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Abstract

We develop a dynamic model of trading through market-makers that incorporates two canonical sources
of illiquidity: trading (or search) frictions, which imply that market-makers have some amount of mar-

ket power; and information frictions, which imply that market-makers face some degree of adverse se-

lection. We use this model to study the effects of various technological innovations and regulatory
initiatives that aim to reduce trading and/or information frictions. We show that conventional predic-
tions, derived from models that study either of these frictions in isolation, do not necessarily hold when
both frictions are present. A key result is that reducing trading frictions slows down the rate at which
market-makers learn about asset quality, amplifying the effects of adverse selection and ultimately
leading to more illiquidity, as measured by, e.g., bid-ask spreads.
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1 Introduction

In recent years, financial markets have undergone significant changes as a result of both technological

innovations and regulatory initiatives. Many of these changes have targeted one of two fundamental

sources of illiquidity in financial markets, which we succinctly summarize as either trading frictions or

information frictions. By trading frictions, we mean any friction that prevents traders from having imme-

diate access to a wide variety of trading partners. By information frictions, we mean a situation in which

one side of a transaction has more information about the quality of the asset than the other, which creates

a standard adverse selection problem.

Consider, for example, technological developments such as the personal computer, electronic trading

platforms, and faster bandwidth. As a result of these innovations, investors now have the opportunity

to trade much more quickly with a wider set of dealers.1 In addition, consider the effects of recent regu-

latory initiatives that advocate a shift from opaque over-the-counter markets towards more transparent,

standardized exchanges. As these initiatives are implemented, investors gain much greater access to in-

formation regarding prevailing prices and quantities traded. 2 As these changes continue—and, in some

cases, accelerate—a natural question arises: how does market liquidity respond to changes in the level of

trading and/or information frictions?

The goal of this paper is to provide some answers to this question. To do so, we develop a model

that incorporates both trading frictions and information frictions into a single, unified framework. We

characterize equilibrium prices, trading decisions, and the corresponding evolution of beliefs, and then

perform comparative statics to understand how the underlying frictions in the model determine market

liquidity. We focus much of our attention on one particular measure of market liquidity, the bid-ask

spread, though we also discuss implications for other measures, such as trading volume and price impact.

The effect of trading frictions and information frictions on bid-ask spreads have been studied exten-

sively in separate literatures, which provide fairly stark predictions about the consequences of reducing

either friction in isolation. In particular, the literature that formalizes OTC markets using search and

matching models of trade, such as Duffie et al. (2005), offers a simple answer to the question posed above:

1The transition of financial markets from dealer-based platforms to electronic platforms, and the ever-increasing execution
speeds, have been well documented. Appendix A of Pagnotta and Philippon (2015) offers an excellent summary.

2In the U.S., for example, the Dodd-Frank Wall Street Reform and Consumer Protection Act has called for the introduction
of Swap Execution Facilities in the market for interest rate swaps; according to this legislation, an investor’s request to trade
must be circulated to at least three dealers for price quotes before the trade can be executed. Similar regulatory requirements
for pre-trade price transparency have been implemented in European markets as a consequence of MiFID II. Requirements
for post-trade transparency are equally as prevalent. A notable example is legislation introduced by the Financial Industry
Regulatory Authority (FINRA), which collects post-trade price information in markets for asset-backed securities and corporate
bonds through the Trade Reporting and Compliance Engine (TRACE).
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if investors can contact dealers more easily, then competition among dealers will increase and bid-ask

spreads will fall. Likewise, the literature that rationalizes bid-ask spreads as a consequence of asym-

metric information, such as Glosten and Milgrom (1985), offers an equally straightforward prediction: if

dealers have access to better information about the payoffs of the asset being traded, adverse selection

will be less severe and bid-ask spreads again should fall.

Our main result is that these conventional predictions are not necessarily true when both frictions are

present. Instead, reducing one of these frictions can make the other more severe. We illustrate this result,

primarily, by showing that reducing trading frictions can slow down the process by which dealers learn

about the quality of the assets being traded, which exacerbates the effects of asymmetric information and

can ultimately lead to wider bid-ask spreads.

To understand the intuition behind this result, it’s helpful to describe a few key features of the model.

There are two types of agents—traders and dealers—who trade a homogeneous asset that is either high

or low quality. We introduce information frictions by assuming that traders know the quality of the asset

but dealers do not. We introduce trading frictions by assuming that, in each period, traders are matched

with a stochastic number of dealers. In particular, a given trader might not match with any dealers,

in which case they can’t trade; they might be matched with a single dealer, in which case the dealer

has some degree of market power; or they might be matched with two or more dealers, in which case

the dealers compete a la Bertrand. After a dealer is matched with a trader, and observes whether the

trader has matched with any other dealers, he offers bid and ask prices at which he’s willing to buy or

sell, respectively. The trader then decides whether or not to trade based on her reservation value for the

asset, along with the realization of contemporaneous (aggregate and idiosyncratic) preference shocks. The

trader’s reservation value can be decomposed into two pieces: one that depends on the fundamental value

of the asset and another that depends on the expected gains from trading the asset in the future. Dealers

observe aggregate trading volume, which depends on the true quality of the asset and the (uncorrelated,

unobserved) aggregate preference shock. Hence, volume is a noisy signal of asset quality, and dealers

update their beliefs accordingly.

The first key piece of intuition is that dealers learn quickly when investors’ behavior—which is sum-

marized by their reservation value—is very different in the two states of the world, whereas they learn

more slowly when investors behave similarly regardless of asset quality. The second key result is that

reducing trading frictions implies that investors’ reservation values depend more heavily on the payoffs

associated with trading the asset in the future, and less on the fundamental value of the asset. Having
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frequent opportunities to trade, with potentially many dealers, implies that traders can expect to take

advantage of favorable prices when their preference shocks dictate a desire to buy or sell. Alternatively,

when traders meet dealers infrequently, expected gains from trade shrink and reservation values depend

more heavily on the fundamental value.3 As a result, reducing trading frictions makes investors’ reserva-

tion values more similar across asset qualities, so that the (endogenously generated) signals that dealers

observe are less informative. The last piece of the puzzle relates the speed of learning to bid-ask spreads:

when learning slows down, dealers set wider bid-ask spreads to compensate for being more uncertain

about the quality of the asset. Hence, we conclude that reducing trading frictions can actually reduce

market liquidity, as measured by the bid-ask spread.4

We think our analysis constitutes a contribution to the literature for several reasons. First, it pro-

vides a single, unified framework that incorporates three ingredients that have been identified as crucial

factors in financial markets: trading frictions, which have been studied extensively in search-based mod-

els of OTC markets; adverse selection, which lies at the heart of information-based models of market

microstructure and the bid-ask spread; and learning, which is the focal point of dynamic models of in-

formation revelation. Second, by identifying novel interactions between these three ingredients—and the

resulting, counter-intuitive implications for observable outcomes—our model offers a framework to in-

terpret the ambiguous effects of reducing either trading frictions or information frictions that have been

documented in the existing empirical evidence. For example, given the tradeoff discussed above, our

model can easily rationalize an increase in the bid-ask spread after a reduction in trading or informa-

tion frictions, as reported in, e.g., Huang and Stoll (1997), Madhavan et al. (2005), Acharya and Johnson

(2007), and Hendershott and Moulton (2011). Lastly, if our model can help us understand the affects of

trading frictions and information frictions in the past, it may also prove for anticipating the effects of fu-

ture changes to OTC market structures, as a number of current regulatory proposals are aimed at either

eliminating trading frictions or reducing information asymmetries in financial markets.

The rest of the paper is organized as follows. After reviewing the related literature below, we introduce

the model in Section 2, characterize optimal behavior, and define an equilibrium. In Section 3, we consider

a special case of the model that admits an analytical solution, and use this special case to illustrate the key

results. Then, in Section 4, we consider a more flexibile specification and assign parameter values that

are roughly consistent with those in the existing literature and/or the data. This section is not intended

as a serious calibration exercise, per se, but rather as a vehicle that serves two purposes. First, it should

3In the limit, when traders live in autarky, the fundamental value is the only component of the reservation value.
4In Section ??, we also show that reducing the degree of asymmetric information can reduce market liquidity as well.
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assure the reader that there is nothing particularly unique about the more tractable special case in Section

3. Second, it allows us to derive additional results that cannot be derived analytically. Section 5 concludes.

1.1 Related Literature

This paper is related to several strands of the literature. First, it is closely related to the large body of

work that uses search frictions to model decentralized trading. Duffie et al. (2005), Lagos and Rocheteau

(2009), and Hugonnier et al. (2014) focus on implications for bid-ask spreads under full information.5

Gehrig (1993), Spulber (1996), and, more recently, Lester et al. (2015) analyze pricing under asymmetric

information about preferences, i.e., about the traders’ private values of holding the asset.6 In our paper,

the traders possess private information about their preferences and about a common value component of

the asset, which leads to adverse selection. Moreover, since all assets have the same common component,

there is a role for learning over time by the uninformed market-makers.7

This combination of adverse selection, learning, and decentralized trade in our model is also present

in papers such as Wolinsky (1990), Blouin and Serrano (2001), Duffie and Manso (2007), Duffie et al. (2009),

Golosov et al. (2014) and Lauermann and Wolinsky (2016). The key difference between these papers and

our own is the source of learning: in these papers, agents learn only from their own trading experiences,

while in our paper, learning occurs from observing market-wide outcomes, which we feel is a realistic

feature of many financial markets.8

In analyzing the effects of reducing trading frictions, we also make contact with the literature that

studies the effects of high frequency trading, such as Biais et al. (2015), Pagnotta and Philippon (2015),

Menkveld and Zoican (2017), and Du and Zhu (2017). A key distinction between our work and these

papers—in addition to the many different modeling assumptions—is the crucial role that is assigned to

the dealers’ learning process in our framework.

Finally, our analysis also contributes to several strands of a large literature that focuses on the ef-

fects of asymmetric information in settings without trading and/or search frictions. One strand of this

5In fact, Lagos and Rocheteau (2009) also find that bid-ask spreads can widen when trading frictions ease, though the mech-
anism is different. In particular, they document this property in an environment with no information frictions and investors
who can hold arbitrary portfolios, whereas we establish our results in an environment with information frictions and investors
who can only hold zero or one unit of the asset. See also Afonso (2011), who shows that reducing trading frictions can have
counter-intuitive effects because of congestion externalities.

6Another, more recent, example is Bethune et al. (2016)
7This latter feature distinguishes our work from papers that study adverse selection stemming from private information

about the idiosyncratic quality of an asset; a non-exhaustive list of papers in this tradition includes Camargo and Lester (2014),
Guerrieri and Shimer (2014), Kaya and Kim (2015), Fuchs and Skrzypacz (2015), Chiu and Koeppl (2016), Choi (2016), and Kim
(2017). In these papers, information revealed from a particular trade is asset-specific and therefore, is typically not useful in
future trades.

8A related literature also studies learning and information diffusion in network settings; see, e.g., Babus and Kondor (2016).
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literature focuses on the effects of asymmetric information on the bid-ask spread, such as the seminal

contributions of Copeland and Galai (1983), Glosten and Milgrom (1985), and Kyle (1985). Our focus

on the informational content of endogenous market signals is shared by the stand of this literature that

studies information aggregation in rational expectations equilibrium (REE) models, pioneered by Gross-

man and Stiglitz (1980) and Hellwig (1980). In contrast to these earlier papers, however, our analysis

highlights novel interactions between asymmetric information and search frictions, and shows how these

interactions can lead to surprising and counter-intuitive implications for liquidity and prices.

2 Model

2.1 Environment

Agents, Assets, and Preferences. Time is discrete and indexed by t. There are two types of risk neutral,

infinitely-lived agents that we call “traders” and “dealers.” Neither traders nor dealers discount future

payoffs. There is a single asset of quality j 2 {l,h}. Traders can hold either zero or one unit of the asset,

while dealers’ positions are unrestricted, i.e., dealers can take on arbitrarily long or short positions.

At the beginning of each period, the asset matures with probability 1- �, in which case the game ends.

A trader who owns a unit of the asset receives a payoff cj if the asset matures, with cl < ch. If the asset

does not mature in period t, a trader who owns a unit of the asset receives a flow payoff !t + "i,t, which

we interpret as a liquidity shock. The aggregate portion of the shock, !t, is an i.i.d. draw each period

from a distribution F(·). The idiosyncratic portion of the liquidity shock, "i,t, is an i.i.d. draw for each

trader in each period from a distribution G(·). We assume that F(·) and G(·) have full support and mean

zero, and we normalize the payoffs to a trader without an asset to zero.9

Finally, we assume that there is a large mass of dealers. Dealers receive a payoff vj when the asset

matures, with vh > vl, but they do not receive any flow payoff from the asset before it matures. Given

our assumption that dealers can take unrestricted positions, it follows that the payoff to a dealer from

buying or selling a unit of the asset of quality j 2 {l,h} is vj and -vj, respectively.

Trading and Frictions. There are two key frictions in the model. The first is an information friction: we

assume that traders know more about the quality of the asset than dealers. For the sake of simplicity, we

make the extreme assumption that all traders are endowed with perfect information about the quality of

9There are several alternative interpretations of what it means for an asset to “mature” in period t. For example, one inter-
pretation is that a trader stops actively trading the asset in period t, i.e., he stops checking current bid and ask prices, and simply
retains his current position (owner or non-owner) until the asset actually matures (or uncertainty about the asset’s payoffs are
resolved) at some future date t 0 > t. We discuss this at greater length in Section ??.
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the asset, j 2 {l,h}, while dealers only know the ex-ante probability that the asset is of quality h at t = 0,

which we denote by µ0.

The second key friction in the model is a trading friction: in every period, each trader meets with a

stochastic number of dealers. In particular, let pi denote the probability that a trader meets i 2 {0, 1, ...}

dealers. As we describe below, any meeting with i > 2 dealers will have the same outcome. Hence, the

trading frictions can be succinctly summarized by two statistics, say p0 and p1. However, for the purpose

of our analysis, it will be convenient to summarize the trading frictions instead by the probability that a

trader meets with at least one dealer,

⇡ ⌘ 1 - p0,

and the probability of meeting with one dealer (a “monopolist” meeting), conditional on meeting with

i > 1 dealers,

↵m =
p1

⇡
.

We define the probability of meeting with i > 2 dealers (a “competitive” meeting), conditional on meeting

with at least one dealer, by ↵c = 1 -↵m.10

After meetings occur, each dealer quotes a bid and an ask price, i.e. prices at which she’s willing to

buy and sell a unit of the asset, respectively. Importantly, we assume that the number of dealers that

a trader meets is common knowledge when dealers choose prices.11 Hence, the dealer in a monopolist

meeting can extract rents, whereas the dealers in a competitive meeting drive the bid price up and the

ask price down until expected profits from the trade are zero. We denote the prices quoted by the dealer

when she is a monopolist by (Bm
t ,Am

t ), and the prices quoted by competing dealers by (Bc
t ,Ac

t).

Information and Learning. We assume that dealers observe the aggregate volume of trade at the end

of each trading round. As we describe in detail below, this will turn out to be a noisy signal about asset

quality, which the dealers will use to update their beliefs over time. This assumption will play a crucial

role in making our analysis tractable. In particular, as we will show, it implies that (i) all dealers have

identical beliefs at the beginning of each period and (ii) the actions of an individual trader and/or dealer

will not alter the evolution of future beliefs. In what follows, we let µt denote the beliefs of (all) dealers

at the beginning of trading at time t that the asset is of quality h.

10This transformation is convenient in that it allows us separately study the effects of more frequent meetings (say, from
an increase in trading speed) and the effects of more competition in each meeting (say, from an increase in pre-trade price
transparency).

11This is in contrast to the literature on price dispersion that follows, e.g., Burdett and Judd (1983).
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2.2 Traders’ Optimal Behavior

Let Wq
j,t denote the expected discounted value of a trader who owns q 2 {0, 1} unit of the asset at the

beginning of period t when the asset is of quality j 2 {l,h}. Then, for an investor who does not own the

asset, we have

W0
j,t = � E!,"

2

4⇡
X

k=c,m

↵k max
�
-Ak

t +!t + "i,t +W1
j,t+1,W0

j,t+1
 
+ (1 - ⇡)W0

j,t+1

3

5 . (1)

Note that the expectation is taken over !t and "i,t, which are drawn from F(!) and G("), respectively.

All objects inside the brackets—including the current ask prices Ak
t and future payoffs Wq

j,t+1—can be

calculated using the information available to a trader at time t, which would include the true quality of

the asset, along with the current beliefs of dealers. We describe in detail below how the trader uses this

information to formulate beliefs.

In words, the first expression in equation (1) represents the expected payoff if the asset does not mature

and the trader meets at least one dealer, whereupon he may either purchase a unit of the asset at price Ak
t

or reject the offer and continue searching in period t+ 1. The second expression represents the expected

payoff if the asset does not mature but the trader fails to meet a dealer. Recall that a trader with q = 0

assets receives zero payoff if the asset matures, which occurs with probability 1 - �.

Similar logic can be used to derive the expected payoff of a trader who owns one unit of the asset,

W1
j,t = (1 - �)cj+

�E!,"

2

4⇡
X

k=c,m

↵k max
�
!t + "i,t +W1

j,t+1,Bk
t +W0

j,t+1
 
+ (1 - ⇡)

�
!t + "i,t +W1

j,t+1
�
3

5 . (2)

Note that, when the asset matures, a trader who owns one unit receives a payoff cj.

We conjecture, and later confirm, that an individual trader’s decision to accept or reject an offer has

no effect on dealers’ beliefs, and hence no effect on the path of future prices. An immediate consequence

is that traders’ decisions to buy or sell follow simple cutoff rules: given asset quality j 2 {l,h}, a trader

who does not own the asset will buy in a meeting of type k 2 {m, c} if "i,t > "kj,t, while a trader who owns

the asset will sell if "i,t 6 "kj,t, where these cutoffs satisfy

-Ak
t +!t + "

k
j,t +W1

j,t+1 = W0
j,t+1

!t + "
k
j,t +W1

j,t+1 = Bk
t +W0

j,t+1.

Let us denote the reservation value of an investor at time t given asset quality j 2 {l,h} by

Rj,t ⌘ W1
j,t -W0

j,t.
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Then, the optimal behavior of traders is succinctly summarized by the cutoffs

"kj,t = Bk
t -!t - Rj,t+1 (3)

"kj,t = Ak
t -!t - Rj,t+1 (4)

defined for k 2 {m, c}, along with the reservation value

Rj,t = (1 - �)cj+ (5)

�E!

8
<

:⇡
X

k=c,m

↵k

"

BtG("kj,t) +

Z"k
j,t

"k
j,t

⇥
!t + "i,t + Rj,t+1

⇤
dG ("i,t) +At

⇥
1 -G("kj,t)

⇤
#

+ (1 - ⇡)Rj,t+1

9
=

; ,

which is obtained by subtracting (1) from (2) and using the cutoff rules described above. Again, the

expectation operator in (5) is taken over the aggregate shock, !t, as well as the prices and future payoffs,

which we describe below.

Demographics. Given the trading rules described above, we can now describe the evolution of the

distribution of asset holdings across traders over time. To do so, let Nq
t denote the measure of traders

who have asset holdings q 2 {0, 1} at time t. When the asset is of quality j 2 {l,h}, then, we have

N1
j,t+1 = N1

t

2

41 - ⇡+ ⇡

0

@1 -
X

k=c,m

↵kG("kj,t)

1

A

3

5+N0
t⇡

2

41 -
X

k=c,m

↵kG("kj,t)

3

5

N0
j,t+1 = N1

t⇡
X

k=c,m

↵kG("kj,t) +N0
t

0

@[1 - ⇡+ ⇡
X

k=c,m

↵kG("kj,t)

3

5 .

Naturally, the measure of investors that own an asset in period t+ 1 is equal to the measures of investors

that owned an asset in period t and did not sell, plus the measure of investors that did not own an asset

but chose to buy. The intuition behind the law of motion for the measure of investors that don’t own an

asset follows the same logic. We assume that the initial distribution of owners and non-owners, (N0
0,N1

0),

is common knowledge. Hence, as we describe below, dealers will know (N0
t,N1

t) at the beginning of each

period, but they will not be able to perfectly infer j 2 {l,h}.

2.3 Dealers’ Optimal Behavior

Monopolist Pricing. We first consider the optimal price offered in a meeting between a trader and a

single dealer. When formulating this offer, the dealer takes as given the trader’s optimal behavior derived

above. We will show that, under our assumptions, the dealer’s pricing problem is static: neither the price

that she sets nor the trader’s response affects payoffs in future periods (e.g., through beliefs). We treat this

as a conjecture, for now, and verify it later.
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Under this conjecture, a monopolist dealer’s optimal prices (Am
t ,Bm

t ) solve

max
A,B

Ej,!
⇥
N0

t

⇥
1 -G

�
"j,t
�⇤

(A- vj) +N1
tG
�
"j,t
�
(vj -B)

⇤
,

where the expectations operator is taken over the quality j 2 {l,h} of the asset—using the dealer’s current

beliefs, µt—as well as the aggregate liquidity shock, !t, and future reservation values, Rj,t+1, that deter-

mine the thresholds "j,t and "j,t. Again, we postpone the derivation of how these latter expectations are

formed until Section 2.4, below.

The optimal prices can be summarized by the two first-order conditions:

0 = Ej,!
⇥
1 -G

�
"mj,t
�
- g

�
"mj,t
�
(Am

t - vj)
⇤

(6)

0 = Ej,!
⇥
-G

�
"mj,t
�
+ g

�
"mj,t
�
(vj -Bm

t )
⇤

. (7)

Re-arranging equation (6), we can write the optimal ask price as

Am
t = µtvh + (1 - µt)vl +

1 - Ej,!

h
G
⇣
"mj,t

⌘i

Ej,!

h
g
⇣
"mj,t

⌘i

| {z }
market power

+ µt(1 - µt)(vh - vl)
E!

⇥
g
�
"mh,t

�
- g

�
"ml,t
�⇤

Ej,!

h
g
⇣
"mj,t

⌘i

| {z }
asymmetric information

. (8)

This equation expresses the ask price as the sum of the expected fundamental value of the asset and two

additional components. The first component derives from the dealer’s market power and is the inverse

of the semi-elasticity of expected demand, akin to the standard markup in a monopolist’s optimal price.

The second component is a premium that dealers charge to compensate for the presence of asymmetric

information. Note that this second component can be re-written as

µt(1 - µt)(vh - vl)
E!

⇥
g
�
"mh,t

�
- g

�
"ml,t
�⇤

Ej,!

h
g
⇣
"mj,t

⌘i = Cov

0

@
g
⇣
"mj,t

⌘

Ej,!

h
g
⇣
"mj,t

⌘i , vj

1

A .

Hence, the asymmetric information component is essentially an adjustment that accounts for the relation-

ship between the density of marginal buyers and the dealer’s valuation of the asset; it implies that dealers

will adjust their asking price upward if the density of marginal buyers is relatively large when the asset

is of high quality.12 Also note that this component disappears if there is no uncertainty over the quality

of the asset, i.e., if µt = 0, µt = 1, or vh = vl.

Similar logic reveals that the bid price is equal to the expected fundamental value of the asset, adjusted

downwards by the two components discussed above:

Bm
t = µtvh + (1 - µt)vl -

Ej,!

h
G
⇣
"mj,t

⌘i

Ej,!

h
g
⇣
"mj,t

⌘i - µt(1 - µt)(vh - vl)
E!

h
g
⇣
"ml,t

⌘
- g

⇣
"mh,t

⌘i

Ej,!

h
g
⇣
"mj,t

⌘i
)

. (9)

12Note that this asymmetric information component can be positive or negative.
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Competitive Pricing. Next, we solve for equilibrium prices when a trader meets two or more dealers.

This situation corresponds almost exactly to the pricing problem in the canonical setting of Glosten and

Milgrom (1985), where equilibrium bid and ask prices are set so that expected (static) profits are zero. In

other words, when two or more dealers compete, the bid price Bc
t (ask price Ac

t ) is equal to the expected

value of the asset conditional on a trader selling (buying) at that price. Formally, this zero profit condition

can be written

0 = Ac
t -

Ej,!

h
vj
⇣

1 -G("cj,t)
⌘i

Ej,!

h⇣
1 -G("cj,t)

⌘i (10)

0 = Bc
t -

Ej,!

h
vjG("cj,t)

i

Ej,!

h
G("cj,t)

i . (11)

Re-arranging yields

Ac
t = µtvh + (1 - µt)vl + µt(1 - µt)(vh - vl)

E!

⇥
G
�
"cl,t
�
-G

�
"ch,t

�⇤

Ej,!

h
1 -G

⇣
"cj,t

⌘i (12)

Bc
t = µtvh + (1 - µt)vl - µt(1 - µt)(vh - vl)

E!

h
G
⇣
"cl,t

⌘
-G

⇣
"ch,t

⌘i

Ej,!

h
G
⇣
"cj,t

⌘i . (13)

Again, it is worth noting that, e.g.,

µt(1 - µt)(vh - vl)
E!

⇥
G
�
"cl,t
�
-G

�
"ch,t

�⇤

Ej,!

h
1 -G

⇣
"cj,t

⌘i = Cov

0

@
1 -G

⇣
"cj,t

⌘

Ej,!

h
1 -G

⇣
"cj,t

⌘i , vj

1

A .

These expressions show that, under competition, bid and ask prices are equal to the expected value of

the asset to the dealer, adjusted for adverse selection. This adjustment depends on the covariance between

the probability of trade and the value of the asset. For example, the ask (bid) price is higher (lower) than

the expected value since traders are more (less) likely to buy (sell) when the state is high. This creates a

positive bid-ask spread, exactly as in Glosten and Milgrom (1985).

Comparing equations (8)-(9) and (12)-(13) reveals that prices under competition are similar in structure

to monopoly prices, with two key differences. First, as one might expect, competitive prices do not contain

the markup component found in monopoly prices. Second, the adjustment for asymmetric information

in (8)-(9) depends on the mass of traders at the appropriate thresholds in the two states (i.e., the pdf),

while the corresponding adjustment in (12)-(13) depends on the difference between the probability of

trade in the two states (i.e., the cdf). Intuitively, this occurs because the monopolist’s optimal price is a

function of the expected profit from the marginal trader, whereas competitive pricing is pinned down by

the requirement that dealers earn zero profits on average.

11



2.4 Learning

We now explain how dealers update their beliefs about the quality of the asset, and how investors form

expectations about dealers’ beliefs—and hence the prices they offer—in future periods.

As noted above, we assume that dealers learn by observing aggregate trading activity in each period.

Notice immediately that this is equivalent to observing the thresholds
⇣
"mj,t, "cj,t, "mj,t, "cj,t

⌘
. Moreover, since

dealers know which prices have been offered in equilibrium, each of these thresholds ultimately contains

the same information. Consider, for example, "mj,t, which depends on the ask price Am
t , which dealers

know, along with the reservation value of the trader Rj,t+1 and the aggregate shock !t, both of which

the dealers do not observe. The reservation value clearly depends on the quality of the asset, while the

aggregate liquidity shock is orthogonal to quality (by assumption). Hence, the volume of asset purchases

in monopoly meetings—which dealers can perfectly infer from the total volume of asset purchases given

↵c and ↵m—is a noisy signal about asset quality, and the informational content can be summarized by

St = Rt+1 +!t , (14)

where Rt+1 = Rj,t+1 when the true state of the world is j 2 {l,h}.

Let us conjecture, for now, that investors’ reservation values depend only on dealers’ beliefs, along

with the true state j. Then, given current beliefs µt and the observed signal St, a dealer’s updated belief

µt+1 depends on the likelihood of observing that signal when the asset’s quality is h relative to that when

it is l. To arrive at this likelihood, we first calculate the value of the aggregate shock, !t, that is consistent

with the observed signal St. Formally, define

!?
◆,t = St - R◆,t+1(µt+1). (15)

Using (14), !?
◆,t is the value of !t consistent with the signal St if the dealer conjectures that the asset is

of quality ◆ 2 {l,h} and future beliefs are µt+1. Naturally, if ◆ is equated to the true asset quality, then

!?
◆,t = !t, i.e., the dealer’s conjecture corresponds to the true value of the aggregate liquidity shock.

Now, one might be concerned that the reservation values Rl,t+1 and Rh,t+1 in (15) are calculated under

different information sets, but this is not the case since, by construction, both !?
l,t and !?

h,t are consistent

with the signal St.

The law of motion for dealers’ beliefs is thus a function µt+1(µt,St) that solves the fixed point problem

µt+1 =
µt

µt + (1 - µt)
f(!?

l,t)
f(!?

h,t)

=
µt

µt + (1 - µt)
f(St-Rl,t+1(µt+1))
f(St-Rh,t+1(µt+1))

. (16)

12



Now, even though dealers’ future beliefs cannot depend directly on the true quality of the asset (since they

do not observe it), traders (who know the true quality) can certainly use this information to formulate

expectations about dealers’ beliefs. In particular, it will be helpful to define the function µ̃j,t+1(µt,!t) as the

solution to the fixed point problem

µt+1 =
µt

µt + (1 - µt)
f(!t+Rj,t+1(µt+1)-Rl,t+1(µt+1)))
f(!t+Rj,t+1(µt+1)-Rh,t+1(µt+1)))

. (17)

In words, given current beliefs µt, the true quality of the asset is j 2 {l,h}, and the aggregate liquidity

shock !t , traders (correctly) anticipate that dealers’ beliefs in period t+ 1 will be µ̃j,t+1(µt,!t).

This recursive law of motion validates our earlier conjectures about the formation of beliefs in equi-

librium. First, since future beliefs (and therefore, future prices) only depend on current beliefs and the

realization of the aggregate liquidity shock !t, it follows that traders’ reservation values Rt+1 depend

only on beliefs µt+1 and the true quality of the asset.

Second, since future beliefs are independent of the actions of any one dealer or trader, both can for-

mulate optimal behavior—prices for dealers and buy, sell, or don’t trade for traders— without affecting

future beliefs. This verifies the conjecture that the dealers’ pricing problem is a static one. In other words,

dealers do not have an incentive to deviate from the static optimal prices in order to experiment, i.e. to

acquire information about the quality of the asset. To see why, note that an individual trader’s action

is measurable with respect to the sum of her reservation value Rt+1 and the combined liquidity shock

!t + "i,t. At any quoted price, her action therefore can at best reveal Rt+1 +!t + "i,t. For example,

if the dealer quotes a bid of B 0 and the trader chooses (not to) sell at that price, the dealer learns that

Rt+1 +!t + "i,t is (larger) smaller than B 0. At the end of the period, the dealer perfectly learns Rt+1 +!t

by observing the market-wide volume13. The information contained in this signal about Rt+1 (and there-

fore, about asset quality) dominates that contained in an individual trader’s actions. Thus, deviating from

the static optimal price involves giving up current profits but generates no additional benefit.

2.5 Definition of Equilibrium

We now define a Markov equilibrium, where the strategies of all agents are functions of (at most) current

dealer beliefs, µt, and realizations of the aggregate liquidity shock, !t. Such an equilibrium can be

represented recursively as a collection of functions
⌦
"kj , "kj ,Rj,Ak,Bk,µ+, µ̃+

j ,N0,+
j ,N1,+

j

↵
for j 2 {l,h}

and k 2 {m, c} such that:
13This follows from the assumption that liquidity shocks have full support. However, this is not essential. In Section 3, we

consider a version with shocks drawn from a finite support and the no experimentation result still goes through.
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1. Taking as given the way dealers set prices and update beliefs, investors’ decisions to buy or sell are

determined by:

"kj (µ,!) = Bk(µ)-!- Rj

⇣
µ̃+
j (µ,!)

⌘
(18)

"kj (µ,!) = Ak(µ)-!- Rj

⇣
µ̃+
j (µ,!)

⌘
(19)

Rj(µ) = (1 - �)cj + �(1 - ⇡)

Z

!
Rj

⇣
µ̃+
j (µ,!)

⌘
dF(!) + �⇡

Z

!

8
<

:
X

k2{m,c}

↵k
⇥
Bk(µ)G

�
"kj (µ,!)

�

+

Z"k
j (µ,!)

"k
j (µ,!)

h
!+ "+ Rj

⇣
µ̃+
j (µ,!)

⌘i
dG (") +Ak(µ)

⇥
1 -G

�
"kj (µ,!)

�⇤
#✏

dF(!). (20)

2. Given investors’ behavior and expectations about future beliefs, prices are consistent with optimal

behavior and, in the competitive case, zero profits. That is, Am ⌘ Am(µ) and Bm ⌘ Bm(µ) satisfy:

0 =
X

j2{l,h}

µj

Z

!

⇥
1 -G

�
"mj (µ,!)

�
- g

�
"mj (µ,!)

� �
Am - vj

�⇤
dF(!) (21)

0 =
X

j2{l,h}

µj

Z

!

⇥
-G

�
"mj (µ,!)

�
+ g

�
"mj (µ,!)

� �
vj -Bm

�⇤
dF(!) (22)

where µh ⌘ µ and µl ⌘ 1 - µ, while Ac ⌘ Ac(µ) and Bc ⌘ Bc(µ) satisfy:

0 = Ac -

P
j2{l,h} µjvj

R h
1 -G

⇣
"cj (µ,!)

⌘i
dF(!)

P
j2{l,h} µj

R h
1 -G

⇣
"cj (µ,!)

⌘i
dF(!)

(23)

0 = Bc -

P
j2{l,h} µjvj

R h
G
⇣
"cj (µ,!)

⌘i
dF(!)

P
j2{l,h} µj

R h
G
⇣
"cj (µ,!)

⌘i
dF(!)

. (24)

3. Given a signal S, dealers’ beliefs evolve according to µ+(µ,S), which is a solution to:

µ+ =
µ

µ+ (1 - µ) f(S-Rl(µ+))
f(S-Rh(µ+))

. (25)

Given the true asset quality j 2 {l,h} and aggregate shock !, investors’ expectations of dealers’

beliefs evolve according to µ̃+
j (µ,!), which is a solution to

µ+ =
µ

µ+ (1 - µ)
f(!+Rj(µ+)-Rl(µ+))
f(!+Rj(µ+)-Rh(µ+))

. (26)

Moreover, investors’ expectations are consistent with the evolution of dealers’ beliefs, so that

µ̃+
j (µ,!) = µ+

⇣
µ,Rj

⇣
µ̃+
j (µ,!)

⌘
+!

⌘
for j 2 {l,h}. (27)

4. Given true asset quality j 2 {l,h}, beliefs µ, and an aggregate shock !, the population evolves

according to:
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N1,+
j (µ,!) = N1

j

2

41 - ⇡+ ⇡

0

@1 -
X

k2{m,c}

G
�
"kj (µ,!)

�
1

A

3

5+N0
j⇡

0

@1 -
X

k2{m,c}

G
�
"kj (µ,!)

�
1

A (28)

N0,+
j (µ,!) = N1

j⇡
X

k2{m,c}

G
�
"kj (µ,!)

�
+N0

j

2

41 - ⇡+ ⇡
X

k2{m,c}

G
�
"kj (µ,!)

�
3

5 . (29)

Note that the laws of motion for N1
j and N0

j depend only on the thresholds
⌦
"kj , "kj

↵
, for j 2 {l,h} and

k 2 {m, c}. Hence, dealers can always infer the distribution of assets across traders, even though they

can’t directly observe asset quality.14

3 Frictions, Learning, and Prices: A Tractable Case

In this section, we explore how trading friction and information frictions affect traders’ reservation values,

the evolution of dealers’ beliefs, and, ultimately, equilibrium bid and ask prices. We show that, in isola-

tion, each of these frictions has the expected effect: holding beliefs fixed, a reduction in trading frictions

causes bid-ask spreads to narrow; and holding trading frictions constant, increasing uncertainty over the

quality of the asset causes bid-ask spreads to widen.

However, the interaction between these two frictions generates novel predictions. First, we establish

that reducing trading frictions slows down learning. Intuitively, when investors have the opportunity

to trade more frequently, their behavior in the two states of the world is more similar, which implies

that the endogenous signal in the model— aggregate volume—is less informative. Second, since slower

learning implies more uncertainty, and more uncertainty implies wider spreads, we show that a reduction

in trading frictions can ultimately lead to an increase in the bid-ask spread.

In order to establish these results analytically, we make a few parametric assumptions, which are

described in detail below. These assumptions are not terribly special, per se, above and beyond the fact

that they offer a certain amount of tractability (VV: THIS SENTENCE SEEMS UNNECESSARY - WE

MIGHT GET INTO TROUBLE OVER "TERRIBLY SPECIAL". ALSO, MAYBE THE FOOTNOTE CAN BE

MOVED INTO THE MAIN TEXT AT THE END OF THE PREV SECTION, AS A WAY OF MOTIVATING

THE TRACTABLE CASE?).15 In the next section, we establish that the key mechanisms derived here are

preserved under more flexible specifications.

14Intuitively, by construction,!?
l and!?

h rationalize the aggregate trading volume that dealers observe, and hence the implied
thresholds. As a result, the evolution of N0 and N1 when the asset quality is l and the aggregate shock is !?

l are identical to the
evolution of these variables when the asset quality is h and the aggregate shock is !?

h.
15As (18)–(27) reveal, one can see that there is a fairly complicated fixed point problem at the heart of the equilibrium: the

law of motion for dealers’ beliefs is a convolution of both exogenous parameters (!) and endogenous variables (Rj), which
themselves depend on future prices and beliefs. This makes it difficult to derive analytical results for arbitrary distributions of
liquidity shocks.
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3.1 Parametric Assumptions

We make three key assumptions, described below.

Assumption 1 (Uniform Shocks). The aggregate liquidity shock, !, is uniformly distributed over the interval

[-m,m] for some 0 < m < 1, and the idiosyncratic liquidity shock, ", is uniformly distributed over the interval

[-e, e] for some 0 < e < 1.

As we will show below, the assumption that ! is uniformly distributed simplifies the dealers’ learning

process, while the assumption that " is uniformly distributed simplifes the dealers’ pricing problem. Note,

however, that these distributions violate our maintained assumption that F(·) and G(·) have full support.

One might be concerned that having finite bounds would open up the possibility that dealers would like

to experiment when setting prices, e.g., that they would choose to set a (statically sub-optimal) price that

would reveal to them the state of the world. We show in Appendix B.1 that this is not the case.

Assumption 2 (Interior Thresholds). The bounds on the distributions of liquidity shocks are sufficiently large:

m > 1
2
(vh - vl)max

�
1,

�(1 - ⇡/2)
1 - �(1 - ⇡/2)

�
and e >

r
3
2
(vh - vl) .

This second assumption ensures that, for all prices offered in equilibrium and all realizations of !, the

thresholds "kt,j, "
k
t,j lie in the interior of [-e, e] for j 2 {l,h} and k 2 {m, c}, i.e., that some traders always

buy/sell in equilibrium.

Assumption 3 (Equal Valuations). On average, dealers and traders have the same valuation for an asset, i.e.,

vj = cj for j 2 {l,h}.

This last assumption allows for a more direct comparison with models often used in finance (such as

Glosten and Milgrom, 1985), and also simplifies the analysis.

3.2 Learning

The assumption that ! is uniformly distributed greatly simplifies the dealers’ learning process. To see

why, note from (16) that the updating process depends on current beliefs, µ, and the likelihood ratio

f (S- Rl(µ+))

f (S- Rh(µ+))
.

When ! is uniformly distributed, f(!) = 1
2m for all ! 2 [-m,m] and f(!) = 0 for all ! /2 [-m,m].

Hence, either the signal that dealers observe is uninformative or it is fully revealing about the state j 2

{l,h}.
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Formally, let ⌃j(µ) denote the set of signals (i.e., the values of aggregate trading volume) that are only

feasible when the asset is of quality j, given current beliefs µ, and let ⌃b denote the set of signals that are

feasible in both states, l and h, so that

µ+(µ,S) =

8
<

:

0 if S 2 ⌃l(µ)
µ if S 2 ⌃b(µ)
1 if S 2 ⌃h(µ).

We conjecture, and later confirm, that

⌃l(µ) = [-m+ Rl(0),-m+ Rh(µ)) (30)

⌃b(µ) = [-m+ Rh(µ),m+ Rl(µ)] (31)

⌃h(µ) = (m+ Rl(µ),m+ Rh(1)] . (32)

In words, suppose the true asset quality is j = h. If the signal does not reveal the true asset quality, then

µ+ = µ. Moreover, we will show below that reservation values are increasing in µ, so that Rh(µ) 6 Rh(1).

Therefore, under the candidate equilibrium, the minimum realization for S = ! + Rj when j = h is

-m + Rh(µ); any S < -m + Rh(µ) is only feasible if j = l. Similar reasoning can be used to explain

(31)–(32). Note that

⌃b(µ) 6= ; , Rh(µ)- Rl(µ) < 2m.

Assumption 2 ensures that valuations always satisfy this condition.

Let p(µ) denote the probability that the signal S = !+ R(µ) 2 ⌃l [ ⌃h, i.e., the probability that the

quality of the asset is fully revealed to the dealers. When ! is uniformly distributed over the support

[-m,m], we have

p (µ) =
Rh (µ)- Rl (µ)

2m
.

Since the expected number of periods before the quality is revealed is the inverse of p(µ), the following

insight follows immediately.

Remark 1. The expected speed of learning depends positively on Rh(µ)- Rl(µ).

Intuitively, learning occurs quickly when investors behave very differently when the asset is of high

or low quality, i.e., when Rh(µ)- Rl(µ) is relatively large. When investors’ behavior is less dependent on

asset quality, and Rh(µ)- Rl(µ) is relatively small, it is more difficult for dealers to extract information

from trading volume, and learning occurs more slowly.
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3.3 Prices

We now derive equilibrium bid and ask prices in matches when a trader meets a single, monopolist

dealer, and in matches when a trader meets competing dealers. Two aspects of our parametric specifi-

cation make it possible to derive relatively simple pricing equations. First, the extreme learning process

described above, which followed from the uniform distribution of !, implies a straightforward relation-

ship between current prices and future beliefs: beliefs are stationary until the state of the world is known

with certainty. Second, given the uniform distribution over ", the demand and supply functions that the

dealers face are linear.

To start, it is helpful to define the expected continuation value of a trader when the asset quality is

j 2 {l,h} and current beliefs are µ:

rj(µ) = E!

⇥
Rj

�
µ+
�⇤

= (1 - p (µ))Rj (µ) + p (µ)Rj (1 [j = h]) (33)

Given this notation, it is straightforward to establish that the optimal price that a dealer offers when she

is a monopolist is given by

Bm(µ) =
Ejrj (µ) + Ejvj - e

2

Am(µ) =
Ejrj (µ) + Ejvj + e

2

In words, the bid and ask prices are simply the average of the expected value of the dealer and the trader,

adjusted by a markup term e
2 . Importantly, the density of marginal buyers and marginal sellers is the

same in both states of the world, so that the covariance between, e.g., g
�
"j
�

or g
�
"j
�

and j 2 {l,h} is zero.

From the optimal pricing equations, (8) and (9), this implies that the adverse selection term disappears

when the trader meets with a single dealer. Moreover, in this case, the bid-ask spread is equal to e for all

values of beliefs.

When a trader meets with two dealers, the bid and ask price consistent with zero profits are given by

Bc (µ) =
Ejrj + Ejvj - e

2
+

1
2

q�
e+ Ej

�
vj - rj

��2
- 4Cov

�
rj, vj

�

Ac (µ) =
Ejrj + Ejvj + e

2
-

1
2

q�
e- Ej

�
vj - rj

��2
- 4Cov

�
rj, vj

�
.

In the Appendix we show that, under Assumptions 1–3,

Ejrj (µ) = Ejvj. (34)
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Using this property, we can simplify the bid and ask prices as follows:

Bm = Ejvj -
e

2
(35)

Am = Ejvj +
e

2
(36)

Bc = Ejvj -
e

2
+

r⇣e
2

⌘2
-Cov

�
rj, vj

�
(37)

Ac = Ejvj +
e

2
-

r⇣e
2

⌘2
-Cov

�
rj, vj

�
. (38)

Equations (35)–(38) illustrate that the model with uniformly distributed shocks and two types of meet-

ings (monopolist and competitive) is tractable enough to admit analytcial solutions, and yet rich enough

to capture the key economic mechanisms at work. On the one hand, the markup term in Bm and Am im-

plies that the dealers capture some rents that are unrelated to asymmetric information, as in, e.g., Duffie

et al. (2005). On the other hand, the adverse selection term in Bc and Ac captures the portion of the bid-ask

spread that is attributed to adverse selection, as in, e.g., Glosten and Milgrom (1985). Since Ejrj = Ejvj,

the term Cov
�
rj, vj

�
is maximized at µ = 1

2 , which implies that this portion of the bid-ask spread is also

maximized at µ = 1
2 , i.e., when the information asymmetry between traders and dealers is maximal.

3.4 Reservation Values

Using the optimal bid and ask prices derived above, we show in Appendix B.2 that the reservation value

of an investor, given current beliefs µ 2 (0, 1) and asset quality j, can be written as

Rj(µ) = (1 - �)vj + �rj (µ) + �⇡
X

k=c,m

↵k⌦
k
j (µ), (39)

where rj (µ) is defined in (33) and ⌦k
j (µ) is what we call the net option value of holding a quality j asset in

a type k meeting, i.e., the option value of selling the asset net of the option value of buying the asset. This

net option value derives from the fact that acquiring a unit of the asset offers the investor the option value

of selling it a later date but—given our assumption that investors can only hold one unit of the asset at a

time—acquiring a unit of the asset also implies forfeiting the option value of buying a unit of the asset at

a later date, too.

Under Assumptions 1–3, one can show that

⌦k
j (µ) =

Bk -Ak + 2e
2e

✓
Ak +Bk

2
- rj (µ)

◆
. (40)

Intuitively, ⌦k
j is the expected surplus an investor earns from future trading opportunities in type k 2

{m, c} meetings, given that the asset is of quality j 2 {l,h}. The first term on the left-hand side of (40) is
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the ex ante probability (before " and ! are realized) that the investor will optimally choose to trade in a

type k meeting, given prices Ak and Bk. The second term,

Ak +Bk

2
- rj (µ) =

Bk - rj (µ)-
�
rj (µ)-Ak

�

2
,

is the expected difference between the surplus the investor will earn from selling the asset at a later date

and the surplus he could have earned from buying an asset at a later date.

Since the bid and ask prices are independent of asset quality, the net option value is decreasing in the

expected continuation value rj. One can show that rh (µ) > rl (µ), which implies that the net option value

is larger when the asset is of quality l. We highlight this property in the remark below, as it will play a

key role in the ensuing results.

Remark 2. The net option value is decreasing in vj, so that ⌦k
l (µ) > ⌦k

h(µ) for any µ 2 (0, 1), k 2 {m, c}.

3.5 Equilibrium Characterization

To characterize the equilibrium, we can use (39)–(40) to write

Rh (µ)- Rl (µ) = (1 - �) (vh - vl) + � (rh (µ)- rl (µ)) + �⇡
X

k=c,m

↵k

⇥
⌦k

h(µ)-⌦
k
l (µ)

⇤

= (1 - �) (vh - vl) + � (rh (µ)- rl (µ))- �⇡
X

k=c,m

↵k
Bk -Ak + 2e

2e
(rh (µ)- rl (µ)) .(41)

Then, using (35)–(38), along with

p (µ) =
Rh(µ)- Rl(µ)

2m
,

we establish in the Appendix that (41) can be written as a single equation in one unknown, p, given beliefs

µ and parameters ⌅ ⌘ (�,⇡,↵c, vh, vl). In particular, let p?(µ) denote the solution to Z(p,µ;⌅) = 0, where

Z(p,µ;⌅) = -2mp+ (1 - �) (vh - vl) + � (1 - ⇡) (p (vh - vl) + 2mp (1 - p)) (42)

-
�⇡↵c

2

r
1 -

4
e2 (vh - vl)µ (1 - µ) [2m (1 - p)p+ p (vh - vl)] (p (vh - vl) + 2mp (1 - p)) .

Proposition 1. Under assumptions 1–3, there exists a unique p?(µ) such that Z (p?(µ),µ;⌅) = 0.

Importantly, solving for the speed of learning is sufficient for a full characterization of the model:

one can use p? (µ) to construct the reservation values,
�
Rj (µ)

 
j2{l,h}

, along with equilibrium prices,
�
Ak,Bk

 
k2{m,c}.

16 In the next section, we exploit several of the results derived above, along with the

characterization afforded by equation (42), to understand how changes to the parameters affect equilib-

rium outcomes.
16A key result is that Ejrj = Ejvj. This implies that Rj (1 [j = h]) = vj, i.e., that reservation values under full information are

equal to the value of owning the asset and not trading it.
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3.6 Comparative Statics

In this section, we explore how bid-ask spreads change in response to changes in the underlying economic

environment, with a focus on understanding the interaction between search frictions, asymmetric infor-

mation, and learning. We proceed in two steps. We start by examining how reservation values, the speed

of learning, and the bid-ask spread depend on the dealers’ beliefs, µ. The results we derive are informa-

tive for our next step, where we explore the effects of changing the degree of search frictions in our model,

either by changing the frequency of trading opportunities (⇡) or the fraction of trading opportunities that

are competitive (↵c).

Comparative Statics with Respect to Beliefs

Since Am - Bm = e for all µ, the effect of beliefs on the bid-ask spread operate exclusively through the

prices in competitive meetings. In the Appendix, we establish the following results.

Lemma 1. The bid-ask spread in competitive meetings, Ac -Bc
, the difference in reservation values, Rh -Rl, and

the probability that the true asset quality is revealed, p, are all hump-shaped in µ with a maximum at µ = 1/2.

Intuitively, the bid-ask spread is largest when uncertainty is maximal, i.e., when µ = 1/2. When the

bid-ask spread is widest, the probability of trade is smallest, as investors are more likely to draw idiosyn-

cratic liquidity shocks that lie in the “inaction region.” This causes the difference in the net option values

of trading, |⌦h -⌦l|, to decline. Intuitively, a decrease in the probability of trade causes a disproportion-

ate decline in the option value to sell when the asset quality is l, and in the option value of buying when

the asset quality is h, making ⌦h -⌦l less negative. As a result, the difference in the reservation values,

Rh - Rl, widens. As investors’ behavior in the two states of the world becomes more distinguishable,

the probability that the true asset quality is revealed, p, increases and learning occurs, on average, more

quickly.

The Effect of Search frictions

Now consider a decrease in the severity of search frictions. In what follows, we will focus on the effect of

an increase in ⇡, though we show in the Appendix that similar results obtain for an increase in ↵c. Our

first result, summarized below, implies that an increase in ⇡ unambiguously slows down the learning

process.

Proposition 2. For any µ 2 (0, 1), @p?(µ)
@⇡ < 0.
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In the discussion above, more extreme values of µ caused bid-ask spreads to narrow and increased the

probability of trade, causing Rh - Rl—and thus p—to fall. The intuition behind the result in Proposition

2 is similar: an increase in ⇡ causes a direct increase in the probability of trade, as opposed to operating

through the bid-ask spread. As a result, the difference in net option values increases (i.e., becomes more

negative), and Rh - Rl / p falls. In words, in the presence of asymmetric information, an increase in

the probability of trade again makes the option value of selling (buying) relatively high when the asset is

quality l (h). As a result, the behavior of investors in the two states of the world becomes more similar

and it takes longer, on average, to learn the state of the world.

The effect on bid-ask spreads, however, is more nuanced as there are two, opposing effects. The first,

which we call the static effect, has the usual sign: holding beliefs constant, an increase in ⇡ causes spreads

to shrink. As discussed above, an increase in ⇡ causes the difference in reservation values to narrow. This

implies a decrease in the covariance of a trader’s expected valuations, rj, and a dealer valuations, vj. Since

average bid-ask spreads are given by

X

k

↵k

�
Ak -Bk

�
= e-↵c

q
e2 - 4Cov

�
rj, vj

�
,

a decline in this covariance leads to a lower bid-ask spread (holding beliefs fixed). Intuitively, since the

increase in ⇡ makes investors behave more similarly in the two states of the world—i.e., the likelihood of

an investor buying or selling at a given price becomes more similar for j 2 {l,h}—the problem of adverse

selection is diminished and spreads fall.

However, even though an increase in ⇡ causes bid-ask spreads to fall for a given level of beliefs, in

equilibrium beliefs are changing over time. This leads us to the second effect of increasing the frequency

of trade, which we call the dynamic effect: since an increase in ⇡ implies that dealers will remain uncertain

about the true asset quality for longer (Lemma 2), and bid-ask spreads are larger when dealers are more

uncertain (Lemma 1), more frequent meetings ultimately leader to larger bid-ask spreads in the future.

To state this formally, we let �j,t denote the average quoted bid-ask spread in period t when the asset

is of quality j 2 {l,h}. Formally,

�t,j ⌘ E!t

"
X

k

↵k

�
Ak

t -Bk
t

�
| j

#

The following proposition shows that the dynamic effect of a higher ⇡ eventually dominates, leading

to wider spreads.
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Proposition 3. There exists a ⌧ < 1 such that
@�t,j
@⇡ > 0 for all t > ⌧.

To see this, we plug in the equilibrium bid and ask prices into the expression for �j,t :

�t,j = E!t

"
X

k

↵k

�
Ak

t -Bk
t

�
| j

#

=
⇣

1 - (1 - p (µ))t
⌘
[e-↵ce] + (1 - p (µ))t

 

e- e↵c

r
1 -

4
e2 (vh - vl)µ (1 - µ) (rh (µ)- rl (µ))

!

.

Differentiating with respect to ⇡, we have

@

@⇡
�t,j =- t (1 - p (µ))t-1 @p

@⇡
↵ce

"

1 -

r
1 -

4
e2 (vh - vl)µ (1 - µ) (rh (µ)- rl (µ))

#

+ (1 - p (µ))t ↵ce
4
e2µ (1 - µ) (vh - vl)

@
@⇡ (rh (µ)- rl (µ))

2
q

1 - 4
e2 (vh - vl)µ (1 - µ) (rh (µ)- rl (µ))

The first term in the expression above is positive while the second term is negative. However, as t con-

verges to infinity, the first term becomes large relative to the second term. Hence, @
@⇡�t,j > 0 for values of

t that are sufficiently large.

4 General Model

In this section, we relax Assumptions 1–3 and confirm the results above numerically. Most importantly,

we consider more general distributions for the aggregate and idiosyncratic liquidity shocks. This makes

the analysis considerably more complicated, as the interaction between the optimal bid and ask prices,

reservation values, and future prices and beliefs introduce a number of additional effects that were absent

from our analysis with uniform distributions. While these complications make analytical results harder

to derive, it remains fairly straightforward to solve the model on the computer. We describe the simple,

iterative algorithm here:

1. Given a grid for µ and !, we start with an initial guess for the reservation values, Rj(µ) , j = h, l.

2. Given reservation values, we can determine traders’ expectations of dealer beliefs µ+ for each ! by

solving (17).

3. Given the updating equations, we compute optimal prices for any beliefs µ.

4. The law of motion for dealer beliefs and the pricing formulae can then be combined to yield an

updated guess for the reservation value functions Rj(µ), using the expression in (5).

5. We repeat this iterative process until convergence.

23



Using this algorithm, we solve the model and show that the main insights from Section 3 continue to

hold, despite the presence of the additional feedback effects mentioned above.

4.1 Full Information Benchmark

VV: WE SHOULD LOSE THIS SUBSECTION, NO? As a benchmark, we first analyze the full information

case, i.e., where dealers know the quality of the asset (but not the traders’ liquidity shocks, which are

still privately observed). In this case, reservation values and prices are constant across time, and it is

fairly straightforward to conduct comparative statics on the matching frequency, ⇡. We show that, under

mild restrictions on the distributions of shocks, the standard relationships between trading frequency and

bid-ask spreads emerge.

Condition 1. Let G̃ be the distribution of !+ ✏. G̃ is symmetric around 0 and
G̃
g̃ is increasing and convex.

This condition is satisfied by a number of commonly used distributions, including the normal, logistic

and the Pareto distributions. It implies that the full information markup charged by monopolist dealers

increases with volume at an increasing rate. This assumption is sufficient to ensure that full information

spreads shrink as trading opportunities become more frequent.

Proposition 4. When asset quality is common knowledge, and Condition 1 holds, the spread charged by monoplist

dealers, Am
j -Bm

j , is decreasing in ⇡ for j 2 {l,h}.

To see the intuition, we focus on the case with vj > cj, i.e. when dealers value the asset more than

the average obtained by the traders upon exit. This implies that, on average, traders are more likely to be

sellers than buyers. As a result, the option to sell is worth more than the option to buy, i.e. the net option

value is positive, ⌦j > 0, . Indeed, in the proof of Proposition 4, we show that

dRj

d⇡
= ⌦j + ⇡

@⌦j

@⇡
> 0,

so that more frequent trading opportunities raise reservation values. Moreover, under Condition 1, we

also show that the inverse semi-elasticity of the investors that are buying the asset is greater than the

inverse semi-elasticity of the investors that are selling the asset. As a result, the increase in ⇡ causes the

bid price to increase more than the ask price, and the spread falls. Since this analogous to the relationship

between the frequency of trading opportunities and spreads in the canonical Duffie-Garleanu-Pedersen

framework, we refer to it as the “DGP effect.”
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4.2 Asymmetric Information and Non-Uniform Distributions

Let us now return to the model with asymmetric information, where asset quality is privately observed

by the traders. As noted above, this model has to be solved numerically. We impose assumptions on the

distributions of liquidity shocks and the values of the model’s key parameters. While all of our results

depend, in some sense, on the parametric assumptions that are imposed, it is important to note that there

is nothing special about these particular assumptions; that is, the results reported below obtain in a large

range of the parameter space.

We assume that both aggregate and idiosyncratic liquidity shocks are drawn from a mean-zero normal

distribution, i.e. ! ⇠ N(0,�2
!) and " ⇠ N(0,�2

"). The normality of " implies that the bid and ask prices

under monopoly are no longer constant (as was the case in the uniform-uniform model of section 3), since

both the market power and asymmetric components now vary with beliefs, µt. The normality of!means

that learning no longer takes the stark form as in Section 3. These differences, however, mean that we no

longer have analytical tractability and have to resort to numerical computations.

Next, we assign values to parameters. This is not intended to be a full-fledged calibration: our goal is

to show that the forces we have identified are significant present for an empirically reasonable parame-

terization. We apply the model to a widely studied over-the-counter market, that for US corporate bonds.

We interpret differences in quality as stemming from changes in credit ratings. Consider the a bond that

is rated AAA. Conditional on not being downgraded, the expected payoff of the bond upon maturity is

ch. If it is downgraded (to say, AA), however, the expected payoff drops to cl. Since bid-ask spreads and

beliefs are only a function of the relative payoff in the two states (i.e. ch- cl), we can normalize cl = 0. The

relative payoff is then mapped to the drop in the market price of the bond in the event of a downgrade.

Feldhütter (2012) reports that average spreads on AA bonds are about 26 bps higher than on AAA-rated

ones.17. For a 5-year par bond (face value $100) with a coupon of 3%, this spread difference translates

into a price change of $1.16. The initial belief µ0 is chosen to match the unconditional rating transition

probabilities: according to the 2016 Annual Global Corporate Default Study and Rating Transitions pub-

lished by Standard & Poor’s, the likelihood of a AAA-rated US corporate bond retaining that rating over

a 5-year horizon is 0.50. Accordingly, we set µ0 = 0.50.

To pin down the sizes of liquidity shocks and meeting probabilities, we use estimates from Feldhutter

(2012). That paper estimates the parameters of a continuous time model of over-the-counter trading along

17See Table 1 of that paper. The average sell spread on a AAA bond is 9 bps (on trades greater than USD 100,000 in size), while
the corresponding spread for AA bonds is 35 bps.
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the lines of Duffie et al. (2005) using data on secondary market transactions in US corporate bonds. We

map his estimate of holding costs, the sole source of gains from trade in his environment, to the magnitude

of liquidity shocks in our model.18 Assuming that the relative magnitude of aggregate and idiosyncratic

components are of equal magnitude, this procedure leads to �2
! = �2

" = 0.16.

Feldhutter (2012) also provides estimates for the arrival rate of meetings with dealers from the per-

spective of traders in the market. His point estimate, an annualized rate of 40, can directly be mapped

into the parameters governing our meeting technology19 : the probability of meeting at least 1 dealer (⇡)

as well as the conditional probability of meeting more than 1 dealer (↵c). Interpreting a period in our

model as a week (5 business days) or 0.02 years (a year is assumed to have 250 business days) yields our

baselines values (⇡,↵c) = (0.55, 0.25).

This leaves �. As discussed in Section 2.1, this parameter can be interpreted in multiple ways – either

as the likelihood of the asset not maturing in any given period or as the probability of an individual trader

remaining active in the market. We adopt a baseline value of � = 0.9, which implies that, conditional on

not trading, a trader remains in the market for about 10 weeks.

Figure 1 plots key equilibrium objects for two different values of ⇡, namely 0.25 and 0.75. The top

left panel plots the difference between traders’ reservation values in the high and low state. It shows that

Rh(µ)- Rl(µ) decreases with ⇡ for all µ. The intuition behind this result is the same as in the uniform-

uniform model: more frequent trading opportunities increases the weight of the net option value ⌦j(µ 0)

in the reservation value Rj(µ). Since the difference ⌦h(µ 0)-⌦l(µ 0) < 0, this has the effect of bringing

the reservation values closer to each other.

The remaining panels plot spreads – the bottom ones plot spreads quoted by the market-maker un-

der monopoly and competition, while the top right one plots the average (computed using ↵c as the

weight). They show that spreads are non-monotonic in µ: this occurs because of the asymmetric infor-

mation component, which is largest when uncertainty is highest, i.e. when µ is in an intermediate range.

More interestingly, the figure also reveals that spreads are decreasing in ⇡ for any given µ, i.e., that more

frequent trading opportunities reduces spreads for any fixed set of beliefs. Intuitively, increasing ⇡ re-

duces Rh - Rl for any given µ causing traders to act more alike in both states of the world. As a result,
18Specifically, he estimates a flow holding cost of 2.91, which lasts for an average of 0.31 years or equivalently, a total cost of

(2.91)(0.31) = 0.90. We interpret this as the average difference in valuations between agents receiving positive liquidity shocks
and those that receive negative shocks. Under the assumption of normally distributed liquidity shocks, this transaltes into a
variance of 0.32.

19Feldhutter (2012) estimates this separately for different trade sizes. We use the one corresponding to the smallest trade size.
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Figure 1: Effect of ⇡ on prices and spreads.

dealers’ optimal prices require a smaller adjustment for asymmetric information. Consider the monopo-

list’s quotes. Recall from equations (8) and (9) that the asymmetric information component of the dealers’

optimal prices depend on the density of traders around the liquidity shock thresholds, which are func-

tions of the reservation values (and prices). Higher ⇡ pushes the reservation values closer, and through

them, the thresholds. As a result, the asymmetric information component of the spread shrinks. To put it

differently, when trading decisions are driven to a greater extent by liquidity shocks, as opposed to asset

quality, there is less adverse selection from the dealers’ perspective, leading to tighter spreads.

However, this effect on spreads obtains with beliefs held fixed, i.e. it is essentially a static effect. There

is another, dynamic effect of the decline in the difference between reservation values – it also slows down

learning, exactly as in the special case. As a result, dealers remain relatively more uncertain about the

true asset quality. This force reduces the rate at which the asymmetric information component of spreads

shrinks over time, keeping spreads higher.

Figure 2 illustrates this dynamic effect. It plots the evolution of beliefs and spreads over time for

two different values of ⇡, under the assumption that the true quality of the asset is h. The panels plot

the average values across 10,000 sample paths – the realized path of dealer beliefs and, therefore, prices

depends on the realized sequence of !t. Dealer beliefs (top left panel) start at µ0 = 0.5 in both cases
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Figure 2: Effect of ⇡ over time.

and drift upwards: since the true state is h, both lines eventually converge to 1. However, the pace

is slower when ⇡ is higher; more frequent trading opportunities leads to slower learning. Spreads are

tighter initially in the high ⇡ case, but eventually end up wider. This is because, initially, beliefs are very

similar in both cases (since they both start at the same level by assumption), so the static effect dominates

and spreads narrow with higher ⇡. Over time, however, the differential pace of learning kicks in, keeping

uncertainty high and spreads wide in the high ⇡ scenario, relative to the low ⇡ case. This is true both

under monopoly and competitive spreads, as the bottom two panels show.

4.3 A Stationary Version

In this subsection, we modify our baseline framework to allow the asset quality to change over time.

Specifically, in each period, it switches with probability ⇢. This means that, in the long run, the market

will enter a stochastic steady state, characterized by a distribution over beliefs (and therefore, prices and

allocations). We point out the main changes from the baseline non-stationary version below.

Dealer beliefs about quality at the end of a given period are still given by equation (26), but their

beliefs in the following period are adjusted to account for the possibility that quality has changed. Let µ

denote the beliefs at the end of the period. This can be mapped into beliefs at the time of pricing in the
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following period by

M(µ) = µ(1 - ⇢) + (1 - µ)⇢ (43)

Next, the reservation values reflect the possibility of quality changes in the following period and are given

by:

Rj(µ) = (1 - �)cj + �(1 - ⇡)(1 - ⇢)

Z
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The dealers’ valuation of the asset in the two states (ṽh, ṽl) solve the following linear system

ṽh = (1 - �)vh + �(1 - ⇢)ṽh + �⇢ṽl

ṽl = (1 - �)vl + �(1 - ⇢)ṽl + �⇢ṽl

The pricing equations take the same form as the baseline non-stationary version with (ṽh, ṽl) replacing

(vh, vl). This version of the model is also easy to solve numerically.

In order to highlight the effect of ⇡, we solve the model with the switching probability ⇢ set to 0.5% for

3 different values of ⇡ (all other parameters held fixed at their baseline values). The results are presented

in Figure 3. The top left panel plots the distribution of beliefs in the long run. It shows that higher

⇡ shifts the mass of the distribution towards the center, i.e. where dealers are more uncertain about

asset quality. Intuitively, this occurs for the same reason as in the baseline non-stationary version – more

frequent trading opportunities bring reservation values of the traders in the two states closer to each,

making trading less informative and reducing the speed of learning. The effects on average spreads (in

the remaining 3 panels) are more complicated. On the one hand, higher ⇡ reduces adverse selection

(and therefore, pushes spreads lower) for a given level of beliefs µ. But, it also pushes the long-run

distribution towards intermediate µ’s where spreads are higher. Whether average spreads are wider or

narrower depends on which of these effects dominates. For example, when spreads rise from 0.55 (our
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baseline value) to 0.75, the change in the distribution is stronger than the effect on spreads with fixed

beliefs, leading to wider spreads on average. The opposite happens when ⇡ rises further from 0.75 to

0.95.
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Figure 3: Effect of ⇡ in stationary version

Note: Low ⇡ = 0.55, Med ⇡ = 0.75, High ⇡ = 0.95

5 Conclusion

In the previous sections, we have laid out a unified framework for analyzing asset markets characterized

by both informational and search frictions. Our results uncover novel interactions between these two

fundamental imperfections, overturning conventional wisdom based on studying them in isolation. They

help reconcile a puzzling feature of many OTC markets in recent years – even as technological and policy-

induced changes have reduced trading frictions and increased transparency, measures of liquidity (e.g.

bid-ask spreads) have largely remained unchanged, or even widened. Our analysis suggests that this

may not be particularly surprising in markets where both types of frictions are present.

There are many directions for future research. A key challenge in many financial markets is to quan-

tify the severity of different types of frictions. This is particularly relevant for regulators, who can then
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devise appropriate policies. In ongoing work, we use the theoretical framework developed in this paper

to inform an empirical strategy that can disentangle information and search frictions from observable

transaction data. Another interesting direction would be add other sources of market illiquidity (e.g.

inventory costs).
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Appendix

A Proofs

A.1 Proof of Proposition 1

Proof. For ease of notation, we supress depends of Rj, rj,p to µ. From (41), we have

Rh - Rl =(1 - �) (vh - vl) + � (rh - rl)- �⇡
X

k

↵k
Bk -Ak + 2e

2e
(rh - rl) (44)

=(1 - �) (vh - vl) + � (rh - rl)- �⇡↵c
rh - rl

2

- �⇡↵m

q
e2 - 4Covj

�
rj, vj

�
+ e

2e
(rh - rl)

Note that rj = (1 - p)Rj + pvj. Therefore,

Covj
�
rj, vj

�
= (1 - p)Covj

�
Rj, vj

�
+ pVar

�
vj
�

= (1 - p)Covj
�
Rj, vj

�
+ pµ (1 - µ) (vh - vl)

2

Moreover,

EjRj = Ejvj ! µRh + (1 - µ)Rl = µvh + (1 - µ) vl

Rl =
Ejvj - µRh

1 - µ
! Rh - Rl =

Rh - Ejvj
1 - µ

which then it implies that

Cov
�
Rj, vj

�
= µRhvh + (1 - µ)


vl -

µ

1 - µ
(Rh - vh)

�
vl -

�
Evj

�2

= µRh (vh - vl) + vlEvj -
�
Evj

�2

= µ (vh - vl)
�
Rh - Evj

�

= µ (1 - µ) (vh - vl) (Rh - Rl)

Finally, we realize that rh - rl = (1 - p) (Rh - Rl) + p (vh - vl) and that from Bayesian updating, p =

Rh-Rl
2m . The above expressions allow us to write (44) as an equation in p given by

2mp =(1 - �) (vh - vl) + � [(1 - p) 2mp+ (vh - vl)p]

- �⇡↵c [(1 - p) 2mp+ (vh - vl)p]

- �⇡↵m

p
e2 - 4µ (1 - µ) (vh - vl) [2mp (1 - p) + p (vh - vl)] + e

2e
[(1 - p) 2mp+ (vh - vl)p]
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Since ↵c +↵m = 1, we can write the above as

0 =- 2mp+ (1 - �) (vh - vl) + �
⇣

1 -
⇡

2

⌘
[(1 - p) 2mp+ (vh - vl)p]

-
�⇡↵m

2

r
1 -

4
e2µ (1 - µ) (vh - vl) [(1 - p) 2mp+ (vh - vl)p] [(1 - p) 2mp+ (vh - vl)p]

which is the same as (42). We refer to the right hand side of the above as Z (p,µ;⌅). We show that

Z (p,µ;⌅) has a unique solution. To see this note that

Z (0,µ;⌅) = (1 - �) (vh - vl) > 0

Z

✓
vh - vl

2m
,µ;⌅

◆
=- (vh - vl) + (1 - �) (vh - vl) + �

⇣
1 -

⇡

2

⌘
(vh - vl)

-
�⇡↵m

2

r
1 -

4
e2µ (1 - µ) (vh - vl)

2 (vh - vl)

=-
⇡

2
� (vh - vl)

"

1 +↵m

r
1 -

4
e2µ (1 - µ) (vh - vl)

2

#

< 0

This implies that there exists a p⇤ 2
⇥
0, vh-vl

2m
⇤

that solves our equation. In addition, if we define g (p) =

p (2m (1 - p) + vh - vl), then

Zp =- 2m+ �
⇣

1 -
⇡

2

⌘
g 0 (p)

-
�⇡↵c

2

r
1 -

4
e2µ (1 - µ) (vh - vl)g (p)g

0 (p)

+
�⇡↵c

4
g (p) 4

e2µ (1 - µ) (vh - vl)g 0 (p)
q

1 - 4
e2µ (1 - µ) (vh - vl)g (p)

=- 2m+ �
⇣

1 -
⇡

2

⌘
g 0 (p)

- �⇡↵c
2g 0 (p)

⇥
1 - 4

e2µ (1 - µ) (vh - vl)g (p)
⇤
- g (p) 4

e2µ (1 - µ) (vh - vl)g 0 (p)

4
q

1 - 4
e2µ (1 - µ) (vh - vl)g (p)

=- 2m+ �
⇣

1 -
⇡

2

⌘
g 0 (p)

- �⇡↵c
g 0 (p)

⇥
2 - 12

e2µ (1 - µ) (vh - vl)g (p)
⇤

4
q

1 - 4
e2µ (1 - µ) (vh - vl)g (p)

(45)

Note that

g 0 (p) = 2m (1 - 2p) + vh - vl

by the Assumption (2)

(vh - vl + 2m) �
⇣

1 -
⇡

2

⌘
- 2m < 0 ! g 0 (0) �

⇣
1 -

⇡

2

⌘
- 2m < 0

8p 2


0,
vh - vl

2w

�
�
⇣

1 -
⇡

2

⌘
g 0 (p)- 2m < 0
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where the second inequality follows since g 0 (p) is decreasing in p. In addition,

12µ (1 - µ)

e2 (vh - vl)g (p) 6
3
e2 (vh - vl)

2 < 2

Finally, 8p 2
⇥
0, vh-vl

2m
⇤

,g 0 (p) > 0 given (2). This implies that the last expression in 45 is negative

and therefore, Zp (p,µ;⌅) < 0 for all p 2
⇥
0, vh-vl

2m
⇤
. Hence, Z (p⇤,µ;⌅) = 0 has a unique solution in

⇥
0, vh-vl

2m
⇤
. Note that since Rj (µ)’s are increasing in µ, Rh (µ) 6 vh and Rl (µ) > vl. This implies that

Rh (µ)- Rl (µ) 6 vh - vl which then implies that p 6 vh-vl
2m . ⌅

A.2 Proof of Lemma 1

Proof. Recall the equation that describes p:

0 =- 2mp+ (1 - �) (vh - vl) + �
⇣

1 -
⇡

2

⌘
[(1 - p) 2mp+ (vh - vl)p]

-
�⇡↵m

2

r
1 -

4
e2µ (1 - µ) (vh - vl) [(1 - p) 2mp+ (vh - vl)p] [(1 - p) 2mp+ (vh - vl)p]

The above function, Z (p,µ;⌅), depends on µ only through µ (1 - µ). Moreover, Z (p,µ;⌅) is increasing in

µ (1 - µ). Therefore, Zµ > 0 when µ < 1/2 and Zµ < 0 when µ > 1/2. Note that we have

Zpdp
⇤ +Zµdµ = 0 ! dp⇤

dµ
= -

Zp

Zµ

From proof of proposition 1 we know that Zp < 0. Therefore, dp⇤

dµ > 0 when µ < 1/2 and vice versa.

Additionally, bid-ask spreads are given by

Ac -Bc = e-
q

e2 - 4µ (1 - µ) (vh - vl) [(1 - p⇤) 2mp⇤ + (vh - vl)p⇤]

The above is increasing in µ (1 - µ) and p⇤. Since both of these are hump-shaped in µ with maximum at

µ = 1/2, so is the bid-ask spread.

Finally, recall that

Rh - Rl = 2mp⇤

and hence Rh - Rl is also hump-shaped in µ and maxed at µ = 1/2. This concludes the proof. ⌅

A.3 Proof of Proposition 2

Proof. We have

Z⇡ =-
�

2
[(1 - p) 2mp+ (vh - vl)]

-
�

2

r
1 -

4
e2µ (1 - µ) (vh - vl) [(1 - p) 2mp+ (vh - vl)p] [(1 - p) 2mp+ (vh - vl)p]
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and therefore, Z⇡ < 0. Hence,
dp⇤

d⇡
= -

Zp

Z⇡
< 0.

⌅

A.4 Proof of Proposition 3

Proof. From the text we have

@

@⇡
�t,j =- t↵c (1 - p⇤)t-1 @p

⇤

@⇡

 

1 -

r
1 -

4
e2 (vh - vl)µ (1 - µ)g (p⇤)

!

+↵c (1 - p⇤)t
4
e2 (vh - vl)µ (1 - µ)g 0 (p⇤) @p⇤

@⇡q
1 - 4

e2 (vh - vl)µ (1 - µ)g (p⇤)

=↵c (1 - p⇤)t
@p⇤

@⇡

2

4
4
e2 (vh - vl)µ (1 - µ)g 0 (p⇤)

q
1 - 4

e2 (vh - vl)µ (1 - µ)g (p⇤)
-

t

1 - p⇤

 

1 -

r
1 -

4
e2 (vh - vl)µ (1 - µ)g (p⇤)

!3

5

In the above, @p⇤

@⇡ < 0 and for large enough t the expression in the brackets is negative. Hence, when t is

large enough @
@⇡�t,j > 0. ⌅

A.5 Proof of Proposition 4

Proof. Note that the full information model is described by the following relationships

�R = �c+ ⇡

"ZA-R

B-R
"dG (") + (B- R)G (B- R) + (A- R) (1 -G (A- R))

#

A = v+
1 -G (A- R)

g (A- R)

B = v-
G (B- R)

g (B- R)

where

⇠a (A- R) =
1 -G (A- R)

g (A- R)
, ⇠b (B- R) =

G (B- R)

g (B- R)

are the semi-elasticities of demand (supply) with respect to prices and are therefore equal to the markups

charged by the dealer.

Note. We have

⇠ 00
a (") =

d2

d"2
1 -G (")

g (")
=

d

d"

 

1 -
(1 -G ("))g 0 (")

g (")2

!

= -
d

d"

(1 -G ("))g 0 (")

g (")2

=
g 0

g
-

(1 -G)g 00

g2 + 2
(1 -G) (g 0)2

g3
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Note that

G (-") = 1 -G (")

g (-") = g (")

-g 0 (-") = g 0 (")

g 00 (-") = g 00 (")

Thus

⇠ 00
a (") = -

g 0 (-")

g (-")
-

G (-")g 00 (-")

g (-")2 + 2
G (-") (g 0 (-"))2

g (-")3

= ⇠ 00
b (-") > 0

We show the claim first by assuming that v > c - the case where v < c follows a similar argument is

thus ommited. The following Lemma proves useful in showing the main result:

Lemma 1. Suppose Condition 1 holds and that v > c, then we have

R > c,A- R > R-B.

Proof. Suppose that R 6 c, then
ZA-R

B-R
"dG (") + (B- R)G (B- R) + (A- R) (1 -G (A- R)) 6 0

We can write the above as function ⌦ (A- R,B- R). Note that

⌦ (x,-x) = 0

⌦y (x,y) = G (y) > 0

⌦x (x,y) = 1 -G (x) > 0

This implies that ⌦ (A- R,B- R) 6 0 must lead to A- R 6 R-B, i.e., there is more buyers than sellers!

Hence by Condition 1
1 -G (A- R)

g (A- R)
> 1 -G (R-B)

g (R-B)
=

G (B- R)

g (B- R)

Thus

A+B = 2v+
1 -G (A- R)

g (A- R)
-

G (B- R)

g (B- R)
> 2v

Since

A- R 6 R-B ! A+B 6 2R ! 2v 6 2R 6 2c

which is a contradiction. Thus the claim follows. ⌅
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The above lemma implies that when there is gains from trade, the trader’s capture some of these gains

and that there are more sellers than buyers.

To prove the main claim, we first note that

dA

dR
=

-⇠ 0
a (A- R)

1 - ⇠ 0
a (A- R)

2 [0, 1]

dB

dR
=

⇠ 0
b (B- R)

1 + ⇠ 0
b (B- R)

2 [0, 1]

Thus
d (A-B)

dR
=

-⇠ 0
a (A- R)

1 - ⇠ 0
a (A- R)

-
⇠ 0
b (B- R)

1 + ⇠ 0
b (B- R)

where

-⇠ 0
a (") = 1 +

(1 -G ("))g 0 (")

g (")2

⇠ 0
b (") = 1 -

G (")g 0 (")

g (")2

⇠ 0
b (-") = 1 -

G (-")g 0 (-")

g (-")2 = 1 +
(1 -G ("))g 0 (")

g (")2

= -⇠ 0
a (")

From the previous lemma we have A- R > R-B and therefore, from assumption 1, we must have

-⇠ 0
a (A- R) < -⇠ 0

a (R-B) = ⇠ 0
b (B- R)

We, therefore, have

d (A-B)

dR
=

-⇠ 0
a (A- R)

1 - ⇠ 0
a (A- R)

-
⇠ 0
b (B- R)

1 + ⇠ 0
b (B- R)

=
-⇠ 0

a (A- R)- ⇠ 0
b (B- R)

(1 - ⇠ 0
a (A- R))

�
1 + ⇠ 0

b (B- R)
� < 0

It is thus left to show that dR
d⇡ > 0. We have

�dR = ⇡ [⌦x (dA- dR) +⌦y (dB- dR)] + d⇡⌦ (A- R,B- R)

�dR = ⇡ [(1 -G (A- R)) (dA- dR) +G (B- R) (dB- dR)] + d⇡⌦ (A- R,B- R)

= ⇡


- (1 -G (A- R))

dR

1 - ⇠ 0
a
-G (B- R)

dR

1 + ⇠ 0
b

�
+ d⇡⌦ (A- R,B- R)

dR

d⇡
=

⌦ (A- R,B- R)

�+ ⇡
h
(1-G(A-R))

1-⇠ 0
a

+ G(B-R)
1+⇠ 0

b

i > 0

This concludes the proof. ⌅
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B Additional Results for the Special Case

B.1 Dealers have no incentive to experiment with prices

Here we establish that dealers have no incentive to set statically sub-optimal prices that might reveal to

them the state of the world. To see why, note that the set of bids that could potentially reveal the state of

the world lie in the set ⌅1 = (Rl(µ)-m- e,Rh(µ)-m- e) or ⌅2 = (Rl(µ) +m+ e,Rh(µ) +m+ e).20 For

any bid in the first interval, observing a trader with an asset accept the offer would reveal that the state

is l. For any bid in the second interval, observing a trader with an asset reject the offer would reveal that

the state is h.

Now, suppose the dealer sets a bid B̂ 2 ⌅2; the argument for a bid in ⌅1 is symmetric. An optimal offer

would never generate zero trades in both states of the world. Hence, after observing the volume of sells,

there are three possibilities for the corresponding signal S:

1. S 2 ⌃l(µ) ⌘ [-m+ Rl(0),-m+ Rh(µ)). In this case, the state of the world was revealed anyway, so

there are no benefits to experimentation.

2. S 2 ⌃h(µ) ⌘ (m+ Rl(µ),m+ Rh(1)]. Again, in this case the state of the world was revealed anyway,

so there are no benefits to experimentation.

3. S 2 ⌃b(µ) ⌘ [-m+ Rh(µ),m+ Rl(µ)]. In this case, all traders accept the offer B̂, and the state of the

world is not revealed to the dealer.

B.2 Valuations of traders and dealers are equal in expectation

Here we establish that (34) which states that in expectation - given dealers’ information - valuation of

dealers and traders are equal.

We first show this when µ = 0, 1 , i.e., when dealers are fully informed about the j. Note that when

µ = 1,

Bc (1) =
rh (1) + vh - e

2
+

1
2

q
(e+ vh - rh (1))2 = vh

Ac (1) =
rh (1) + vh + e

2
-

1
2

q
(e+ vh - rh (1))2 = vh

Bm (1) =
rh (1) + vh - e

2

Am (1) =
rh (1) + vh + e

2

where the above holds because with full information, Covj
�
rj, vj

�
= 0.

20The argument for the ask price is symmetric.
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Note that rh (1) = Rh (1) and value functions can be written as

rh (1) = (1 - �) vh + �rh (1) + �⇡
X

k=c,m

↵k

�
Bk -Ak + 2e

�

2e

✓
Ak +Bk

2
- rh (1)

◆

(1 - �) rh (1) = (1 - �) vh + �⇡↵c (vh - rh (1)) + �⇡↵m
1
2
vh - rh (1)

2

Obviously the unique solution of the above equation is rh (1) = vh. Similarly, we can show that rl (0) = vl.

This implies that

rj (µ) = p (µ)Rj (µ) + (1 - p (µ)) vj

As a result

Ejrj (µ) = p (µ)EjRj (µ) + (1 - p (µ))Ejvj

Suppose to the contrary that Ejrj > Ejvj. Given the above expression, this implies that EjRj (µ) >

Ejvj. Note that the Bellman equations for traders net-option values are given by

Rj (µ) = (1 - �) vj + �rj (µ)

+ �⇡
X

k=c,m

↵k

�
Bk -Ak + 2e

�

2e

✓
Ak +Bk

2
- rj (µ)

◆

Using the formulas for prices provided in the text, we have

Ac (µ) = Am (µ)- (µ)

Bc (µ) = Bm (µ) +� (µ)

with

� (µ) =
1
2

q�
Ej

�
vj - rj

�
+ e
�2

- 4Covj
�
rj, vj

�

 (µ) =
1
2

q�
Ej

�
rj - vj

�
+ e
�2

- 4Covj
�
rj, vj

�

Note that when Ejrj > Ejvj, then  (µ) > � (µ)

rj (µ) = (1 - p (µ))Rj (µ) + p (µ) vj

Ejrj = (1 - p)EjRj + pEjvj

Using the above, we can write the Bellman equations as

Rj (µ) = (1 - �) vj + �rj (µ)

+ �⇡↵m
1
2
vj - rj (µ)

2

+ �⇡↵c
� (µ) + (µ) + e

2

✓
vj - rj (µ) +� (µ)- (µ)

2

◆

42



Taking expectation with respect to j in the above equation, we have

EjRj =(1 - �)Ejvj + �Ejrj

+ �⇡↵m
Ejvj - Ejrj

4

+ �⇡↵c
� (µ) + (µ) + e

2
Ejvj - Ejrj +� (µ)- (µ)

2

Since � (µ) <  (µ) and Ejvj < Ejrj, the last two terms in the right hand side of the above expression are

negative. Hence,

EjRj < (1 - �)Ejvj + �Ejrj = (1 - �+ � (1 - p (µ)))Ejvj + �p (µ)EjRj

Therefore,

(1 - �p (µ))EjRj (µ) < (1 - �p (µ))Ejvj

The above inequality is in constradiction to the initial assumption where Ejrj > Ejvj. This is the required

contradiction that proves our intial assumption wrong. Similarly, we can show that Ejrj < Ejvj cannot

hold. Hence, Ejrj = Ejvj.

B.3 Pricing under Monopoly and Competition

B.3.1 Monopoly Pricing

Suppose that for all realizations of !, Bk - Rj (µ)-! 2 [-e, e]. This means that if updated beliefs are

given byµ 0, then the probability of a sale by a trader is given by

Bk -!- Rj (µ 0) + e

2e

This implies that for a realization of !, the probability of sale by a trader is given by

Bk -!- rj (µ) + e

2e

where rj (µ) = (1 - p (µ))Rj (µ) + p (µ)Rj (1 [j = h]). Therefore profits of a dealer who buys is given by

X

j

µj

Zm

-m

B-!- rj + e

2e
�
vj -B

� d!
2w

The derivative of the above objective with respect to B is given by

Ejvj -B

2e
- Ej

B- rj + e

2e
= 0 ! Bm =

Ejvj + Ejrj - e

2

Similarly, if we assume that Rj (µ) +!-Ak 2 [-e, e], then the profits for a selling monopolist dealer is

given by
X

j

µj

Z
e-A+!+ rj

2e
�
A- vj

� d!
2w
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The first order condition with respect to A is given by

-
A- Ejvj

2e
+ Ej

e-A+ rj
2e

= 0 ! Am =
Ejvj + Ejrj + e

2

B.3.2 Pricing under Competition

In equilibrium and under competition, profits of a buying trader must be zero and we must have that

-B2 +
�
Ejrj + Ejvj - e

�
B-

�
Ejvj

�
rj - e

��
= 0

The above equation has two solutions. By Bertrand competition, equilibrium must be the higher solution.

To see this, suppose that B1 < B2 are the roots of this equation. Suppsoe, further, that equilibrium bid is

B1. Then one of the dealers can deviate to B2 - " for a small but positive value of " and achieve positive

profits. The reason is that if B > B2 profits must be negative - since ultimately they are negative and the

equation has only two roots. Therefore, just below B2, they must be positive. Hence, this is a profitable

deviation. Therefore, equilibrium bid must be given by

Bc =
Ejrj + Ejvj - e+

q�
Ejrj + Ejvj - e

�2
- 4Ejvj

�
rj - e

�

2

=
Ejrj + Ejvj - e+

q�
Ejvj

�2
+
�
Ejrj - e

�2
+ 2EvjE

�
rj - e

�
- 4Ejvj

�
rj - e

�

2

The discriminant in the above can be written as

�
Ejvj

�2
+
�
Ejrj

�2
- 2eEjrj + e2 + 2EjvjEjrj - 2eEjvj + 4eEjvj - 4Ejvjrj =

�
Ejvj

�2
+
�
Ejrj

�2
- 2eEjrj + e2 + 2EjvjEjrj + 2eEjvj - 4Ejvjrj + 4EjvjEjrj - 4EjvjEjrj =

�
Ejvj

�2
+
�
Ejrj

�2
- 2eEjrj + e2 - 2EjvjEjrj + 2eEjvj - 4Covj

�
vj, rj

�
=

�
Ejvj - Ejrj + e

�2
- 4Cov

�
vj, rj

�

Therefore, we can write the above a

Bc =
Ej

�
vj + rj

�
- e+

q�
Ej

�
vj - rj

�
+ e
�2

- 4Covj
�
vj, rj

�

2

For the above to be a valid solution, we must have that

e+ Ej

�
vj - rj

�
> 2
q
Cov

�
vj, rj

�

In other words, e must be large enough. We will verify that these conditions are indeed satisfied under

Assumptions 1-3.
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As for the ask, we have that profits are given by

X

j

µj

Z
e-A+!+ rj

2e
�
A- vj

� d!
2w

Therefore, the zero-profit condition must be given by

-A2 +
�
Ejrj + e+ Ejvj

�
A- Ejvj

�
e+ rj

�
= 0

Then, a similar Bertrand type argument as above implies that the equilibrium ask price is the lower of the

two roots of the above. Thus, we have

Ac =
E
�
rj + vj

�
+ e-

q�
E
�
rj + vj

�
+ e
�2

- 4Evj
�
e+ rj

�

2

=
E
�
rj + vj

�
+ e-

q�
Erj
�2

+
�
Evj

�2
+ e2 + 2eEvj + 2eErj + 2ErjEvj - 4Evj

�
e+ rj

�

2

=
E
�
rj + vj

�
+ e-

q�
Erj
�2

+
�
Evj

�2
+ e2 - 2eEvj + 2eErj - 2ErjEvj - 4Cov

�
vj, rj

�

2

=
E
�
rj + vj

�
+ e-

q�
E
�
rj - vj

�
+ e
�2

- 4Cov
�
vj, rj

�

2

For this to exist, we must have that

e+ Ej

�
rj - vj

�
> 2
q
Cov

�
vj, rj

�
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