses a perturbation argument as depicted in Figure 4. A useful notion

is to consider the optimal manipulation when majorization is not taken into account, i.e., when

there are no restrictions on prices. This is depicted by the dashed red line in Figure 4. If optimal

manipulation – when majorization constraint (12) is imposed – has a discontinuity at y1 (blue

curve in Figure 23), then x̂ (y1+) is either higher than the unconstrained optimal manipulation or

lower. In Figure 23, it is lower. The green line shows a perturbed manipulation strategy wherein

manipulation is reduced above y1 and increased below. It is possible to do this perturbation in

such a way as to not violate the majorization constraint. Intuitively, this decreases dispersion

of prices and thus preserves majorization. Since cost of manipulation is convex, the bene�t of

the increase for values of y below y1 is higher than the cost of decrease above y1. Hence, the

manipulation function in Figure 23 cannot be optimal. If x̂ (y1+) is higher than the unconstrained

manipulation, then a simpler perturbation of lowering manipulation above y1 and increasing

prices for all realizations of y is mean-contracting and thus improves upon the original allocation.

A key insight of Theorem 22 is that we can divide the domain [0, 1] into a collection of subin-

tervals – possibly points – where the optimal interim price function alternates between the iden-

tity function – for which majorization constraint is binding – and one in which majorization

is slack and thus involves rating uncertainty. In other words, partitions often used by various

disclosure mechanisms where various states are pooled are not optimal. Additionally, the the-
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orem illustrates an algorithm in order to �nd optimal ratings via optimization over alternating

intervals.

We can provide two further characterization of optimal rating systems under manipulation.

To do so, we make the following assumption:

Assumption 5. In addition to Assumption 4, the c.d.f of y, G (·|·) satis�es the following properties:

1. First order stochastic dominance: ∂G(y|a)
∂a

≤ 0 for all y ∈ [0, 1] ,∀a ∈ R+.

2. The function ∂G(y|a)/∂a
g(y|a)

is bounded below.

The �rst assumption simply ranks the distribution of y as a function of a according to �rst

order stochastic dominance. The second assumption is less standard. The second assumption

e�ectively states that the density of y is non-zero and bounded below over [0, 1].

Our �rst main result is on optimal rating when manipulation is arduous, i.e., its marginal cost

at 0 is high.

Proposition 3. Suppose that Assumption 5 holds. Then, there exists τ ∈ (0, 1) such that for all
τ ≥ τ , there is no manipulation under optimal rating, i.e., x̂ (y) = y, and the optimal rating system
satis�es

S = {N} ∪ [0, 1] , π ({s} |y) =

τ s = y

1− τ s = N
(14)

The above proposition states that when τ is high enough, then the intermediary should not

allow any manipulation at the optimum. Note that τ = ∂cm/∂x (y+, y) is the marginal cost of

manipulation at x̂ = y. Naturally, one way to implement no manipulation under ex-post incentive

compatibility is to have a price function where the marginal bene�t of manipulation, the slope of

the price function, is equal to its marginal cost. This gives rise to a pricing function whose slope

at y is equal to the marginal cost of manipulation τ . Similar to Example 1, one way to achieve this

is using a partial mixing information structure as described in (14). Note that ex-ante incentive

compatibility implies that we would want to reward productive e�ort as much as possible and

hence the slope of price function should be τ ; the steepest price function that implements no

manipulation.

The following proposition provides another insight into optimal rating systems when manip-

ulation is e�ortless, i.e., when τ = 0:

Proposition 4. Suppose that τ = 0. Then there exists thresholds 0 < k1 < k2 such that:

1. For all k ≥ k2, the majorization constraint is slack at the optimum and the optimal rating
system involves mixing.
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The above result states that when manipulation is e�ortless rating uncertainty is a robust

feature of optimal ratings.

The intuition behind this result can be understood via trade-o�s in manipulation. In this set-

ting, since marginal cost of manipulation at x = y is zero, as long as interim prices are increasing,

there will be manipulation. Hence, there is a trade-o� between allowing for manipulation and

providing ex-ante incentives for productive e�orts.

To see this, note that the envelope condition associated with the ex-post incentive constraint

states that

u′ (y) = k (x (y)− y)

where u (y) = p (y)− cm (x (y) , y) is the ex-post utility of the DM. As this shows, an increase in

x (y) leads to a steeper utility pro�le and thus increases the return to productive e�ort. Thus the

optimal rating system balance the welfare cost of manipulation with its incentive bene�ts. When

k is large, a small level of manipulation can make u (y) steep and provide strong incentives for

productive e�ort. For high enough values of k, the level of manipulation required is small and

thus price does not need to be steep enough which then means that majorization is not going

to be violated. However, as k decreases the required level of manipulation increases and prices

become too steep and violate majorization. When this is the case, the majorization constraint

binds for mid-values of y and full revelation must occur.

6 Extensions

In this section, we discuss two other extensions of our majorization result in order to illustrate

the extent and depth of its applicability.

6.1 Di�erent Priors

Consider a variation of the model in section 3, wherein the market has dogmatic prior beliefs

about the distribution of (a, θ); this is in contrast with the market having rational expectations

which coincide with the equilibrium behavior of DM. More speci�cally, let φ ∈ ∆ (A×Θ) be the

prior of the market and suppose that the market uses this prior and the true signal distribution to

do Bayesian updating. When A,Θ, and Y are �nite and we can write φ (a, θ) as the probability

of (a, θ) under market prior, interim prices are given by

p (y) =
∑
s∈S

∑
(a,ŷ)∈A v (a, ŷ)φ (a, ŷ) π (s|ŷ)∑

(a,ŷ)∈A φ (a, ŷ)π (s|ŷ)
π (s|y) .
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The above is identical to interim prices in section 3 except for the fact that φ is used instead of

the true distribution of (a, y). One can then conclude that the following holds:

Lemma 2. If market prior is given by φ and vφ (y) = Eφ,σ [v (a, y) |y], if p (y) is co-monotone with
vφ (y) and p (y) <S.O.S.D vφ (y), both distributed according to φy, then there exists an information
structure that induces p (y).

To see the bene�t of this result, consider a simple setting in which there is only one type of

DM who has a cost c (a) and market has a biased belief that the density of y is given by h (y).

Moreover, suppose that Eφ [v (a, y) |y] = vφ (y) = αy + (1− α) y. Then the problem of optimal

rating design is to �nd p (y) and a to solve the following:

max
p(·),a

∫ 1

0

p (y) g (y|a) dy − c (a)

subject to ∫ y

0

p (y′)h (y′) dy′ ≥
∫ y

0

p (y′)h (y′) dy′∫ 1

0

p (y)h (y) dy =

∫ 1

0

vφ (y)h (y) dy

We can then use simple arguments from calculus of variations, similar to those in section 4, to

show the following:

Proposition 5. Optimal ratings are:

1. Upper-censorship if for all a, h (y) /g (y|a) is hump-shaped, i.e., increasing-then-decreasing.
Moreover, if a∗ achieves the maximum of E [y|a]− c (a) and if h (y) is strictly dominated by
g (y|a∗) according to �rst order stochastic dominance, then optimal rating is not full informa-
tion.

2. Lower-censorship if for all a, h (y) /g (y|a) is U-shaped, i.e., decreasing-then-increasing. More-
over, if a∗ achieves the maximum of E [y|a] − c (a) and if h (y) strictly dominates g (y|a∗)
according to �rst order stochastic dominance, then optimal rating is not full information.

Proposition 5 again illustrates the power of our result on characterization of interim prices. It

describe how the shape of the bias determines the structure of optimal ratings. More speci�cally,

in the class of the distributions considered, more pessimism leads to upper-censorship while more

optimism leads to lower-censorship.
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6.2 Allowing for Market Action

In the above, one of our key assumptions is that information does not lead to an informed action

by the market. This then implies that the interim prices, i.e., expectation of posterior mean con-

ditional on the state, are linear in posterior mean. A question that arises is whether this can be

extended to a situation in which information is valuable for the market and thus interim prices

are not necessarily linear in posterior means.

Here, we show that it is possible to extend our result to settings where the information content

of the intermediary’s signal leads to a change of action. More speci�cally, suppose that market

participants (or alternatively a buyer) have a payo� of α·
(
y − y

)
with α ∈ {0, 1} being chosen by

the market. Suppose as before that the price paid to the DM is

(
E [y|s]− y

)
1
(
E [y|s] ≥ y

)
. One

interpretation of this example is one in which v is the cost of shopping, such as search, cognitive,

etc., and thus the market participants only make the purchase when their posterior mean value

of the object is above y.

Suppose for simplicity that Y and S are �nite. For any arbitrary rating system (S, π), we can

de�ne the following objects:

q (y) = Pr
({
s : E [y|s] ≥ y

}
|y
)

p̂ (y) =
1

q (y)
E
[(
E [y|s]− y

)
1
(
E [y|s] ≥ y

)
|y
]
, if q (y) > 0

In words, q (y) is the probability that market action is equal to 1 conditional on the state being

equal to y. Furthermore, p (y) = q (y) p̂ (y) is the interim price vector faced by the DM. Thus,

p̂ (y) is the interim price conditional on α = 1.

Note that given this change of variable, we can write

p̂ (y) =
∑
s∈Ŝ

π̂ (s|y)

∑
y′∈Y π̂ (s|y′)

(
y′ − y

)
q (y′)µy (y′)∑

y′∈Y π̂ (s|y′) q (y′)µy (y′)

where Ŝ =
{
E [y|s] ≥ y

}
and π̂ (s|y) = π(s|y)

q(y)
. This implies that π̂ (·|y) ∈ ∆

(
Ŝ
)

. Thus, p̂ (y)

becomes the interim price function associated with the signal structure (S, π̂ (·|y)) with the prior

distribution of y given by q (y)µy (y).

The following proposition summarizes this logic:

Proposition 6. Suppose that market payo� is given by v (a, y) · α where α ∈ {0, 1} is the action
optimally taken by the market and that marginal distribution of y is given by a probability measure
µy. Then if a positive measure ρ and a pricing function p̂ (y) exists such that

1. ρ
(
Ŷ
)
≤ µy

(
Ŷ
)
for all Borel subsets Ŷ ⊂ Y ,
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2. interim price function satis�es p̂ (y)∫
p̂ (y) dρ =

∫
v (y) dρ∫

u (p̂) dρ ≥
∫
u (v (y)) dρ, ∀u: concave

3. p̂ (y) is co-monotone with v (y) and miny∈Y p̂ (y) ≥ 0

Then, there exists (S, π) such that

p̂ (y) = E
[
E
[

max
α∈{0,1}

v · α
∣∣∣∣ s]∣∣∣∣ y]

It is worth mentioning that, �rst, the positive measure ρ can be thought of as the probability

of state being y and posterior mean of v (a, y) being positive. Since posterior mean of v can be

sometimes negative – which leads to α = 0, ρ is not necessarily a probability but a positive

measure. Moreover, by the �rst condition, ρ is absolutely continuous with respect to µy and thus

by Radon-Nykodim theorem there must exist 0 ≤ q ≤ 1 such that ρ =
∫
q (y) dµy. The function

q must then be the probability of positive posterior mean conditional on y ∈ Ŷ . Second, the

above is not an exact application of Theorem 1 since we are imposing an additional constraint

that interim prices are positive. This is indeed because the market participants can guarantee a

positive value for themselves which then guarantees a positive value for the DM.

7 Conclusion

We explored the design of optimal rating systems in the presence of moral hazard. We started by

introducing the concept of interim prices and to show the conditions where we can substitute the

information problem with majorization conditions. We show that when the value created for the

consumers and the interim prices are comonotone our mechanism design and information design

problem can be simpli�ed by just considering majorization conditions for the interim prices and

using them in the incentive conditions.

We then used our method to solve two applications. One for the optimal information mech-

anism in presence of moral hazard. The other application is exploring the optimal design in the

presence of manipulation.

In this paper, we did not consider the case of matching where buyers/receivers are heteroge-

neous in their taste for quality and the presence of information can help with matching as well

as giving incentives to sellers to exert e�ort. This will remain as a topic for future research.
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A Proofs

A.1 Proof of Theorem 1

Proof. We will �rst prove the theorem when Y is �nite. We will then show that the theorem can

be extended to cases when Y is a compact Euclidean space.

Before doing so, �rst we de�ne the following set of interim price functions

S =

{
p̂ (·)

∣∣∣∣∃ (S, π) : p̂ (y) =

∫
S

E [v|s] dπ (s|y)

}
The following lemma is a key property of S that will be used in our proof.

Lemma 3. The set S is convex.

Proof. Let p̂1 (·) , p̂2 (·) ∈ S and their associated information structures be given by (S1, π1) and

(S2, π2), respectively. Let µ1 and µ2 be the probability measures representing the distributions of

(s1, y) and (s2, y). Let µ1,s and µ2,s be the marginal probability measures associated with µ1 and

µ2 along s1 and s2, respectively. Note that µy is the marginal probability measure of both µ1 and

µ2 along y.

Additionally, we have the standard conditional probability measures µ1 (·|s1) , µ2 (·|s2) ∈
∆ (Y ). We can then de�ne probability measures τ1, τ2 ∈ ∆ (∆ (Y )) given by

τ1 (Φ) =

∫
S1

1 [µ1 (·|s1) ∈ Φ] dµ1,s,∀Φ ⊂ ∆ (Y )

τ2 (Φ) =

∫
S2

1 [µ2 (·|s2) ∈ Φ] dµ2,s,∀Φ ⊂ ∆ (Y )

Given this construction, we have∫
Y

p̂1 (y)1
[
y ∈ Ŷ

]
dµy =

∫
S1×Y

E [v|s1]1
[
y ∈ Ŷ

]
dµ1 (s1|y) dµy

=

∫
S1×Y

E [v|s1]1
[
y ∈ Ŷ

]
dµ1 (y|s1) dµ1,s

=

∫
S1

E [v|s1]µ1

(
Ŷ |s1

)
dµ1,s

=

∫
∆(Y )

Eφ [v]φ
(
Ŷ
)
dτ1.

In other words, p̂1 is the Radon-Nikodym derivative of the measure

∫
∆(Y )

Eφ [v]φ (·) dτ1 with

respect to µy. By Radon-Nikodym theorem, this is unique up to a measure zero change. The

same property holds for p̂2.
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Now consider the measure λτ1 +(1− λ) τ2 ∈ ∆ (∆ (Y )). Let µλ ∈ ∆ (∆ (Y )× Y ) be de�ned

as

µλ (B1 ×B2) =

∫
∆(Y )

φ (B2) d (λτ1 + (1− λ) τ2) ,∀B1 ⊂ ∆ (Y ) , B2 ⊂ Y

Similar to construction of the product measure, the above can be extended to a Borel measure

over all Borel subsets of ∆ (Y ) × Y . We can then compute the conditional probability measure

µλ (·|y), ∀y ∈ Y . This is a signal structure wherein S = Supp (λτ1 + (1− λ) τ2).

Given the above, we have∫
Y

(λp̂1 (y) + (1− λ) p̂2 (y))1
[
y ∈ Ŷ

]
dµy =∫

∆(Y )

Eφ [v]φ
(
Ŷ
)
d (λτ1 + (1− λ) τ2)

This implies that λp̂1 + (1− λ) p̂2 ∈ S which concludes the proof.

1. When Y is �nite.

Let Y = {y1, y2, · · · , yn} such that v (y1) ≤ v (y2) ≤ · · · ≤ v (yn). When p (y) is co-monotone

with v (y), we must have that p (y1) ≤ p (y2) ≤ · · · ≤ p (yn). In this case, S ⊂ Rn
. For simplicity,

we also let fi = µy ({yi}).

We show that if p satis�es p (y1) ≤ · · · ≤ p (yn) and p <SOSD v, then p ∈ S . To do so, we show

that for any λ ∈ Rn
, λ 6= 0, then there exists p′ ∈ S such that λ · p ≤ λ · p′. This result combined

with separating hyperplane theorem implies that p ∈ S .

(i) We only need to focus on λ > 0. This is because for all p′ ∈ S ,

n∑
i=1

fip (yi) =
n∑
i=1

fip
′ (yi) =

n∑
i=1

fiv (yi)

Thus,

(λ+ αf) · p ≤ (λ+ αf) · p′ ⇐⇒ λ · p ≤ λ · p′, ∀α ∈ R

where in the above f = (f1, · · · , fn). Thus choosing a large enough α implies that λ+ αf > 0.

(ii) we prove existence of p′ by induction on n.
Step 1. claim holds when n = 2. When n = 2, then stochastic dominance is equivalent to

f1p (y1) + f2p (y2) = f1v (y1) + f2v (y2)

v (y1) ≤ p (y1) ≤ p (y2) ≤ v (y2)
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Now, there are two possibilities: 1. λ1/f1 ≥ λ2/f2. Then Chebyshev’s sum inequality implies

that

λ · p =
∑
i

fi
λi
fi
p (yi)

≤
∑
i

fi
λi
fi

∑
i

fip (yi)

= (λ1 + λ2)
∑
i

fiv (yi) = λ · p′

In the above p′ (yi) =
∑

i fiv (yi) is the interim price vector associated with no information.

2. λ1/f1 < λ2/f2. Then

λ · p =
∑
i

fi
λi
fi
p (yi)

=
λ1

f1

∑
i

fip (yi) + f2

(
λ2

f2

− λ1

f1

)
p (y2)

≤ λ1

f1

∑
i

fiv (yi) + f2

(
λ2

f2

− λ1

f1

)
v (y2)

= f1
λ1

f1

v (y1) + f2
λ2

f2

v (y2)

= λ1v (y1) + λ2v (y2) = λ · p′

where in the above p′ (yi) = v (yi) is the interim price associated with full information.

Step 2. If the claim holds when |Y | = n− 1, then it must hold when |Y | = n.
To show this step, consider λ ∈ Rn

. There are two possibilities:

Case 1. The vector λ satis�es λ1/f1 ≤ λ2/f2 ≤ · · · ≤ λn/fn. In this case, we can write

λ · p =
∑
i

λip (yi)

=
∑
i

fi
λi
fi
p (yi)

=
λ1

f1

∑
i

fip (yi) +
∑
i≥2

fi

(
λi
fi
− λ1

f1

)
p (yi)

=
λ1

f1

∑
i

fip (yi) +
∑
i≥2

i∑
j=2

(
λj
fj
− λj−1

fj−1

)
fip (yi)

=
λ1

f1

∑
i

fip (yi) +
∑
i≥2

(
λi
fi
− λi−1

fi−1

) n∑
j=i

fjp (yj)
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Given that p <SOSD v and that p is increasing in i, second order stochastic dominance implies that

i∑
j=1

fjp (yj) ≥
i∑

j=1

fjv (yj)→
n∑
j=i

fjp (yj) ≤
i∑

j=1

fjv (yj)

Thus, we can write

λ · p =
λ1

f1

∑
i

fip (yi) +
∑
i≥2

(
λi
fi
− λi−1

fi−1

) n∑
j=i

fjp (yj)

≤λ1

f1

∑
i

fiv (yi) +
∑
i≥2

(
λi
fi
− λi−1

fi−1

) n∑
j=i

fjv (yj)

=
∑
i

λiv (yi) = λ · p′

where in the above p′ is the interim price vector associated with full information.

Case 2. There exists k ≥ 2 such that λk/fk < λk−1/fk−1. In this case, consider the following

Ỹ = {y1, · · · , yk−2, yk, yk+1, · · · , yn}

ṽ (yi) =

v (yi) i 6= k, k − 1

fkv(yk)+fk−1v(yk−1)

fk+fk−1
i = k

µ̃ (yi) =

fi i 6= k, k − 1

fk + fk−1 i = k

p̃ (yi) =

p (yi) i 6= k, k − 1

fkp(yk)+fk−1p(yk−1)

fk+fk−1
i = k

λ̃i =

λi i 6= k, k − 1

λk + λk−1 i = k

This modi�cation of p and v satis�es all the properties of p and v. That is, p̃ is comonotone with

ṽ and satis�es stochastically dominates ṽ. Since

∣∣∣Ỹ ∣∣∣ = n−1, the hypothesis of induction implies

that there must exists an information structure

(
S̃, π̃

)
and its associated interim price vector p̌

that satis�es

λ̃ · p̃ ≤ λ̃ · p̌ (15)

Now, using

(
S̃, π̃

)
, we construct a new information structure that satis�es the claim for p. We
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de�ne

S = S̃, π ({s} |yi) =

π̃ ({s} |yi) i 6= k, k − 1

π̃ ({s} |yk) i = k, k − 1

In words, this information structure pools yk and yk−1 (they always send the same signals) and

otherwise replicates π̃. Since this is the case, the posteriors induced by this information structure

is the same as those induced by π̃. Therefore∑
s

π ({s} |yi)E [v (yi) |s] = p̌i, i 6= k, k − 1∑
s

π ({s} |yi)E [v (yi) |s] = p̌k, i = k, k − 1

Hence, the interim prices associated with (S, π) is given by

p′ = (p̌ (y1) , · · · , p̌ (yk−2) , p̌ (yk) , p̌ (yk) , p̌ (yk+1) , · · · , p̌ (yn))

We have

λ · p =
∑

j 6=k−1,k

λjp (yj) + fk−1
λk−1

fk−1

p (yk−1) + fk
λk
fk
p (yk)

≤
∑

j 6=k−1,k

λjp (yj) + (λk−1 + λk)

(
fk−1p (yk−1) + fkp (yk)

fk−1 + fk

)
= λ̃ · p̃

where the inequality holds because λk−1/fk−1 > λk/fk and p (yk−1) ≤ p (yk). Therefore, (15)

implies

λ · p ≤ λ̃ · p̃ ≤λ̃ · p̌

=
∑

j 6=k,k−1

λj p̌ (yj) + (λk + λk−1) p̌ (yk)

=
n∑
j=1

λjp
′ (yj)

which proves the claim.

2. When Y is an arbitrary compact subset of a Euclidean Space.
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Let V = v (Y ) be the range of v and a subset of R. Furthermore, let us de�ne

∀v ∈ V, p̂ (v) = p (y) , v (y) = v.

This function is well-de�ned since p is co-monotone with v. That is if for two values y1 and y2,

v (y1) = v (y2), then we must have that p (y1) = p (y2). We also let µv ∈ ∆ (V ) be the probability

measure induced on V using µy and v (·). Clearly, we also must have that p̂ (·) is a monotone

function of v.

By Assumption **1, V is a �nite collection of subintervals. For ease of exposition, we prove the

claim when there is only one subinterval [v, v]. The proof is almost identical with a �nite number

but it is more cumbersome. Consider a sequence of partitionsV n = {vn0 = v < vn1 < · · · < vnn = v}
for n = 1, 2, · · · with min0≤i≤n−1 v

n
i+1 − vni → 0 and V n+1 ⊂ V n

. We de�ne

fni = µv
([
vni−1, v

n
i

))
, 1 ≤ i ≤ n− 1

fnn = µv
([
vnn−1, v

])

vni =


∫
v1[v∈[vni−1,v

n
i )]dµv

fni
fni > 0, i ≤ n− 1∫

v1[v∈[vnn−1,v)]dµv
fnn

fnn > 0, i = n
vni−1+vni

2
fni = 0, i ≥ 1

p̂n (vni ) =


∫
p̂(v)1[v∈[vni−1,v

n
i )]dµv

fni
fni > 0, i ≤ n− 1∫

p̂(v)1[v∈[vnn−1,v)]dµv
fnn

fnn > 0, i = n
p̂(vni−1)+p̂(vni )

2
fni = 0, i ≥ 1

In words, the above constructs a discretization of the buyer values v and the DM’s interim prices

p̂ (v). Since p̂n (v) is an increasing function of v and by construction, p̂n <SOSD vn and V n
is

�nite, we can apply the result from the �rst part. That is, an information structure (Sn, πn) exists

where πn : V n → ∆ (Sn) such that

p̂n (vni ) =
∑
s∈Sn

πn ({s} |vni )E [v|s]

Note that each (Sn, πn) induces a distribution over posterior beliefs of the buyers given by

τn ∈ ∆ (∆ (V n)). Since any probability measure in ∆ (V n) can be embedded in ∆ (V ). This is

because for any µ ∈ ∆ (V n), we can construct µ̂ ∈ ∆ (Θ) de�ned by µ̂ (A) =
∑n

i=1 µi1 [vni ∈ A]

where A is an arbitrary Borel subset of V . Similarly, we can �nd τ̂n ∈ ∆ (∆ (V )) which is equiv-
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alent to τn.

Now consider the probability measure ζn representing the joint distribution of vn and poste-

rior mean Eµ [v] =
∫
vdµ for any µ ∈ Supp (τ̂n) induced by τ̂n. Note that ζn ∈ ∆ (V × V ).

By an application of Reisz Representation theorem (see Theorem 14.12 in Aliprantis and Border

(2013)), ∆ (V × V ) is compact according to the weak-* topology.
14

This implies that the sequence

{ζn}must have a convergent subsequence whose limit is given by ζ ∈ ∆ (V × V ). Let Gn be the

σ-�eld generated by the sets

{[
vni , v

n
i+1

)}
i≤n−1

∪
{[
vnn−1, v

]}
and let Fn = Gn × {∅,∆ (V )}. In

words, Fn conveys the information that v ∈
[
vni , v

n
i+1

)
or v ∈

[
vnn−1, v

]
. Note that Fn ⊂ Fn+1

because V n ⊂ V n+1
. Moreover,

E [ζn|Fn] = (vn, p̂n)

where in the above, (vn, p̂n) is the random variable with values (vni , p̂
n
i ) with probability fni . Note

that the above holds by the construction of τn and ζn. As a result

E
[
ζn+1|Fn

]
= E

[
E
[
ζn+1|Fn+1

]
|Fn
]

= E
[(
vn+1, p̂n+1

)
|Fn
]

= (vn, p̂n)

where the last equality follows because E [p̂ (v) |Fn] = p̂n,E [v|Fn] = vn given the de�nition

of p̂n and vn above. All of this implies that Fn is a �ltration and (ζn,Fn) forms a bounded

martingale – for a de�nition see Doob (1994). Hence by Doob’s martingale convergence theorem

– see Theorem XI.14 in Doob (1994), we must have that

lim
n→∞

E [ζn|Fn] = E [ζ|F ]

Therefore, Eζ
[∫
vdµ|v

]
= p̂ (v). This concludes the proof.

14
A rough argument for sequential compactness of ∆ (V × V ) is as follows: Note that C (V × V ), the space of

all continuous functions on V × V , is separable since V is a compact, metrizable, and Hausdor� space (see Reisz’s

Theorem in Royden and Fitzpatrick (1988) – section12.3, page 251.) This implies that there exists a countable subset

{αi}∞i=1 of C (V × V ) which is dense in C (V × V ) according to sup-norm. Thus, for any sequence of measures

{µm}∞m=1 in ∆ (V × V ), for a given i, the sequence

{∫
αi (v) dµm

}∞
m=1

must have a convergent subsequent. It-

erating repeatedly, as we increase i, we can �nd a subsequence {µmk
}∞k=1 where

{∫
αi (v) dµmk

}
converges. We

de�ne ζ (αi) = limk→∞
∫
αi (v) dµmk

. Since {αi} is dense in C (V × V ), then ζ (α) = limk→∞
∫
α (v) dµmk

must exists for all α ∈ C (V × V ) and can be similarly de�ned. It is easy to show that ζ (α) is a linear functional

over C (V × V ) and thus a member of its dual, C (V )
∗
. Hence, by Riesz Representation Theorem, there must exist

a measure ζ̂ ∈ ∆ (V × V ) where ζ (α) =
∫
αdζ̂ . This implies that µmk

converges to ζ̂ according to the weak-*

topology and hence, ∆ (V × V ) is sequentially compact.
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A.2 Proof of Proposition 1

Proof. We show the claim by �rst showing that for all y, either the monotonicity constraint is

binding or the majorization constraint, equation 6 , is binding at the optimum. Suppose to the

contrary that this does not hold. Note that a change in p (y) for a measure zero of y’s, does

not a�ect the objective, and the majorization constraint. This implies that in order to achieve a

contradiction, we need to rule out an interval in which neither majorization nor monotonicity

constraint is binding. Suppose that there exists an interval I = [y1, y2] for which majorization

and monotonicity are slack. Note that under the validity of the �rst order approach and given

any e�ort pro�le a (θ), the optimal rating system must be a solution to the following planning

problem:

max
p(·)

∑
θeΘ

f (θ)λ (θ)

[∫ 1

0

p (y) g (y|q (θ)) dy − c (a (θ) , θ)

]
(P1)

subject to ∫ 1

0

p (y) gq (y|a (θ)) dy = ca (a (θ) , θ)∑
θ∈Θ

f (θ)

∫ y

0

[p (y′)− y′] g (y′|a (θ)) dy′ ≥ 0,∀y ∈ [0, 1]

∑
θ∈Θ

f (θ)

∫ 1

0

[p (y)− y] g (y|a (θ)) dy = 0

p (y)− p (y′) ≥ 0,∀y ≥ y′

By combining the Theorems 1 in section 9.3 and 9.4 of Luenberger (1997) – together with the

fact that we have �nitely many types and thus �nitely many linear equality constraints, there

must exist Lagrange multipliers γ (θ) – for the incentive compatibility constraint – so that p (y)

satis�es

p ∈ arg max
p̂

∫ 1

0

p̂ (y)
∑
θ

f (θ) [λ (θ) g (y|a (θ)) + γ (θ) ga (y|a (θ))] dy (16)

subject to p̂ <SOSD y, and p̂ (·) is monotone. Let us de�ne h (y) =
∑

θ f (θ) g (y|a (θ)) and

α (y) =

∑
θ f (θ) [λ (θ) g (y|a (θ)) + γ (θ) ga (y|a (θ))]

h (y)
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The Lagrangian associated with (16) is given by

L =

∫ 1

0

p̂ (y)α (y)h (y) dy+∫ 1

0

∫ y

0

(p̂ (y′)− y′)h (y′) dy′dM (y)

−m
∫ 1

0

(p̂ (y′)− y′)h (y′) dy′

=

∫ 1

0

p̂ (y)α (y)h (y) dy+∫ 1

0

(p̂ (y)− y) [M (1)−M (y)]h (y) dy

−m
∫ 1

0

(p̂ (y′)− y′)h (y′) dy′

where M (y) is an increasing function y. Moreover,∫ 1

0

∫ y

0

(p̂ (y′)− y′)
∑
θ

f (θ) g (y′|a (θ)) dy′dM (y) = 0

From the result in **KleinerMoldovanuStrack, we know that there exists an pe (y) extreme

point of the set {p : p <SOSD y, p : monotone} that maximizes the objective in (16) and a collection

of disjoint intervals

[
y
i
, yi

)
exists such that

pe (y) =


y y /∈

⋃
i

[
y
i
, yi

)
∫ yi
y
i
y
∑
θ f(θ)g(y|a(θ))dy∫ yi

y
i

∑
θ f(θ)g(y|a(θ))dy

y ∈
[
y
i
, yi

)
Note that optimality conditions implied by the Lagrangian are that if y ∈

(
y
i
, yi

)
then

α (y)−m+M (1)−M (y) = 0.

In other words, α (y) must be weakly increasing. Moreover, if (z1, z2) ⊂ [0, 1] \
⋃
i

[
y
i
, yi

)
, then

M (y) has to be constant.

If the solution of the optimization problem (P1) is not a extreme point of {p : p <SOSD y, p : monotone},
then by Krein-Milman (see ***??), it must be a convex combination of the extreme points of the

set {p : p <SOSD y, p : monotone}. Hence, there must exist another extreme point p̃e (y) that also

achieves the optimum in (16). If pe 6= p̃e, there must exist y ∈ (0, 1) so that pe (y) = y for an
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interval around y and p̃e (y) is constant for an interval around y. By optimality, it must be that

α (y′)−m+M (1)−M (y′) = 0,M (y′) = M (y)

for y′ ∈ I , an interval around y. This means that there must exist a constant, c = m −M (1) +

M (y) so that for all y′ ∈ I∑
θ

f (θ) [λ (θ) g (y′|a (θ)) + γ (θ) ga (y′|a (θ))] = c
∑
θ

f (θ) g (y′|a (θ))

or ∑
θ

f (θ) [(λ (θ)− c) g (y′|a (θ)) + γ (θ) ga (y′|a (θ))] = 0

which then implies that {g (y|a (θ)) , ga (y|a (θ))}θ∈Θ are linearly dependent over I ′ which is in

contradiction with our assumption. This concludes the proof.

A.3 Proof of Proposition 2

We �rst prove the following Lemma:

Lemma4. Consider the optimization problemmaxp
∫ 1

0
p (y)α (y)h (y) dy subject to {p : p <SOSD y, p : monotone}.

Suppose that α (x) is continuously di�erentiable and that its derivative changes sign k <∞ times,
i.e., we can partition [0, 1] into k intervals where in each interval α′ (x) has the same sign but not
in two consecutive intervals. Then, an optimal information structure is an alternating partition (be-
tween full revelation and pooling) with at most k intervals.

Proof. As in proof of Proposition 1, we know that

∫ 1

0
p (y) dH is maximized at extreme point pe

of the set {p : p <SOSD y, p : monotone} and thus a collection of disjoint intervals

[
y
i
, yi

)
exists

such that

pe (y) =


y y /∈

⋃
i

[
y
i
, yi

)
∫ yi
y
i
y
∑
θ f(θ)g(y|a(θ))dy∫ yi

y
i

∑
θ f(θ)g(y|a(θ))dy

y ∈
[
y
i
, yi

)
As we have shown in proof of Proposition **1, α (y) must be increasing over any subinterval

I ⊂ [0, 1] \
⋃
i

[
y
i
, yi

)
. Thus, in order to show the result, it su�ces to show that we cannot have

yi = y
j

for some i 6= j. This would mean that pe is associated with an alternating partition and

that there is at most k intervals.

Suppose to the contrary that yi = y
j

for some i 6= j. There are three possibilities:

1.

∫ yi
y
i
α(y)h(y)dy∫ yi
y
i
h(y)dy

>

∫ yj
y
j
α(y)h(y)dy∫ yj
y
j
h(y)dy

. In this case, if we consider p̃e which pools the entire interval
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[
y
i
, yj

)
and is otherwise the same as pe, then

∫ yj

y
i

p̃e (y)α (y)h (y) dy =

∫ yj

y
i

α (y)h (y) dy

∫ yj
y
i

yh (y) dy∫ yj
y
i

h (y) dy

=

∫ yj

y
i

α (y)h (y) dyE
[
y|y

i
≤ y < yj

]

If we de�ne a =
H(yi)−H(yi)
H(yj)−H(yi)

, z1 = E
[
α (y) |y

i
≤ y < yi

]
, z2 = E

[
α (y) |y

j
≤ y < yj

]
and recall that pe

(
y
i

)
= E

[
y|y

i
≤ y < yi

]
, pe

(
y
j

)
= E

[
y|y

j
≤ y < yj

]
, then we can

write∫ yj

y
i

p̃e (y)α (y)h (y) dy =
[
H
(
yj
)
−H

(
y
i

)]
E
[
α (y) |y

i
≤ y < yj

]
E
[
y|y

i
≤ y < yj

]
=
[
H
(
yj
)
−H

(
y
i

)]
(az1 + (1− a) z2)

(
ape

(
y
i

)
+ (1− a) pe

(
y
j

))
>
[
H
(
yj
)
−H

(
y
i

)](
az1pe

(
y
i

)
+ (1− a) z2pe

(
y
j

))
=

∫ yj

y
i

pe (y)α (y)h (y) dy

where the inequality follows because z1 > z2 and pe

(
y
i

)
< pe

(
y
j

)
and Chebyshev’s sum

inequality – see Hardy et al. (1934), Theorem 43. The above then implies that p̃e delivers a

higher value of

∫
pαdH which is a contradiction.

2.

∫ yi
y
i
α(y)h(y)dy∫ yi
y
i
h(y)dy

<

∫ yj
y
j
α(y)h(y)dy∫ yj
y
j
h(y)dy

. Note that since pe is optimal, we must have that

α
(
y
j

)
≥ E

[
α (y) |y

j
≤ y < yj

]
because otherwise, there exist ŷ ∈

(
y
j
, yj

)
such thatE

[
α (y) |y

j
≤ y < ŷ

]
< E

[
α (y) |ŷ ≤ y < yj

]
.

Then, a similar argument as above shows that separating

[
y
j
, ŷ
)

from

[
ŷ, yj

)
increases the

objective, which is a contradiction. Similarly, we can show thatα
(
yj
)
≤ E

[
α (y) |y

j
≤ y < yj

]
.

Similarly,

α
(
y
i

)
≥ E

[
α (y) |y

i
≤ y < yi

]
≥ α (yi)
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and since α is continuous at yi = y
j
, we must have

α
(
y
i

)
≥ E

[
α (y) |y

i
≤ y < yi

]
≥ α (yi) ≥ E

[
α (y) |y

j
≤ y < yj

]
≥ α

(
yj
)
.

This is a contradiction.

3. Finally if

∫ yi
y
i
α(y)h(y)dy∫ yi
y
i
h(y)dy

=

∫ yj
y
j
α(y)h(y)dy∫ yj
y
j
h(y)dy

, then pooling the entire interval

[
y
i
, yj

)
keeps the

value unchanged. This proves the lemma.

Now, we can use Lemma 4 to prove Proposition 2.

Proof. Under the �rst order approach, the optimal interim prices must maximize

∫ 1

0
p (y)α (y)h (y) dy

where h (y) =
∑2

i=1 fig (y|ai) and α (y)h (y) = g (y|a1)+
∑

i γiga (y|ai). Note that we can show

that γ2 is positive. We do this by imposing the incentive constraints for both types as an inequal-

ity of the form

∫ 1

0
p (y) ga (y|ai) dy ≥ ca (ai, θi). If this inequality is slack at the optimum for

type 2, then at the optimum we can raise a2 and redistribute the proceeds across all realizations

of y, i.e., increase all p (y) by the same amount. This raises the payo� of type 1 because a2 ≥ a1

and monotone likelihood ratio implies that such an increase shifts the distribution to the right.

This, however, does not a�ect the incentives of type 1 – since it is a uniform increase in p (·) –

while does not violate the incentive constraint of type 2 since the inequality is slack. Hence, type

2 incentive constraint is binding at the optimum of the relaxed planning problem which means

that γ2 is positive. Moreover, a similar argument implies that γ1 is positive.

Given the de�nitions in Assumption 3, we can write

α (y) =
g (y|a1) +

∑
i γiga (y|ai)∑

i fig (y|ai)
=

1 + γ1φ (ŷ−1 (y)) + γ2ψ (ŷ−1 (y))

f1 + f2ŷ−1 (y)

where in the above ŷ−1
is the inverse of the function ŷ (z) de�ned in Assumption 3 which is

strictly increasing by part 1 of Assumption 3. Since the RHS of the above is only a function of

ŷ−1 (y) or z, we can de�ne α̂ (ŷ−1 (y)) = α (y). Since ŷ is increasing by Assumption 3, α̂ inherits

the monotonicity properties of α. After some algebra, we have

(
(f1 + f2z)2 α̂′ (z)

)′
= (f1 + f2z) [γ1φ

′′ (z) + γ2ψ
′′ (z)]

Since γ2, γ1 ≥ 0, Assumption 3 implies that there is a cuto� value of z – possibly at the corners

– where for values of z below the above is negative while for high values of z it is positive. This

means that if α̂′ (min z) is negative then it changes sign only once but if it is positive, it changes

sign at most twice. This combined with Lemma 4 establishes the claim in the Proposition.
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B Online Appendix

B.1 Separable Distributions

Consider the problem in this section and assume that g (y|a), the density of y given a satis�es

the following separability

g (y|a) = 1 + β (a)m (y) (17)

where m (y) is an increasing function that satis�es

∫ 1

0
m (y) dy = 0 and β (a) is increasing and

concave. Note that under this speci�cation, the marginal bene�t of e�ort is given by∫ 1

0

p (y) ga (y|a) dy = β′ (a)

∫ 1

0

p (y)m (y) dy

Hence, if e�ort pro�le a (θ) is optimal, then

β′ (a (θ))

∫ 1

0

p (y)m (y) dy = ca (a (θ) , θ)

Hence, we must have

ca (a (θ) , θ)

β′ (a (θ))
=
ca (a (θ′) , θ′)

β′ (a (θ′))

Thus, if we choose the e�ort level of the lowest type a, the above determines the e�ort level for

all the other types. Let us refer to the solution of the above as â (a, θ). Hence, the problem of

optimal rating design is given by

max
a,p(·)

∫ 1

0

p (y) g (y|a) dy − c (a, θ)

subject to ∫ 1

0

p (y) ga (y) dy = ca (a, θ) (18)∫ y

0

p (ŷ)

∫
g (ŷ|â (a, θ)) dFdŷ ≥

∫ y

0

ŷ

∫
g (ŷ|â (a, θ)) dFdŷ,∀y ∈ (0, 1)∫ 1

0

p (ŷ)

∫
g (ŷ|â (a, θ)) dFdŷ =

∫ 1

0

ŷ

∫
g (ŷ|â (a, θ)) dFdŷ

p (y) ≥ p (y′) ,∀y ≥ y′

Similar to the analysis in subsection 4, given a, the problem of solving for optimal interim prices is

to maximize

∫
p (y) g(y|a)+γga(y|a)

h(y)
h (y) dy subject to majorization and monotonicity where h (y) =
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∫
g (y|â (a, θ)) dF (θ). Note that in this formulation γ is the Lagrange multiplier associated with

the incentive constraint

Given the separability assumption on g (·|·), we can show that the function
g(y|a)+γga(y|a)

h(y)
is

either decreasing in y – when γ is low enough – or increasing – for high γ. Thus the solution of

the above problem is either full pooling or full information. Since full pooling leads to marginal

bene�t of e�ort being 0, we have the following proposition:

Proposition 7. Suppose that g (·|a) satis�es (17).Then optimal monopoly rating system is full dis-
closure.

This result can be understood by considering the two e�ects identi�ed before: redistributive

and incentive. Given our speci�cation of the distribution, the forces cannot be balanced. Since the

redistributive force cannot dominate as it leads to no e�ort being taken by the DM, full disclosure

should be optimal.
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