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Abstract

We study optimal fiscal and redistributive policies in an open economy without

commitment. Due to its redistributive motives, the government’s incentive to default

on its external debt is affected by inequality. We show that in equilibrium the economy

endogenously fluctuates between two regimes. In the first regime, the government

borrows from abroad, spends generously on transfers and keeps the inequality low. In

the second regime, it implements austerity-like policies by cutting transfers, reducing

foreign debt and increasing the inequality. The equilibrium dynamics resembles the

populist cycles documented in many developing countries.
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1 Introduction

Fiscal policies in many developing countries often follow boom-bust fluctuations, some-
times called “populist cycles”. During the boom phase of the cycle, a country borrows
from abroad, runs a current account deficit, and spends generously on direct and indirect
transfers such as welfare programs, pensions, compensation packages in state sector. The
boom is followed by a bust phase characterized by debt crisis, current account surplus, a
reversal in redistributive policies, and an implementation of drastic austerity measures.1

The rationale for these cycles in fiscal and redistributive policies is not well-understood.
In this paper, we study the interaction between external borrowing and redistribution

in a neoclassical model with political frictions, and show that populist cycles can arise
endogenously in such settings. We develop a tractable heterogeneous-agent overlapping
generations framework where government’s redistributive motives determine fiscal poli-
cies. Our framework has three types of agents. First, there are households that are hetero-
geneous with respect to their labor productivity when they are young; they decide how
much to work and how much to save. Second, there are foreign creditors who lend to
the government and have an opportunity cost of lending given by the international in-
terest rate. Third, there is a government that imposes taxes on labor income and wealth,
provides transfers to young and old households, and issues domestic and external debt.
The government is benevolent and cares about a weighted average of utilities of agents in
the current, and possibly future, generations. The key assumption is that the government
cannot commit to future policies.

When the government lacks commitment, it faces ex-post incentives to default on ex-
ternal debt, increase wealth taxes and reduce inequality. To formally analyze these in-
centives, we study a repeated game between the government, households, and foreign
lenders. In this setting, future governments’ incentive to deviate from equilibrium strate-
gies are captured by sustainability constraints, which specify that the payoff to the gov-
ernment at each point in time must be above a certain level. These incentives increase in
both external debt and inequality that future governments inherit.

We show that despite the complexity and various degrees of heterogeneity in our
model, it is possible to write the optimal policy problem recursively in terms of two ag-
gregate variables: the stock of external debt for the government and the level of wealth
inequality among the current old. This recursive formulation allows us to characterize
the dynamics of policies and allocations in terms of trade-offs between external debt and
inequality implied by our framework.

1Dornbusch and Edwards (1991) and Sachs (1989) documented extensively populist cycles in the context
of Latin American economies. The recent experiences of some of the Southern European economies show a
similar cyclical pattern. We discuss this evidence in section 6.
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In our setup, inequality and external debt contribute to financing spending for the
government. Evidently, external debt increases resources currently available. Addition-
ally, to incentivize young agents to work, the current government wants to keep current
labor taxes and future wealth taxes relatively low. This results in wealth inequality among
the future old. The future governments, on the other hand, have incentives to increase
wealth taxes and to redistribute this wealth inequality and default on external debt.

The key insight of our model is that the current and future governments disagree on
the composition of inequality and external debt, and that this disagreement gives rise to
cyclical dynamics. The current government prefers to finance any given level of current
consumption with a higher level of debt and lower inequality than the future government
does. The reason is that delivering a unit of consumption via borrowing is cheaper than
via production, since it does not incur the disutility of effort (as well as inequality in
consumption and leisure). The future government, however, prefers that consumption be
financed with lower debt and higher inequality. This is because the future government
does not incur the leisure cost of production and the cost of inequality of consumption
and leisure.

The main result of our paper regarding cycles follows from this conflict of interest. In
fact, the dynamics of the economy can be characterized by how future values of inequality
and debt respond to changes in the current value of debt. There are two regimes: first,
when inherited external debt is low, in which case the sustainability constraint is slack;
second, when inherited external debt is high, in which case the sustainability constraint
is binding.

In the first regime, the current government does not face any constraint imposed by re-
optimization of the future government. In this regime, a government that starts a period
with higher external debt rolls over more external debt into the future and keeps transfers
lower (and thus inequality higher) to service higher gross interest payment.

In the second regime, the current government is constrained by re-optimization in-
centives by the future government. In this regime, an increase in inherited debt tightens
this constraint. As a result, once future sustainability constraints bind, the composition
of debt and inequality has to be realigned with future governments’ preferences: external
debt needs to be cut which in part is accomplished by lowering transfers and increasing
inequality. The larger is the debt level when a country enters this regime, the bigger is
the re-alignment. This implies that future debt issuance is a decreasing function of the
current debt in the second regime.

The fact that future debt decreases in current debt has two implications. First, it shows
that debt dynamics is generally cyclical. The larger is the amount of external debt accu-
mulated prior to entering the state of the world in which this adjustment occurs, the
larger is the amplitude of the fiscal cycle. Second, the cut in the external debt in the sec-
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ond regime is achieved in part by a large decrease in transfers, leading to an increase in
inequality. This resembles austerity.

Thus, the economy typically fluctuates between two phases. It experiences a period of
low external debt that leads to expansion of transfer programs and the welfare state. This
period is then followed by one in which external debt is low, and the government reduces
transfers and encourages production. Hence, it exhibits cycles of austerity and populism
as documented by Dornbusch and Edwards (1991) and Sachs (1989).

We first illustrate our main insight in a simple deterministic economy in which the
government’s objective is given by a weighted average of utilities of all currently and fu-
ture households, and policies are constrained so that utility of future governments cannot
fall below an exogenous threshold. When international interest rate is lower than gov-
ernment’s discount rate across generations, the economy’s unique steady state is in the
constrained region. Convergence to this steady state occurs via endogenous fluctuations
in fiscal policy.

We then extend this analysis to a probabilistic voting model as in Lindbeck and Weibull
(1987). We characterize various equilibria of this game: the best subgame perfect equilib-
rium in the spirit of Chari and Kehoe (1990) and the Markov equilibrium in the spirit of
Eaton and Gersovitz (1981). As in the basic setup, we show that the conflict of interest
regarding the mixture of inequality and external debt in these equilibria yields cyclical
policy dynamics.

We also study an extension of our baseline model to a stochastic setting by introducing
shocks to terms of trade. An important feature of this extension is that cycles of populism
and austerity recur in the long-run. In fact, in the stochastic steady state of the model,
a one-time temporary shock to terms of trade, can lead to oscillatory dynamics in fiscal
policy. Finally, due to the implementation of austerity measures, current account surplus
can be positive even in bad times in contrast with models with a representative agent.

In the last section of the paper, we discuss the historical evidence regarding the cycli-
cal pattern of fiscal policy and external debt. We provide evidence from Argentina and
Chile where the policy dynamics is in line with fluctuations implied by our model. We
also show how the experience of Southern European countries in the last two decades is
consistent with the predictions of our model.

Literature Review. Our paper contributes to several strands of the literature in macroe-
conomics, public finance, and international economics.

Our work is mostly related to the large literature in macroeconomics and interna-
tional economics that analyzes government’s choices of fiscal and debt policy over time
and business cycles (e.g., Lucas and Stokey (1983), Chari and Kehoe (1999), Aiyagari
et al. (2002), Arellano (2008), Aguiar and Amador (2014), among many others). This
strand of literature is mainly silent on issues pertaining to redistribution and inequal-
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ity. While recently inequality and redistributive policies have been introduced for the
study of macroeconomic policies (e.g., Werning (2007), and Bhandari et al. (2013)), their
open economy consequences are primarily unexplored. This is of particular interest given
that a large fraction of government outlays is spent on transfers, such as, social transfers
and public pensions. As we show, redistributive considerations significantly change the
implications on optimal policies regarding external debt and can explain the cyclicality
in fiscal and external debt policies in developing economies. In this regard, our paper is
closely related to Werning (2007), who considered a closed economy with infinitely lived
households.

Our paper is also related to the recent literature on optimal policy and social insurance
in heterogeneous agent economies in the absence of commitment (e.g., Sleet and Yeltekin
(2006), Farhi et al. (2012), and Scheuer and Wolitzky (2014)). Similar to these authors,
we consider an intergenerational setting with overlapping generations where policies are
chosen by governments that cannot commit to future policies (or via a political economy
model of voting). While this literature is mainly interested in the shape of the optimal tax
functions and the long-run behavior of inequality, we focus on the dynamics of debt and
inequality over time and business cycles. Furthermore, we exogenously impose restric-
tions on the tax function. This allows us to develop a tractable framework for the analysis
of the trade-offs between inequality and external debt and its determinants over time.

Two recent papers address some of the issues related to this trade-off: First, D’Erasmo
and Mendoza (2013) consider a closed economy with heterogeneous agents in which the
government does not have access to asset taxes and it can issue debt and default on it. The
authors show that in order to explain the level of domestic debt observed in Europe, gov-
ernment’s objective must feature a political bias towards government’s creditors. Second,
Ferriere (2014) argues that when the government can change the progressivity of the tax
code, progressive taxes can be used to mitigate the cost of default and borrowing. Similar
to these papers, our model implies that wealth inequality negatively affects government’s
ability to borrow. However, our novel result is that due to the interactions between in-
equality and external debt, it is optimal to drastically decrease external debt when highly
indebted and thus policies resemble austerity.

Since Eaton and Gersovitz (1981), a large literature in international economics has
analyzed the determinants of sovereign debt based on theories involving a government
that cannot commit to repay its external creditors. Aguiar and Amador (2014) and Aguiar
et al. (2009), for example, using the contracting framework of Thomas and Worrall (1994),
consider an economy where accumulated external debt affects the ability of a sovereign to
invest due to its incentives for expropriation. Such constraints on investment imply that
external debt is gradually adjusted over time, while investment is gradually increased.
This is in sharp contrast with the implication of our model that external debt adjustment
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is not gradual, that is, future external debt is inversely related to current external debt.
Our result, thus, provides a rationale for the observed austerity measures that are often
used in episodes following debt crises.

The rest of the paper is organized as follows. Section 2 describes the model. Section
3 characterizes the optimal policies chosen by a planner without commitment. Section 4
extends the result to a setup with probabilistic voting. Section 5 describes a stochastic ver-
sion of the basic model, Section 6 provides historical evidence in support for our results,
and Section 7 concludes.

2 Model Setup

In this section, we describe the basic framework in which we analyze the determinants
of government policies. We consider an overlapping-generations small open economy
populated by a continuum of heterogeneous households and the government.

Households. Time, t, is discrete and t = 0, 1, · · · . At the beginning of each period,
a generation of households are born and live for two periods. Each generation born at t
consists of a continuum of households who draw a productivity type θt when they are
born. They work, consume, and save when they are young and consume when they are
old. We assume that θ ∈

{
θ1 < · · · < θN

}
and that Pr

(
θt = θ

i
)
= µi where the average

value of θi is normalized to 1 (i.e.,
∑N
i=1 µ

iθi = 1). We refer to households with produc-
tivity type θi as households of type i. Households value consumption and labor supply
according to the following preferences:

uit,0 = log cit,0 +ψ log
(

1 −
yit
θi

)
+β log

(
cit,1

)
, (1)

where cit,0, cit,1 are consumption when young and old, respectively, while yit is the effec-
tive hours worked or income when households are young. In the above expression, uit,0
represents the utility of a young household born at time t, and uit−1,1 = log

(
cit−1,1

)
is

the utility of an old household. Our assumption on the form of the utility function is
purely for simplicity of analysis and can be extended to more general utility functions at
the cost of further complications (see the discussion in section 3.4.1 and Appendix for an
extension of our results to more general preferences).

A young household of type i has wealth ait at the end of the period. Finally, there is
an initial old generation at t = 0 whose wealth distribution is given by

{
ai−1
}
i=1,··· ,N and

consumption by ci−1,1.
Technology. Labor is the only input for production, and the total output in the econ-

omy is given by Yt =
∑
i µ
iyit.
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Government. The government provides transfers to households when they are young
(i.e., Tt) and pensions to households when they are old (i.e., Pt), and pays for Gt, which
is government purchases net of any other source of revenue for the government, such as
revenue from selling commodities. The government finances these expenses with rev-
enues raised from taxing labor income and taxing assets saved for retirement, as well as
borrowing from abroad. Given the structure of government finances, the government
budget constraint is given by

Bdt + δtBt + Tt + Pt +Gt = τl,tYt + τa,t
∑
i

µiait−1 + qtBt+1 + q
d
tB

d
t+1, (2)

where Bdt and Bt are the face value of government’s domestic and external debt, respec-
tively; Tt is transfers to the young; Pt is public pensions for the old; τl,t is the tax rate on
earnings; τa,t is the tax rate on assets (private pensions); qt is the price of external debt;
and qdt is the price of domestic government debt. In addition, δt ∈ [0, 1] is the fraction
of the external debt that is repaid in each period. Since the government can impose asset
taxes on domestic holdings of its debt, it is without loss of generality to assume that all
domestic debt is repaid.

Given the above government policies, we can write households’ budget constraint as

cit,0 + q
d
ta
i
t 6 yit(1 − τl,t) + Tt (3)

cit,1 6 ait(1 − τa,t+1) + Pt+1. (4)

In addition, the initial old households simply consume their after-tax asset income and
pensions, or ci−1,1 = ai−1(1 − τa,0) + P0.

Note that we have assumed that the government is the only domestic entity that can
borrow and lend in international credit markets. While extreme, this assumption is with-
out loss of generality when the government has the ability to impose capital controls (dif-
ferential taxes between domestic and foreign asset income). With capital controls, taxes
on foreign transactions can be imposed in such a way that domestic households have no
incentive to trade with the rest of the world and only hold domestic debt.

Markets. The feasibility of allocations requires that goods and domestic asset markets
clear. That is, if Ct,0 and Ct,1 are the aggregate consumption of the young and, respec-
tively, the old in each period, we must have that

Ct,0 +Ct−1,1 +Gt = Yt + qtBt+1 − δtBt, (5)∑
i

µiait = Bdt+1. (6)
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Moreover, the price of external government debt must satisfy the no-arbitrage condition
for the international lenders:

qt =
δt+1

1 + r
, (7)

where r is the international risk-free interest rate.
Competitive Equilibrium with Taxes. As it is standard in the Ramsey approach, the

above market structure and households optimization put a constraint on the set of allo-
cations that can be achieved by the government. Before describing the determination of
these policies, our notion of competitive equilibrium makes precise the type of restriction
the above market structure puts on government’s choice:

Definition 1. Given a sequence of government policies
{
Bt,Bdt , τl,t, τa,t, Tt,Pt, δt

}∞
t=0 , as

well as the international interest rate, r, a competitive equilibrium with taxes is given by
allocations

{
cit,0, cit,1,yit,a

i
t

}∞
t=0

together with prices
{
qt,qdt

}∞
t=0, where (i) cit,0, cit,1,yit,a

i
t

maximizes (1) subject to (3) and (4); (ii) external government debt price, qt, is given by
(7); and (iii) domestic bond price, qdt , adjusts so that domestic credit markets clear, that is,
(5) holds.

2.1 Characterizing the set of Competitive Equilibria

Our assumption about the utility function allows us to provide a very simple character-
ization of the allocations that can constitute a competitive equilibrium with taxes. The
following lemma states this result:

Lemma 1. Suppose that households’ preferences are given by (1). Given the initial asset distri-
bution for the initial old,

{
ai0
}
i=1,...,N, and an initial foreign government debt, B0, an allocation

can be supported as a competitive equilibrium with taxes if and only if the sequence of aggre-
gate allocations {Ct,0,Ct−1,1, Yt,Bt}

∞
t=0 satisfies (5) and there exists a vector of market weights{

Φt =
(
ϕit
)
i∈{1,··· ,N}

}∞
t=−1

where
∑
i µ
iϕit = 1 such that

cit,0 = ϕitCt,0, cit,1 = ϕitCt,1, θi − yit = ϕ
i
t (1 − Yt) , ∀t > 0 (8)

ci−1,1 = ϕi−1C−1,1, (9)

while the market weights satisfy

ϕit = 1 +
ψ

1 +ψ+β

θi − 1
1 − Yt

, ∀t > 0, (10)

ϕi−1 =
ai−1,1

C−1,1
. (11)
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The above lemma states that competitive equilibria are characterized by aggregate
allocations that need only satisfy the aggregate budget constraint (5) together with a rep-
resentation of the distribution of individual allocations, or inequality. This distribution
is captured by market weights ϕit. Furthermore, the linearity of the tax function implies
that inequality is related to aggregate allocations through equation (10). This relationship
captures the equity versus efficiency trade-off that is central to our analysis. As GDP, Yt,
rises, the distribution of ϕit becomes more dispersed, that is, increases according to sec-
ond order stochastic dominance. This captures the idea that an increase in GDP must be
accompanied by a decline in taxes, which leads to higher inequality. We thus refer to Φt
as inequality and refer to the right side of (10) as ϕ̂i (Yt).

Welfare. The novelty of our approach allows us to provide a simple and tractable
framework to study the optimal policy in the presence of heterogeneity. A stark impli-
cation of our formulation is the simplicity of welfare analysis. To see this, consider the
welfare associated with an arbitrary point on the Pareto frontier for a particular genera-
tion represented by Pareto weights

{
αi
}

. We can then write welfare as

logCt,0 +ψ log (1 − Yt) +β logCt,1 + (1 +ψ+β)
∑
i

αiµi log
(
ϕ̂i (Yt)

)
︸ ︷︷ ︸

−H(Yt)

. (12)

The first three terms represent the planner’s value from aggregate allocations, whileH (Yt)

is a convex and increasing function that represents the disutility of inequality. Preferences
for redistribution imply that the Pareto weights must satisfy the following assumption:

Assumption 1. (Redistributive Motives) The Pareto weights
{
αi
}

are weakly decreasing in i.

Assumption 1 implies that H (Y) is increasing in Y. Intuitively, higher output means
that inequality in consumption and income is higher in the sense of mean-preserving
spread, which lowers social welfare.

Our approach to study optimal taxation is an adoption of the so-called primal approach,
following Lucas and Stokey (1983) to an environment with heterogeneity of workers. We
focus on allocations that arise in any competitive equilibrium with taxes. Policies (e.g.,
taxes, transfers, and debt) are then determined in order to support a particular allocation.
For example, an increase in output must be accompanied by a decline in labor income
taxes and transfers, which in turn leads to an increase in inequality. The disutility function
H (Y) captures this effect.
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3 A Planning Problem

In this section, we establish the main result of our paper. We show that without commit-
ment, the optimal policy has the feature that an increase in the current value of external
debt can lead to a decline in its future value. Hence, allocations exhibit cyclical dynamics,
that is, convergence of allocations to their steady state value is cyclical. Thus, under lack
of commitment, the optimal policy exhibits cycles that involve an increase in borrowing
together with an increase in transfers and pensions, followed by a downward readjust-
ment of government’s external debt and decline in transfers and pensions.

Our main assumption regarding the determination of policies is that they are chosen
sequentially; thus, at each point in time, the government cannot commit to future paths
of choices of taxes, transfers, and repayments of debt. In this section, we start with the
simplest form of this problem in the spirit of Chari and Kehoe (1990)’s sustainable plans:
at each point in time, governments maximize a weighted average of households’ utilities.
We assume that within a generation, welfare weights are as described before in Assump-
tion 1, while across generations, we have geometric discounting at rate β̂.

Formally, as in Chari and Kehoe (1990), policies are determined in a repeated game
between a continuum of households, a long-lived government, and a continuum of for-
eign lenders. We consider subgame perfect equilibria of this game supported by trigger
strategies to autarky. In the Appendix, we show that allocations arise from such equilibria
if and only if they satisfy the competitive equilibrium conditions described in Lemma 1
where feasibility is given by2

Ct,0 +Ct−1,1 = Yt +
1

1 + r
Bt+1 −Bt, (13)

and the following sustainability constraint:

β

β̂

∑
i

αiµiuit−1,1 +

∞∑
s=t

β̂s−t
∑
i

αiµiuis >W. (14)

Here, W is the value of a one-shot deviation by the government involving full redistri-
bution of wealth among the current old and default on external debt. This is followed
by government being in full financial autarky, from domestic households and foreign
lenders. Thus the value W is associated with an allocation where there is no inequality

2Note that we have imposed δt = 1 in our feasibility constraint. This is without loss of generality.
As has been noted by many authors (for example by Grossman and Van Huyck (1988), Kehoe and Perri
(2004), Kehoe and Levine (2009), and Dovis (2013)), the allocations described above can be decentralized
via non-stage contingent debt and default as well as state contingent debt and no default. While our model’s
implications about default are worth exploring, our main goal is to characterize the dynamics of aggregate
quantities: debt (external and domestic), output, inequality, etc. We leave this for future work.
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among the initial old, the young do not save, the old only consume the pensions received
from the government, and the economy is in financial autarky with respect to the rest of
the world. The government thus gains from equalizing consumption among the old and
not paying its external debt, while the cost of this deviation is the disruption in domestic
asset markets, which in turn reduces government’s ability to redistribute.3

The sustainability constraint points to the two main sources of time-inconsistency in
the determination of policies: First, if the government is a net external debtor, it has an
incentive to default on its external debt payments so that it can increase domestic con-
sumption and leisure. Second, at each period, since there is a non-degenerate distribution
of wealth among the old households and the government is inequality-averse, it has an
incentive to expropriate all the wealth via a 100 percent tax on wealth and redistribute it
equally among the old. The key trade-off is that the inequality among the old is necessary
to provide incentive to produce when young, while it is costly ex-post once labor supply
decisions are made. As it becomes clear, the interaction between these two incentives
drives most of our results.

Using the above restrictions, we can thus define the best sustainable equilibrium as an
allocation that satisfies the conditions in Lemma 1 and (14), and maximizes social welfare
at time 0. In our analysis, we assume the following:

Assumption 2. (Impatience) β̂ (1 + r) 6 1.

In section 5, we discuss why in an environment with shocks and a continuum of coun-
tries, it is natural to have the market clearing interest rate satisfy Assumption 2 with strict
inequality.

3.1 A Recursive Formulation

The problem associated with the best sustainable equilibrium has a natural two-dimensional
state variable: external debt and output in the previous period, since inequality among
the current old depends only on output in the previous period. Let V (Bt, Yt−1) be the
social welfare associated with the best sustainable equilibrium at t. Since the objective
function is additively separable between inequality and other variables, we have that
V (B, Y−) =W (B) − β

β̂
H (Y−) whereW (·) is given by (P1):

W (B) = max
C0,C1,Y,B′

β

β̂
logC1 + logC0 +ψ log (1 − Y) − (1 +ψ+β)H (Y) + β̂W

(
B′
)

(P1)

3Given the disruption in domestic financial markets following a default, it is possible for the government
to support a positive amount of foreign debt.
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subject to

C0 +C1 +B+G 6
B′

1 + r
+ Y (15)

W
(
B′
)
−
β

β̂
H (Y) > W, (16)

where in the above formulation we have used the characterization of aggregate alloca-
tions in a competitive equilibrium with taxes in Lemma 1 and the definition of H (Y) in
(12). Therefore,W (B) is the value for the planner excluding the disutility of inequality of
the current old. The constraint (15) is the aggregate resource constraint for the economy
which enters period t with external debt B, while (16) is the sustainability constraint at
t+ 1.

The recursive problem in (P1) is non-standard in the sense that the value function
appears in the constraint set. As a result, the functional equation in (P1) might have
multiple solutions. Nevertheless, we are able to show that the set of solutions to (P1) is
non-empty and the one with the highest value among these solutions solves the optimal
policy problem. We do so by focusing on the dual of the functional equation in (P1) (with
promised utility as state variable) and use standard dynamic programming techniques.
All of our results are stated for this solution to (P1).

The following proposition connects the solution of (P1) to the best sustainable equilib-
rium:

Proposition 1. Consider the best solution to (P1),W∗. If an allocation is associated with the best
sustainable equilibrium, then the allocations for t > 1 must be generated from the policy functions
associated withW∗.

Conversely, if an allocation is generated from the policy function associated with W∗ and
satisfies

lim sup
t→∞ β̂tW∗(Bt) = 0

then it must be associated with the best sustainable equilibrium.

Proposition 1 is similar to the standard principle of optimality (see Theorems 4.2 and
4.3 in Stokey et al. (1989)). We provide the proof in the Appendix.

The following lemma establishes the basic properties of the best value functionW∗ (B):

Lemma 2. The value functionW∗(B) is strictly decreasing, strictly concave, and differentiable.

The proof resorts to the duality property stated above and uses standard dynamic
programming techniques (see Appendix for details).
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3.2 Cyclicality of External Debt

In this section, we provide our main result by characterizing the dynamics of external
debt over time.

The problem in (P1) can be simplified. Note that the ratio between consumption of the
old and the young households is constant. Using that observation and rearranging the
terms in (P1), the optimization problem boils down to the following simple problem:

max
B′,Y

U

(
B′

1 + r
+ Y −B−G, Y

)
+ β̂V

(
B′, Y

)
(P2)

subject to
V
(
B′, Y

)
>W, (17)

whereU (C, Y) =
(
1 +β/β̂

)
logC+ψ log (1 − Y)− (1 +ψ)H (Y). Our previous discussion

implies that V (B, Y−) is decreasing in both B and Y−.
The program in (P2) is the central problem in our paper in that it captures the model’s

key trade-off: the tension between external debt and inequality from the current govern-
ment’s perspective compared to future government’s perspective. The function U (C, Y)
represents the social welfare of the currently alive people and includes the cost of inequal-
ity. The function V (B′, Y) represents the value from future external debt and inequality
for the future government. Due to the equity-efficiency trade-off, higher output today
can only be achieved with higher inequality. Hence, the function V (B′, Y) is decreasing in
Y. Note that the standard representative agent models of borrowing and lending without
commitment are a special case of the problem in (P2), where the value function V (B, Y) is
independent of Y.

The first-order conditions associated with (P2) are given by

UC +
(
β̂+ λ

)
VB′ = 0 (18)

UC +UY +
(
β̂+ λ

)
VY = 0, (19)

where λ is the Lagrange multiplier on (17). Since an increase in output is costly for the
current government, UY < 0, the two first order conditions above imply that

0 > VY > VB′ . (20)

The above inequality captures the key tension between the current and future govern-
ment’s perspectives. The future government would like to equate the marginal cost
of debt and inequality. However, from current government’s perspective, inequality is
costly, due to disutility of effort and inequality. Hence, from future government’s per-
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spective, there is too little inequality and too much external debt. In other words, a re-
duction in government’s external debt and an increase in output of the same size lead
to an increase in the value of the future government while current consumption remains
unchanged.

The following theorem is a direct result of this conflict of interest, and it describes its
effect on the shape of policy functions in (P2):

Theorem 1. The policy function B′(B) in the programming problem (P2) is hump-shaped: for
small values of B, the sustainability constraint is slack and B′ (B) is increasing; for large values of
B, the sustainability constraint is binding and B′ (B) is decreasing. The policy function Y (B) is
increasing.

Proof. We provide the idea of the proof here and leave the details to the Appendix:
Suppose that the sustainability constraint is slack. Then we can ignore the constraint

(17) in (P2). Since the objective function is supermodular in (B,B′) and concave, then
standard monotone comparative statics results imply that the policy function B′ (B) must
be increasing. Furthermore, due to the income effect, Y (B) must be increasing.

Suppose that the sustainability constraint is binding. This constraint implies a map-
ping from B′ to Y. The inequality (20) implies that this mapping has a slope that is less
than − 1

1+r . We can then use this map to substitute for Y in terms of B ′ in the objective func-
tion in (P2). The resulting objective function for this simplified problem is submodular in
(B,B′) and hence B′ (B) is decreasing while Y (B) is increasing.

Consider the comparative statics with respect to B. When B is low, the sustainability
constraint (17) is slack. Hence, an increase in current external debt should be accompa-
nied by an increase in future external debt for standard consumption smoothing reasons.
Furthermore, an increase in external debt increases the interest payment to the foreign
lenders, which in turn leads to an increase in output and inequality. In other words, from
the current government’s perspective, equality (inverse of inequality) is a normal good.

When B is sufficiently high, the sustainability constraint is binding. Due to the sus-
tainability constraint (17), both B′ and Y cannot be increased in response to an increase in
B. Since there is too little inequality from future government’s perspective (i.e., inequal-
ity (20) holds), the cost of an increase in inequality is lower. Therefore, in response to an
increase in B, Y must increase and B′ must decrease.

Intuitively, an increase in external debt, B, increases the effective weight on the utility
of the future government. Since there is too little inequality from the future government’s
perspective, it always prefers a decline in external debt and an increase in future inequal-
ity. Therefore, when current external debt increases, the allocation of future debt and
inequality tilts in favor of the future government, which implies that B′ must decrease
and inequality must increase.
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Figure 1: Policy Functions for external debt and inequality

Figure 1 depicts the policy functions associated with future debt and current inequal-
ity (H = H (Y) is the disutility from inequality) for the case where β̂ (1 + r) < 1. When B
is below B∗, the sustainability constraint is slack, B′ (B) is increasing, and B′ (B) > B. For
values of B higher than B∗, the sustainability constraint is binding and B′ (B) is decreas-
ing. The steady state level of external debt is given by Bs and is in the region where B′ (B)
is decreasing.

When debt is above its steady state value, Bs, it is reduced below the steady state
level and vice versa. We call this feature of the model overshooting. This implies that the
convergence to the steady state is cyclical. Therefore, the country goes through cycles
with two phases. In the first phase, inherited external debt is below its steady state value
and the current inequality is low. Low inequality is generated by a high value of transfers
and pensions, and borrowing from the rest of the world (i.e., future debt is high). In the
second phase, both inherited external debt and inequality are high. High inequality is
generated by a low value of transfers and pensions, and a reduction of external debt. In
this sense, during the second phase, the country goes through a period that resembles
austerity.

The following corollary states the cyclical pattern of external debt:

Corollary 1. Suppose that β̂(1 + r) < 1. Then, the dynamic system implied by B′(B) eventually
exhibits oscillatory dynamics. That is, for all t large enough, if Bt 6= Bs, (Bt −Bs)(Bt+1 −Bs) <

0. In addition, optimal allocations, Ct,0,Ct−1,1, Yt, feature the same dynamics.

As it can be seen in problem (P2), an increase inG is equivalent to an increase inB. This
implies that a high enough unexpected shock toG reduces the value of outstanding exter-
nal debt and thus the country goes through a period resembling austerity. This period will
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be followed by a cyclical convergence to the steady state. In section 5, we formally ana-
lyze a version of our model with shocks to G, and describe how cycles between populism
and austerity do not dissipate in the long run. This dynamic contrasts most models of in-
ternational borrowing and lending (see for example Thomas and Worrall (1994), Aguiar
et al. (2009), and Aguiar and Amador (2011)), where future outstanding external debt is
increased in response to an increase in current external debt or government spending.

3.3 Dynamics of Taxes, Transfers and Debt

Our previous analysis has focused on allocations. From Lemma 1, there must exist taxes,
transfers, pensions, and domestic debt policies that support such allocation as a compet-
itive equilibrium. In this section, we describe a competitive equilibrium which supports
the optimal allocations and has a recursive structure that follows those of the allocations.
Hence, policies depend on external debt. We resolve the indeterminacy in transfers and
debt holdings by considering a decentralization in which the lowest productivity type
hold zero assets, a1 = 0. The following proposition describes how one set of such policies
depend on the state.

Proposition 2. The optimal allocations generated from policy functions for problem (P2) are sup-
ported by government policies where domestic debt is V-shaped in B; Bd is decreasing in B when
B < B∗ and increasing in B when B > B∗; labor income tax, τl, is increasing in B, and transfers
are decreasing in B.

Figure 2 describes the behavior of policies in response to changes in external debt. As
external debt increases, interest payments to foreign lenders increase; the government fi-
nances this increase by a decline in transfers and pensions and an increase in labor income
taxes. When the sustainability constraint is binding, the change in transfers and pensions
is more pronounced, while the change in taxes is less pronounced, since the trade-off
between inequality and external debt is tilted towards more inequality.4 In addition, a re-
duction of external debt is partly financed by issuing domestic debt and, hence, domestic
debt issuance is a V-shaped function of external debt.5

4In general, we cannot prove that promised pensions are a V-shaped function of external debt since
there are two opposite forces at play. In our decentralization, promised pensions are given by P ′ (B) =

ϕ1 (Y (B)) 1−κ
κ C (B ′(B)). For low level of debt, when the sustainability constraint is slack, both the con-

sumption share of lowest productivity type and the promised aggregate consumption are decreasing in
B and therefore so are promised pensions. For high level of debt, when the sustainability constraint is
binding, the consumption share of lowest productivity type is decreasing in B while the promised aggre-
gate consumption is increasing in B. However, in all of our numerical simulations, promised pensions are
increasing in debt in this region.

5This implies that during fiscal consolidations the share of total government debt held domestically
increases. This fact is well documented for the recent European debt crisis. For instance, Broner et al. (2014)
document that the share of government debt held by residents increases in Italy, Spain, Portugal, Ireland,
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Figure 2: Policy Functions for external debt and inequality

3.4 Robustness of Cycles

3.4.1 Role of Preferences

In our analysis above, the key property that generates a hump-shape in future exter-
nal debt policy function and upward sloping inequality is the fact that equality is a
normal good. That is, as countries become richer, their demand for equality increases.
Log preferences create a direct relationship between inequality and output, and nor-
mality of equality implies that output must also increase in response to an increase in
external debt. With other preferences, the relationship between inequality and output
is not as straightforward. In the Appendix, we extend our analysis to GHH (given by
log (c0 − v (l)) +β log c1) and BGP preferences. For all such preferences, equality is a nor-
mal good and thus the policy functions for future external debt and inequality satisfy the
same property as in Figure 1. With these preferences, however, the direct relationship be-

and Greece (and to a less extent in France) while in Germany the share of debt held domestically continues
a long-run downward trend. (see Figure 4 in their paper)
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tween output and inequality does not hold, and the output can decline as debt increases
as it is the case with GHH preferences where the wealth effect is absent. Note that the
insights from section 3.3 hold for these alternative specifications of the utility function.

3.4.2 Three-Period Generations

Another key assumption in our formulation is that individuals only live for two periods.
In the Appendix, we relax this assumption by considering a setting for which each gener-
ation lives for three periods. In this extension, the state of the economy is summarized by
three variables: external debt, and inequality among the past two generations. It can be
shown that the same conflict of interest between the current and the future government
gives rise to overshooting. That is, future debt is a hump-shaped function of current debt.
The existence of cycles is, however, not guaranteed since past level of inequality also af-
fect the policy functions. Nevertheless, we show, by way of numerical simulations, that
this economy also exhibits cyclical dynamics.

4 Political Economy Model

So far, we have considered an environment in which policies are chosen by a fictitious
planner that lacks commitment and cares about all the future generations. In this section,
we extend this insight to a model where policies are determined according to the proba-
bilistic model of Lindbeck and Weibull (1987)6 and show that our main results extend to
this environment. We sketch the political game here and leave the formal development to
the Appendix.

We consider a game where in each period, two political parties propose policy plat-
forms that include all the contemporaneous policy variables introduced in section 3. The
young and old individuals evaluate such policies based on preferences in 1 with the ad-
dition of a political bias shock toward each party. When the additive political bias shocks
are distributed uniformly, the symmetric equilibrium of the political game between the
two parties is equivalent to the maximization of

ω
∑
i

αiµiuit−1,1 +
∑
i

αiµiuit,0, (21)

a weighted sum of the utility of the people alive at t. We assume that political bias shocks
are distributed so that αi’s are weakly decreasing in i.7

6See also Song et al. (2012), Farhi et al. (2012) and Scheuer and Wolitzky (2014) for similar applications
to other dynamic settings.

7In particular, when political bias shocks have the same uniform distribution for all individuals, this
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Similar to the game underlying the model in section 3, policies are determined in a
dynamic game between foreign creditors, households, and politicians. Our notion of
equilibrium in this dynamic game is the standard subgame perfect equilibrium (SPE).

As in section 3, we consider equilibria that involve trigger strategies to autarky. We
can thus show that an allocation is the symmetric SPE resulting from such equilibria of the
political game if it satisfies the characterization in Lemma 1 and if the following inequality
is satisfied:

ω
∑
i

αiµiuit−1,1 +
∑
i

αiµiuit,0 > V , (22)

where V is defined in a way analogous toW in section 3. We refer to the above constraint
as the political sustainability constraint. Intuitively, this constraint requires that at each
point in time, the value for the current government in power under the prescribed policy
be higher than what it can get in autarky. See the Appendix for a formal characterization
of the entire set of these SPE outcomes.

To derive the implications for policies and allocations associated with the political
economy game, we need to specify a criterion to select among the set of equilibrium out-
comes. We consider two alternatives. First, we consider the SPE outcome that maximizes
the same objective function introduced in section 3. We refer to such outcome as best
SPE outcome. Second, we consider a selection criterion in the spirit of the canonical Eaton
and Gersovitz (1981) model of sovereign default. We refer to this particular SPE as the
Eaton-Gersovitz (EG) political equilibrium. We will show that in both cases, with some mi-
nor qualifications, the main conclusions derived in section 3 remain valid. In particular,
the economy exhibits cyclical dynamics over time.

4.1 Best SPE

In this section, we briefly describe the behavior of the best SPE. We rank subgame perfect
equilibria according to the welfare function in section 3, which attaches a Pareto weight
of β̂tαi to an agent of type i born at t > 0. As before, we assume that Assumption 2 holds.
The best SPE is, therefore, the solution of a planning problem that maximizes the social
welfare as defined in section 3 subject to the constraints imposed by Lemma 1 and the
political sustainability constraint (22).

We use a dual approach for the characterization of the planning problem described
above. The dual version of the planning problem is one where payoff to the foreign
lenders is maximized subject to a given level of utility to current generation and a value
of social welfare for all generations, in addition to the constraints imposed by Lemma 1
and (22). This dual problem can be written recursively where the state is given by the

assumption is automatically satisfied.
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average utility for a generation8:

vt = logCt,0 +ψ log (1 − Yt) +β logCt,1 − (1 +ψ+β)H (Yt) .

Under this formulation, the political sustainability constraint becomes

vt+1 +ω logCt,1 −ωH (Yt−1) > V

We defer the formal definition of the recursive dual planning problem to the Appendix.
The main result is that the policy function v′ (t, v), the social welfare associated with future
generations, is decreasing in v and thus we have the following proposition:

Proposition 3. Suppose that β̂ (1 + r) = 1. When the value of initial external debt or in-
equality is high, the dynamics of vt in the best SPE is cyclical, that is, vs exists such that ∀t,
(vt − vs) (vt+1 − vs) < 0.

The proof can be found in the Appendix.
The dynamics of the best SPE outcome is then consistent with the cycles we described

in section 3. When total indebtedness is low and utility for current generation is high,
we observe an increase in government debt, especially when external debt, and income
inequality is low. This increase in indebtedness translates into low utility for future gener-
ations and high income inequality. As before, the trade-off between average value for the
next generation and inequality among the future old is tilted towards inequality. There-
fore, an increase in vmust be accompanied by a change in favor of the future government
towards higher inequality among the old and, as a result, a lower value for the next gen-
eration.

4.2 Eaton-Gersovitz Political Equilibrium

We turn to analyze the EG political equilibrium. Such an equilibrium satisfies the fol-
lowing two properties. First, strategies are the same after two histories with no default
if the inherited external debt, the distribution of domestic assets, and pension payments
promised by the previous government are the same. Second, a re-optimization by the
government triggers reversion to autarky. In particular, we say that the current govern-
ment defaults on promises made by previous governments if it does not repay inherited
external debt, taxes assets of the initial old above a certain level exogenously specified, or
lowers pension payments below what was set by the previous government. Without loss
of generality, we set the maximal tax on assets to zero.

8When β̂(1 + r) < 1 the problem is non-stationary and thus time must be part of the state. When
β̂(1 + r) = 1, the problem is stationary and the state is represented only by vt. For simplicity, we focus on
the case where β̂ (1 + r) = 1.
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In the Appendix we show that (other than for period zero), we can characterize the
EG political equilibrium outcome recursively using a single state variable: the total gov-
ernment debt given by B̂t = Bt + B

d
t + Pt = Bt +Ct−1,1. As we show, the optimal policy

problem in this equilibrium is equivalent to maximizing the value of one generation that
inherits total debt B̂ and faces a political sustainability constraint. That is, it solves

w
(
B̂
)
= max
C0,Y,C1,B′

logC0 +ψ log (1 − Y) +β log (C1) − (1 +ψ+β)H (Y) (P’)

subject to

B̂+C0 +
C1

1 + r
+G 6 Y +

B̂′

1 + r
(23)

ω [−H (Y) + log (C1)] +w
(
B̂′
)

> V . (24)

The main result for this section is that the allocations imposed by the above optimiza-
tion problem feature cycles in total government debt, B̂t. This follows from the fact that
total debt issued today is decreasing in inherited total debt.

Proposition 4. The policy rules associated with the problem in (P’) are such that Y(B̂) is increas-
ing and B̂′(B̂) is decreasing.

As before, this proposition implies that the equilibrium outcome path exhibits a cycli-
cal behavior in total debt. When inherited obligations, B̂t, are above their steady state
value, B̂s, the next period they are below B̂s. The opposite happens when B̂t < B̂s. The
intuition for this dynamic is similar to the one in section 3. An increase in total debt leads
to a tilt in the trade-off between inequality and total debt in favor of the future govern-
ment, which, together with the binding sustainability constraint, implies that inequality
must increase while total debt must decrease.

While we are able to show that there are cycles in total government debt (i.e., a mea-
sure of government debt that includes external and domestic debt and pensions), the
dynamics of the domestic and the dynamics of the foreign components depend on param-
eters. Solving the model numerically, we find that external government debt decreases in
total debt if ω is sufficiently large, but external debt may increase if ω is small enough.
See Figure 4.2 for an illustration.9 Intuitively, when ω is high, the future government is
concerned about the average consumption of the future old, and thus the decline in future
total debt coincides with an increase in C1. This implies that external debt B′ = B̂− C1

must decline as current total debt increases. Therefore, the dynamics of external and total

9Parameters other than ω used in the simulation are: β = .9625, β̂ = 1/(1 + r) = .9925, αi = 1 for all i,
ψ = 1, Θ = {1, 1.1, 5} with {µi} = {.1, .8, .1}.
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Figure 3: Policy Functions EG Political Equilibrium: High and Lowω

government debt are aligned. Whenω is small, this could be reversed, and hence external
debt is not a monotone function of total debt.

5 Stochastic Economy

In this section, we extend the model to allow for shocks to terms of trade. This formu-
lation allows to draw parallels with the experiences of Latin American economies where
the price of commodities is extremely important for the country’s current account and
public finances. We show that all of our results in the deterministic model hold in this
extension.

Much of the model setup is similar to that presented in section 2. Therefore, we skip
many of the details, as they remain unchanged, and describe the changes made to the
model.

In each period, there is a realization of a stochastic event st ∈ S = {s(1) < · · · < s(K)} ⊂
R that is independently and identically distributed according to the distribution π (s).
The history of shocks is denoted by st = (s0, · · · , st) ∈ St+1. With a slight abuse of nota-
tion, we represent the probability distribution of st by π

(
st
)
=
∏t
τ=0 π (sτ). The random

variable st directly affects net government purchases given by G (st) where G is an de-
creasing function of st; that is, s(1) is the state with the highest net government spending
while s(K) is the state with the lowest net government spending. We think of net govern-
ment spending as the difference between government expenditures and revenues that the
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government receives by selling its endowment of commodities. Hence a lower value for
G is associated with a positive shock to the terms of trade (high commodity price). We let
average value of net government spending to be Ḡ. Given this representation of histories,
allocations are represented by functions of the history of shocks, st.

In line with Lucas and Stokey (1983) and Werning (2007), we assume that asset markets
are complete and young individuals and the government can trade a complete set of
arrow securities in each state st at prices given by

{
qdt+1

(
st+1)}

st+1%st
. In addition, the

government can issue full state contingent debt in international markets at prices given
by
{
qt+1

(
st+1)}

st+1%st .
We make the following assumptions about the price of government debt in interna-

tional markets:

Assumption 3. Prices
{
qt+1

(
st+1)}

st+1%st satisfy the following properties:

1. (Stationarity) There exists an interest rate r such that qt+1
(
st+1) = πt+1

(
st+1|st

) 1
1+r =

π (st)
1

1+r , where πt+1
(
st+1|st

)
is the probability of st+1 conditional on st.

2. (Impatience) β̂ (1 + r) < 1.

In the Appendix, we show that when the world economy consists of identical coun-
tries subject to government spending shocks, stationarity implies that there must exist a
constant interest rate. See Kehoe and Levine (1993) and Alvarez and Jermann (2000) for a
similar result. Furthermore, since an unconstrained country prices a state contingent se-
curity, the first relationship must be satisfied. Finally, since countries would like to avoid
binding sustainability constraints in the future, the supply of saving is higher than that
of unconstrained steady state; therefore, interest rates must be lower than the discount
rate. We can then think of this stochastic economy as justifying our relative impatience
assumption in section 3.

As in section 3, we focus on a planning problem without commitment. An allocation
is, then, said to be sustainable if it satisfies

β

β̂

∑
i

αiµiuit−1,1
(
st
)
+

∞∑
τ=t

β̂τ−t
∑
sτ%st

πτ
(
sτ|st

)∑
i

αiµiuiτ (s
τ) >W (st) . (25)

where as before, W (st) is the highest value to the government when government and
households are in financial autarky defined in a way analogous to (14). As before, the
associated Bellman equation can be written as

W
(
B̂
)
= max
C0,C1,Y,B′

β

β̂
logC1 + logC0 +ψ log (1 − Y)−(1 +ψ+β)H (Y)+ β̂

∑
π
(
s′
)
W
(
B̂′
(
s′
))

(26)
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subject to

C0 +C1 + (1 + r) B̂ =
∑

π
(
s′
)
B̂′
(
s′
)
−

Ḡ

1 + r
+ZY (27)

−
β

β̂
H (Y) +W

(
B̂′
(
s′
))

> W
(
s′
)

(28)

where B̂ is the sum of government’s external debt and net government purchases during
the next period. In other words, B̂t = Bt +

Gt
1+r . It represents government’s obligation

excluding those to domestic households. Focusing on B̂t greatly simplifies the recursive
formulation of the problem, as it allows us to record only one state variable.

The decision rules have the same properties as in the deterministic case as shown in
the following proposition:

Proposition 5. Let W∗ be the best solution to the Bellman equation in (26). Then its associated
policy functions satisfy the following properties:

1. Y(B̂) is decreasing in B̂, C0
(
B̂
)

and C1
(
B̂
)

are increasing in B̂;

2. B̂′(B̂, s′) is hump-shaped; there exists B∗(s′), such that B̂′(B̂, s′) is increasing for all B̂ <
B∗(s′) and decreasing for all B̂ > B∗(s′);

3. B∗(s′) is increasing in s′.

The main result here is that the policy function for debt is hump-shaped in inherited
debt. The intuition is the same as in the deterministic case: When the sustainability con-
straint is binding, an increase in future debt must be accompanied by a fall in inequality
and, thus, a fall in output. At the optimum, this fall in output has to be larger than the
increase in debt, since output is a costlier instrument to raise funds than debt is. For high
values of current external debt, borrowing further cannot increase current consumption.
Hence, when the government is highly indebted and values current consumption more,
it is willing to make a drastic downward adjustment and sacrifice equality to increase
current aggregate consumption.

Figure 4 depicts the policy functions implied by (26) for an example with two values
of shocks (K = 2). In line with proposition 5, policy functions are inverted V-shaped in
external debt and decreasing with respect to future government spending, G (s′).

The typical equilibrium dynamics is a follows. Suppose a country starts with a low
level of debt B̂. Over time, it accumulates debt since the equilibrium interest rates are
less than the discount factor. During this time, the government keeps transfers high and
inequality low, corresponding to the boom phase of the cycle. Eventually its debt gets
into the region in which sustainability constraints bind (decreasing portion of the policy
function), precipitating austerity, cut in transfers and net outflow of resources.
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Figure 4: Policy functions for future external debt and inequality in the stochastic econ-
omy

As can be seen from Figure 4, populist cycles do not die out over time, as in the case
of the deterministic economy in Section 3, and continue to exist in the invariant distribu-
tion.10 The cycles decline in amplitude over time as long as the country experiences the
same realization of G (s′). A new shock amplifies the oscillatory dynamics and re-starts
the cycle.

It is important to notice a difference between our model and a standard representa-
tive agent model with lack of commitment that has been used to analyze international
capital flows (see for instance Aguiar et al. (2009)). In a representative agent framework,
downward adjustment in external debt happens only when the economy draws a low
government spending shocks. In contrast, in our model downward adjustments together
with a positive current account also occurs in bad fiscal times. This is consistent with the
empirical observation that countries are often forced to repay their debts even in adverse
economic conditions.

6 Historical Evidence

In this section, we confront the implications of our model with the accounts of various his-
torical episodes for the evolution of fiscal and external debt policies in several developing
economies.

Cyclicality of fiscal policy and austerity. The equilibrium dynamics of our model is
consistent with the populist cycles in macroeconomic policies first identified by Sachs (1989)
and Dornbusch and Edwards (1991). In particular, Dornbusch and Edwards (1991) in

10In the Appendix, we show the existence of an invariant distribution for this economy.
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their study of economic policies in Latin American countries argue that the dynamics
of fiscal policy involves two main phases: a populist phase and a consolidation phase. In
the populist phase, redistributive policies supporting low and middle-income workers11

are implemented. In this phase, government finances worsen as the government runs
large primary deficits. Additionally the country’s net foreign asset position deteriorates
(typically involving a reduction of foreign exchange reserves). A common starting point
of the populist phase is the presence of a previous stabilization program that would have
generally improved the country’s fiscal and external budget at the expense of a highly
uneven income distribution. This inequality typically presents a serious political and
economic challenge for the governments, and provides the appeal for a radically different
fiscal programs (see Dornbusch and Edwards (1991)).

The consolidation (austerity) phase that follows the populist phase attempts to address
the fiscal imbalances. In this phase, austerity measures are implemented, and the govern-
ment reduces its primary deficits and its external debt position. This phase also typically
involves the intervention of foreign organizations such as the IMF.

These two phases neatly map into the dynamics predicted by our model. The populist
phase corresponds to instances in our model when external debt values are low, and the
government borrows heavily externally and expands its redistributive programs. This
phase coincides with a primary deficit for the government in combination with a current
account deficit. For high enough values of inherited external debt, transfers are reduced
and external debt is repaid in an effort to minimize the output distortion in the economy
and maximize the amount of resources available. As a result the government runs a
primary surplus while the economy runs a current account surplus. Such behavior closely
resembles the consolidation phase.

Two particular examples of these populist cycles are worth further consideration:
Chile under Allende and Argentina under Perón. Prior to Allende, in the three years
leading to 1970, the conditions of the Chilean public finances were favorable, mainly due
to an increase in the price of copper, the country’s main export product. Upon winning the
election in 1971, the Allende government implemented various populist policies such as
redistribution of land, nationalization of industries, and increase of minimum wages; for
example, the real minimum wages for blue collar workers were increased by 56 percent
in the first quarter of 1971. These policies had a positive effect on the income distribution
at the cost of reducing the efficiency in the economy and deteriorating the public finance
conditions. For instance, Ffrench-Davis (2002) writes that the period in which Allende
was in power “shows a distributive improvement but within a deteriorated economy: a less con-

11Although part of their focus is on the real appreciation of the currency and its effect on import prices
and wages in the non-tradable sector, many of the episodes identified also involve labor policies involving
low and middle-income workers.
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centrated distribution of a smaller cake.” Moreover, the average change in the public external
debt net of international reserves was 14.2 percent of the GDP, and the primary deficit av-
eraged 13.4 percent of the GDP, reaching a maximal level of 22.5 percent of the GDP in
1973.12 This populist phase was followed by the advent of Pinochet and a reversal of the
social and economic reforms enacted by Allende and sizable primary surplus (3.74 per-
cent from 1973 to 1982). This resulted in a reduction in the external net government debt
between 1975 and 1981. In particular, the net external government debt as a fraction of the
GDP fell from approximately 52 percent to 2.2 percent over five years. Not surprisingly,
this coincided with a primary surplus of around 5 percent of the GDP.

Another emblematic case of populist policies that turned into a large fiscal consoli-
dation is the experience of Argentina in 1945-1948, what Mallon and Sourrouille (1975)
call “Perón’s period of assault.” As secretary of labor, Perón introduced various pro-labor
policies including an increase in minimum wages and a substantial increase in pension
benefits, and established a close relationship with the labor unions, with these policies
continuing when he came to power in 1946. During the same episode, Argentina experi-
enced a decline in its current account (from 1.99 billion pesos in 1946 to -610 million pesos
in 1949; see Taylor (1998)) as well as a decline in foreign reserve holdings (from 1.1 billion
dollars in 1946 to 258 million dollars in 1948). By the early 1950s there are signs of moves
towards austerity measures. In a speech in 1952 Perón stated – as reproduced in Mallon
and Sourrouille (1975):

The justicialista [i.e. Peronist] economy asserts that the production of the economy
should first satisfy the needs of its inhabitants and only export the surplus; the surplus,
nothing more. With this theory the boys here, of course, eat more every day and
consume more, so that the surplus is smaller. But these poor guys have been submerged
for fifty years; for this reason I have let them spend and eat and waste everything they
wanted to for five years . . . but now we undoubtedly must begin to reorder things so
as not to waste any more.

In 1952, the government introduced wage freezes, subsidized exports, and implemented
import restrictions. As a result, the current account increased to 7.761 billion pesos in
1953 (2.1 billion pesos in 1954). See Dornbusch and Edwards (1991).

The predictions of our model are also consistent with the experience of several South-
ern European countries in the current economic crisis. In fact, in the aftermath of the
favorable economic climate following the establishment of the euro, the governments
of Southern European countries significantly increased public debt (particularly external
debt in the case of Portugal and Greece) and government expenditures (with particular

12The numbers are based on the authors’ calculations on data provided by the Central Bank of Chile.
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increase in transfers in the form of pensions, social transfers, and compensation of govern-
ment employees) before 2007. Following the financial crisis of 2007, those countries had
to implement drastic austerity measures in an effort to reduce their debt. Among other
measures, those countries reduced transfers (especially pensions) and compensation of
government employees.

For example, consider the case of Portugal. The run-up in government debt from 1999
to the current crisis is accompanied by an increasing trend in the share of total govern-
ment expenditures associated with social protection from 12 percent of the GDP in 1999
to about 18 percent in 2009.13 The advent of the crisis is associated with dramatic changes
in public finances and the trade balance. From 2010 to 2014, the primary surplus relative
to the GDP improved from -8.2 percent to 0.5 percent, and the trade balance relative to
the GDP improved from -7.1 percent to 1.1 percent. The total government expenditures
associated with social protection declined by about 73 billion euro from 2010 to 2012. See
Reis (2015) for further discussion.

Similarly, in Greece, the remuneration of public sector employees, a form of transfer,
grew by 25 percent from 2000 to 2009, this figure being less than 7 percent on average
for the the euro-area (see OECD (2013) Figure 6). These policies reversed after the crisis
onset, with the reduction in wages of government employees and the reduction in pen-
sions being the key components of the austerity measures.14 See Ioannides and Pissarides
(2015) for more details.

Inequality and Incentive to Default. The cycles in our model arise because countries
with high wealth inequality (or, equivalently, countries that had high income inequality)
can support a lower amount of external public debt. Berg and Sachs (1988) find sup-
port for this mechanism. They document that higher income inequality is a significant
predictor of the probability that a country will reschedule its external debt and of the
interest rate spreads of the bond price in the secondary market. The authors consider
a sample of emerging economies and find that income distribution, measured as the ra-
tio of household income of top 20 percentiles over bottom 20 percentiles, is a significant
predictor of the probability of rescheduling once controlling for other variables such as
outward orientation of trade policies, share of agriculture in GNP, level of per capita GDP,
and changes in the terms of trade.15 More recently, Aizenman and Jinjarak (2012) find a

13Source: Eurostat (2014)
14For instance, “a single salary grid was introduced and then extended to the whole civil service in

November 2012, which rationalized the pay structure and reduced average pay levels by nearly 20%”
(OECD (2013)).

15Since most of the countries that rescheduled and have high spreads are in Latin America and since
such economies are characterized by extreme income inequality, one may think that high income inequality
is just picking up a “Latin American” fixed effect. Interestingly enough, Berg and Sachs (1988) show that
introducing a dummy variable for Latin America does not change the result: income inequality is still
an important predictor of rescheduling. They find similar result when considering the effect of income
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positive association between sovereign default risk (measured by the CDS spread) and
inequality.

Relatedly, Tomz (2004) analyzes a public opinion survey administered in Argentina
during the debt crisis of 2001-2002. He finds that on average, poor, unemployed, and
public sector employees are more favorable to a sovereign default, consistently with our
model predictions. See the survey in Tomz and Wright (2013) for references to other works
with similar findings.

7 Conclusion

The political economy and unequal effect of consolidations are important features of
sovereign debt crises. In this paper, we develop a framework to analyze the interactions
of inequality and external debt in an economy without commitment. As we have shown,
our model can account for why various developing countries go through low-frequency
cycles in external debt. In explaining these cycles, our theory points toward weak in-
stitutions as the main culprit behind this seemingly puzzling observation. According to
our theory, the key difference between these economies and more stable and developed
economies is institutions’ inability to tie the government’s hand in changing policies, in
other words, lack of commitment.

We believe that our tractable framework is rich enough for more general analysis of
government policy in open economies when the government is concerned about redistri-
bution. Some examples are worth discussing: First, our analysis focuses on an overlap-
ping generations economy without capital. This is partly to separately identify the con-
flict between current and future governments regarding the trade-off between inequality
and external debt, as well as the tractability of the repeated game between the govern-
ment, households, and foreign creditors. With capital, we conjecture that the conflict that
we identify is present but the analysis becomes much more complicated, since the value
associated with the worst equilibrium depends on the value of capital and is harder to
characterize. Second, we have stayed silent on default and have focused solely on allo-
cations. One can of course, decentralize the allocations discussed above in a setup where
government defaults on its debt. These are natural extensions of our framework and are
worth exploring in future research.

inequality on the spreads.
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8 Proofs

8.1 Proof of Lemma 1

Consider an allocation that constitutes a competitive equilibrium with taxes. For any such
allocation, the necessary first order conditions with log-log preferences are

qdt
1
cit,0

= β (1 − τa,t+1)
1
cit,1

(29)

1 − τl,t

cit,0
= ψ

1
θi − yit

(30)

Therefore
cit,0

c
j
t,0

=
cit,1

c
j
t,1

=
θi − yit

θj − yjt
(31)

If we define ϕit = c
i
t,0/Ct,0, then the above equations yield

ci0,t = ϕitC0,t (32)

ci1,t = ϕiC1,t (33)

θi − yit = ϕit (1 − Yt) (34)

where we have used the fact that
∑
µiθi = 1 and assumed that all allocations are inte-

rior.16 Note that the above together with (89) imply that

1 − τl,t
Ct,0

= ψ
1

1 − Yt
,qdt

1
Ct,0

= β (1 − τa,t+1)
1
Ct,1

(35)

16Since our preferences do not satisfy Inada condition for hours worked at 0 hours, we need to make
assumption about the dispersion of productivities so that everyone works positive hours. When we allow
for hours worked to be zero, all of our results will go through while they involve more extensive and
cumbersome algebra and are available upon request.
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We can combine the budget constraints (3) and (4) to obtain

cit,0 +
qdt

(1 − τa,t+1)
cit,1 = yit (1 − τl,t) + Tt +

qdt
(1 − τa,t+1)

Pt+1

Using (35) in the above equation we obtain

cit,0 +
βCt,0
Ct,1

cit,1 = yit
ψCt,0
1 − Yt

+ Tt +
qdt

(1 − τa,t+1)
Pt+1

This can be written as
1
Ct,0

cit,0 −
ψ

1 − Yt
yit +β

1
Ct,1

cit,1 = T̂t.

for some constant T̂t. Replacing from (32)–(34), we have

1
Ct,0

ϕitCt,0 −
ψ

1 − Yt

[
θi −ϕit (1 − Yt)

]
+β

1
Ct,1

ϕitCt,1 = T̂t.

(1 +ψ+β)ϕit −
ψθi

1 − Yt
= T̂t

Taking averages across i’s, we have

(1 +ψ+β)
∑
i

µiϕit −
∑
i

ψµiθi

1 − Yt
= T̂t

(1 +ψ+β) −
ψ

1 − Yt
= T̂t (36)

Hence,

(1 +ψ+β)ϕit −
ψθi

1 − Yt
= (1 +ψ+β) −

ψ

1 − Yt

or

ϕit = 1 +
ψ

1 +ψ+β

θi − 1
1 − Yt

This implies that any allocation that constitutes a competitive equilibrium with taxes must
satisfy (8) and (10). The equations (9) and (11) are satisfied from the definition of initial
assets.

To prove the reverse claim, consider aggregate allocations together with the ϕit’s that
satisfy (8)–(11) as well as the feasibility constraint (5). We construct labor income taxes,
τl,t, and bond prices, qdt using equation (35) – we set asset taxes to 0. We choose transfers,
Tt, and pensions, Pt+1 so that present value of government transfers to generation t, Tt +
qdt Pt+1 is given by (36).

By definition of τl,t, the first order conditions (29) and (30) are satisfied if ct,i = ϕitCt,0,
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ct+1,i = ϕ
i
tCt,1 and yt,i = θi −ϕit

(
θ− Yt

)
. Since equation (36) is satisfied, this individual

allocation satisfies the budget constraint. Therefore, concavity of the problem implies that
this allocation solves the optimization problem for households of type i. Since feasibility
constraint as well as the budget constraints of the households are satisfied, Walras’ law
implies that government’s budget constraint is satisfied. Thus the constructed allocations
and policies constitute a competitive equilibrium with taxes.

Q.E.D.

8.2 Proof of Proposition 1

To prove the proposition, we first analyze the recursive dual problem given by

B̂ (V) = max Y −C0 −C1 −G+
B̂ (V ′)
1 + r

(37)

subject to

β

β̂
logC1 + [logC0 +ψ log (1 − Y) − (1 +ψ+β)H (Y)] + β̂V ′ > V (38)

V ′ −
β

β̂
H (Y) > W (39)

where Vt is the value for the government at t excluding the cost of inequality for the
current old.

The transformation associated with the right hand side of (37) is a contraction and thus
the above functional equation has a unique solution. Standard arguments from dynamic
programming can be used to show that the value function B̂ (V) must be the value of
the planning problem associated with the dual of the problem associated with the best
sustainable equilibrium. Furthermore, it is straightforward to show that B̂ (V) is strictly
decreasing and that the promise keeping constraint, (38) is binding. Hence, it must be
invertible. We let the inverse of this function be given by W∗ (B) – a strictly decreasing
function. In what follows, we show that W∗ (B) is a solution to the functional equation
(P1).

To see this, consider the following optimization problem

max
C0,C1,Y,B′

β

β̂
logC1 + logC0 +ψ log (1 − Y) − (1 +ψ+β)H (Y) + β̂W∗

(
B′
)

(P1)
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subject to

C0 +C1 +B +G 6
B′

1 + r
+ Y (40)

W∗
(
B′
)
−
β

β̂
H (Y) > W (41)

Evidently, the above value must be at least as high as W∗ (B). This is because we can
just use the associated policy functions in (37) for the arguments and guarantee a value
ofW∗ (B). Suppose that for some value of B, the value of the above is strictly higher than
W∗ (B) and let

{
C̃0, C̃1, Ỹ, B̃′

}
be an allocation that delivers such a value. Now, consider

the allocation
{
C̃0 − ε, C̃1, Ỹ,W∗

(
B̃′
)}

. This allocation satisfies (39) while the utility that it
delivers is higher thanW∗ (B) – for a small and positive value of ε. Finally, this allocation
satisfies

Ỹ − C̃0 + ε− C̃1 −G+
B̂
(
W∗

(
B̃′
))

1 + r
= Ỹ − C̃0 + ε− C̃1 −G+

B̃′

1 + r

> B+ ε > B̂ (W∗ (B))

The above inequality is a contradiction since B̂ (W∗ (B)) is the highest value achieved
by any allocation that delivers utility higher than W∗ (B) and satisfies the sustainability
constraint (39). This implies that the value of the objective in (P1) must be equal toW∗ (B).
Therefore,W∗ (B) must be a solution to the functional equation in (P1). Now, suppose that
there exists another solution of (P1) that delivers a higher value thanW∗ (B). This implies
that an allocation must exists that is sustainable and feasible and delivers a value higher
than B̂ (W∗ (B)) which is a contradiction. Thus, W∗ (B) is the largest solution of (P1). The
rest of the claim in the proposition can be shown using the standard argument for the
principle of optimality.

Q.E.D.

8.3 Proof of Lemma 2

We prove that the value function B̂ (V) is concave and decreasing. This implies that its
inverseW∗ (B) must also be concave. The proof of monotonicity (as well differentiability)
is standard and follows the same techniques from Stokey et al. (1989). In order to show
concavity of the value function, it is sufficient to show that the constraint set is convex
and the rest of the proof follows from Stokey et al. (1989).
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Note that given lemma 1, the constraint set is given by

β

β̂
logC1 + logC0 +ψ log (1 − Y) − (1 +ψ+β)H (Y) + β̂V ′ = V

V ′ −
β

β̂
H (Y) > W

where

H (Y) = −
∑
i

αiµi log
(

1 +
ψ

1 +ψ+β

θi − 1
1 − Y

)
. (42)

Since log is a concave function, in order to prove the convexity of the constraint set, it is
sufficient to show that H (Y) is convex. We have

H′ (Y) = −
1

1 − Y

N∑
i=1

µi
αi

1 + ψ
1+ψ+β

θi−1
1−Y

ψ

1 +ψ+β

θi − 1
1 − Y

From assumption 1, αi is decreasing in i and so is 1
1+ ψ

1+ψ+β
θi−1
1−Y

. Hence, αi

1+ ψ
1+ψ+β

θi−1
1−Y

is

decreasing in i while ψ
1+ψ+β

θi−1
1−Y is increasing in i. Therefore, from Chebyshev’s sum

inequality (see Hardy et al. (1952)), we must have

N∑
i=1

µi
αi

1 + ψ
1+ψ+β

θi−1
1−Y

ψ

1 +ψ+β

θi − 1
1 − Y

<

N∑
i=1

µi
αi

1 + ψ
1+ψ+β

θi−1
1−Y

N∑
i=1

µi
ψ

1 +ψ+β

θi − 1
1 − Y

=

N∑
i=1

µi
αi

1 + ψ
1+ψ+β

θi−1
1−Y

ψ

(1 +ψ+β) (1 − Y)

(∑
µiθi − 1

)
= 0

This establishes that H (Y) is strictly increasing in Y.
Furthermore, we have

H′′ (Y) = −
H′ (Y)
1 − Y

−
1

1 − Y

∑
µiαi

ψ
1+ψ+β

(
θi − 1

)(
1 − Y + ψ

1+ψ+β (θ
i − 1)

)2

Note that in the expression above, the first term is positive while a similar application of
Chebyshev’s sum inequality implies that the second term is also positive and hence,H (Y)

must be strictly convex. This concludes the proof.
Q.E.D.
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8.4 Proof of Theorem 1

In light of the proof of proposition 1, we again focus on the functional equation (37). It is
sufficient to show that the policy function V ′ (V) resulting from (37) is hump-shape. As
the above results establish, we have B′ (B) = B (V ′ (W∗ (B))). Since both B andW∗ are de-
creasing functions, the hump-shape of V ′ implies a U-shape for B′ (·) and this establishes
our claim.

Since, we have shown that the value function is differentiable, we can take first order
conditions from (37). There are two possibilities:

1. The sustainability constraint is slack.
In this case, we have the following FOC

1 − λ

[
ψ

1 − Y
+ (1 +ψ+β)H′ (Y)

]
= 0

where λ is the Lagrange multiplier associated with the promise keeping constraint. Fur-
thermore, from envelope condition for (37), we must have

B̂′ (V) = −λ.

Since B̂ (V) is concave, the above condition implies that λ is increasing in V . We can then
write the FOC associated with Y as

1
λ
=

ψ

1 − Y
+ (1 +ψ+β)H′ (Y)

Since H is convex, the right hand side of the above equation is increasing in Y and the left
hand side is decreasing in λ, it must be that Y decreases as λ increases. In other words, Y
is a decreasing function of V .

Furthermore, when the sustainability constraint is not binding, the first order condi-
tion associated with V ′ together with the envelope condition implies that

1
1 + r

B̂′ (V) + λβ̂ = 0→ 1
1 + r

B̂′ (V) − β̂B̂′ (V) = 0

Since B̂ is concave, the above implies that V ′ is an increasing function of V .
The above results also imply that the sustainability constraint is slack for high val-

ues of V . This is because, the following expression is increasing in V – under the above
assumption

V ′ −
β

β̂
H (Y)

Thus there must exists a value V∗ so that for values of V higher than V∗, the sustainability
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constraint is slack.
2. Sustainability constraint is binding.
As we show above V∗ must exist such that sustainability constraint is binding only if

V < V∗. When V is below V∗, sustainability constraint binds and hence, we must have

V ′ =W +
β

β̂
H (Y) (43)

Using this relationship, the promise keeping constraint becomes

β

β̂
logC1 + logC0 +ψ log (1 − Y) − (1 +ψ)H (Y) + β̂W = V

while the objective becomes

Y −C0 −C1 +
1

1 + r
B̂

(
W +

β

β̂
H (Y)

)
Using this objective and taking first order conditions with respect to Y, we have

1 +
β

β̂ (1 + r)
B̂′
(
V ′
)
H′ (Y) − λ

[
ψ

1 − Y
+ (1 +ψ)H′ (Y)

]
= 0 (44)

where V ′ is given by (43). As before, the envelope condition implies that B̂′ (V) = −λ and
hence, we need to show that Y is a decreasing function of λ. Consider a small change in
λ, given by dλ. Let the change in Y and V ′ be defined by dY and dV ′, respectively. Then,
we must have the following relationships – based on (43)

dV ′ =
β

β̂
H′ (Y)dY

Using the above equation, taking a total derivative from (44) and after manipulations, we
can write

dY

dλ
=

ψ
1−Y + (1 +ψ)H′ (Y)

β

β̂(1+r)

(
B̂′′ (V ′) (H′ (Y))2 β

β̂
+ B̂′ (V ′)H′′ (Y)

)
− λ

[
ψ

(1−Y)2 + (1 +ψ)H′′ (Y)
]

Note that H′ > 0 and hence the numerator is a positive number. Furthermore, B̂′′ < 0,
B̂′ < 0,H′′ > 0 together with λ > 0 imply that the denominator is negative. Hence, dYdλ < 0.
The claim then follows from the fact that dλdV > 0 and dV ′

dY = β

β̂
H′ (Y) > 0.

We can then relate these results back to the primal problem (P1) to get the desired
results.

Q.E.D.
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8.5 Proof of Proposition 2

For this proposition, we consider a decentralization in which households with the lowest
productivity, θ1, hold zero debt, a1 = 0.

For simplicity, we will consider the dual version of the problem, (37) introduced in the
proof of Theorem 1. Moreover, we will repeatedly use the fact that Y is decreasing in V as
established in the proof of Theorem 1.

We start by showing that the income tax rate τl is increasing in B or decreasing in
V . Consider first the case in which the sustainability constraint is slack. In this case, the
optimal allocation satisfies the following FOCs where λ is the multiplier on the promise
keeping constraint17:

λ
κ

C
= 1 (45)

1 − λ

[
ψ

1 − Y′
+ (1 +ψ+β)H′

(
Y′
)]

= 0 (46)

Note that from the definition of κ, the consumption of the young is given by C/κ and
hence labor income taxes are given by

1 − τl =
ψ

1 − Y

C

κ

Combining (30) and (46) we can write

1 −
C

κ

[
ψ

1 − Y
+ (1 +ψ+β)H′ (Y)

]
= 0

Using the definition of Hwe have

1 −
C

κ

[
ψ

1 − Y
−

ψ

1 − Y

∑
αiµi

θi−1
1−Y

1 + ψ
1+ψ+β

θi−1
1−Y

]
= 0

or rearranging and using the definition of τl we obtain

τl
1 − τl

= −
∑
i

αiµi
θi−1
1−Y

1 + ψ
1+ψ+β

θi−1
1−Y

= −
∑
i

αiµi
θi − 1

1 − Y + ψ
1+ψ+β (θ

i − 1)
(47)

17Here we have used the fact that utility from consumption in (38) can be written as κ logC where C =

C0 +C1 and κ = β

β̂
+ 1. In addition, C0 = β̂

β+β̂
C.
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Moreover,

∂

∂Y

∑
αiµi

θi − 1

1 − Y + ψ
1+ψ+β (θ

i − 1)
=
∑

αiµi
θi − 1(

1 − Y + ψ
1+ψ+β (θ

i − 1)
)2

=
∑

µi
αi(

1 − Y + ψ
1+ψ+β (θ

i − 1)
)2

(
θi − 1

)

= Cov

 αi(
1 − Y + ψ

1+ψ+β (θ
i − 1)

)2 , θi

 < 0

Hence, the right side of (47) is increasing in V and so must be the left side. Then τl is
decreasing in V .

When the sustainability constraint binds, the FOC for Y is

1 +
q

β̂
βH′ (Y) B̂′

(
W +

β

β̂
H (Y)

)
− λ

[
ψ

1 − Y
+ (1 +ψ)H′ (Y)

]
= 0

Combining the equation above with (29), the definition of 1 − τl, and Hwe obtain

1 − τl =
1 + q

β̂
βH′ (Y) B̂′

(
W + β

β̂
H (Y)

)
1 −
∑
αiµi

θi−1
1−Y

1+ ψ
1+ψ+β

θi−1
1−Y

=
F1 (Y)

F2 (Y)
(48)

We know that F2 (Y) > 1 and it is increasing in Y. Moreover,

F′1 (Y) = 1 +
q

β̂
βH′ (Y) B̂′

(
W +

β

β̂
H (Y)

)
F′1 (Y) =

q

β̂
βH′′ (Y) B̂′

(
W +

β

β̂
H (Y)

)
+ q

(
β

β̂

)2 (
H′ (Y)

)2
B̂′′
(
W +

β

β̂
H (Y)

)
< 0

so from (48) we have that
∂τl
∂V

= −
∂

∂Y

F1 (Y)

F2 (Y)
× ∂Y
∂V

< 0,

and so τl is decreasing in V (or increasing in B).
We now turn to show that domestic debt is V-shaped, in that Bd is increasing for

V > V∗(decreasing in B for B < B∗) and it is decreasing in V for V < V∗ (increasing
in B for B > B∗). Under our decentralization, total domestic debt is given by

Bd (V) =

N∑
i=2

ϕi (Y (V))C1
(
V ′ (V)

)
=
(

1 −ϕ1 (Y (V))
) β

β+β
C
(
V ′ (V)

)
(49)
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Since Y is decreasing in V , then
(
1 −ϕ1 (Y (V))

)
is decreasing in V . Moreover C is in-

creasing in V . Let V < V∗. In this case, V ′ (V) is decreasing and so Bd (V) is decreasing.
Consider now the case V > V∗. When the sustainability constraint is slack, we can com-
bine the FOC for V ′, C, and the envelope condition to get

C
(
V ′ (V)

)
∝ −B ′

(
V ′ (V)

)
∝ C (V)

Using this and the definition of ϕ1 into (49) we obtain

Bd (V) =
ψ

1 +ψ+β

1 − θ1

1 − Y (V)

β

β+β
C
(
V ′ (V)

)
∝ C (V)

1 − Y (V)
∝ 1 − τl (V)

which is increasing as we showed above. Hence Bd (V) is increasing in V for V >V∗.
Consider now transfers for current young. In our decentralization, these are given by

T (V) = ci (V) − (1 − τl(V))y
i (V)

= ϕi (V)
β̂

β+ β̂
C (V) −

β̂

β+ β̂

ψC (V)

1 − Y (V)

(
θ1 −ϕ1 (V) (1 − Y(V))

)
where we used the fact that yi = θi −ϕi (1 − Y) and that the labor income tax rate equals
ψC (V) /1 − Y (Y). Rearranging the expression above we obtain

T (V) =
β̂

β+ β̂

[
ϕi (V)C (V)

] [
1 +ψ−

θ1ψ

(1 − Y (V))ϕ1 (V)

]
note that both terms in square brackets are positive and increasing in V , implying that
T (V) is increasing.
Q.E.D.

8.6 Proof of Proposition 3

As described in section 4.1, the sequence problem associated with the best SPE is given
by

max
β

β̂

∑
αiµi log ci−1,1 +

∑
t

β̂t (logCt,0 +ψ log (1 − Yt) − (1 +ψ+β)H (Yt) +β logCt,1)
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subject to

logCt,0 +ψ log (1 − Yt) − (1 +ψ+β)H (Yt) +β logCt,1

+ω [logCt−1,1 −H (Yt)] > V∑
t

1
(1 + r)t

[Yt −Ct,0 −Ct−1,1 −G] = B0

ci−1,1 = ai−1 + P0

Its dual is given by

max
∑
t

1
(1 + r)t

[Yt −Ct,0 −Ct−1,1 −G]

subject to∑
t

β̂t (logCt,0 +ψ log (1 − Yt) − (1 +ψ+β)H (Yt) +β logCt,1)

+
β

β̂

∑
αiµi log

(
ai−1 + P0

)
= V0

logCt,0 +ψ log (1 − Yt) − (1 +ψ+β)H (Yt) +β logCt,1

+ω [logCt−1,1 −H (Yt)] > V

C−1,1 =
∑
i

µi
(
ai−1 + P0

)

We let the above objective be given by K
({
ai−1
}N
i=1 ,V0

)
. If we let η be the multiplier on

promise keeping constraint, then we have

K

({
ai−1

}N
i=1

,V0

)
= min

η
max

∑
t

1
(1 + r)t

[Yt −Ct,0 −Ct−1,1 −G] (P3)

+ η
∑
t

β̂t (logCt,0 +ψ log (1 − Yt) − (1 +ψ+β)H (Yt) +β logCt,1)

+ η
β

β̂

∑
αiµi log

(
ai−1 + P0

)
− ηV0

subject to

logCt,0 +ψ log (1 − Yt) − (1 +ψ+β)H (Yt) +β logCt,1

+ω [logCt−1,1 −H (Yt)] > V

C−1,1 =
∑
i

µi
(
ai−1 + P0

)
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Our approach for solving the above problem is a two stage approach in which we first
solve a recursive problem given η and for allocations for periods 1 and onward. We then
solve the problem of allocating initial period’s allocations. The recursive formulation for
the problem for periods 1 and onward for a given value of η is given by

k (v;η) = max Y −C0 −
1

1 + r
C1 −G+

1
1 + r

k
(
v′;η

)
+ ηv (P4)

subject to

logC0 +ψ log (1 − Y) − (1 +ψ+β)H (Y) +β logC1 = v

ω [logC1 −H (Y)] + v′ > V

We prove the claim in the proposition by first showing that when the sustainability con-
straint is binding, the policy function v′ (v;η) is decreasing in v. To show this, we first
show the following lemma:

Lemma 3. The value function, k (v;η) is strictly concave and differentiable. Furthermore, kv (v;η)→
η > 0 as v→ −∞ while kv (v;η)→ −∞ as v→∞.

Proof. The proof of strict concavity and differentiability of k (v;η) is standard. To show
the rest of the claim, let CAUT0 ,CAUT1 , YAUT be the aggregate allocations associated with
autarky and vAUT be its associated value. Define Ĉ0 (v) be defined by

log Ĉ0 (v) +ψ log
(

1 − YAUT
)
− (1 +ψ+β)H

(
YAUT

)
+β logCAUT1 = v

Furthermore, let k1 (v;η) be defined by

k1 (v) =Y
AUT − Ĉ0 (v) −

CAUT1
1 + r

−G+ ηv

+

∞∑
t=1

1
(1 + r)t

(
YAUT −CAUT0 −

1
1 + r

CAUT1 −G+ ηvAUT
)

Then, k1 (v;η) 6 k (v;η) – since the constructed allocations satisfy all the sustainability
constraint from t = 1 onwards. In addition, let k2 (v;η) be defined by

k2 (v;η) = max
∞∑
t=0

1
(1 + r)t

[
Yt −Ct,0 −

1
1 + r

Ct,1 −G+ ηvt

]

subject to

logCt,0 +ψ log (1 − Yt) − (1 +ψ+β)H (Yt) +β logCt,1 = vt
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Then k (v;η) 6 k2 (v;η). Note that ∂
∂vk2 (v;η)→ −∞ as v→∞ – this is because ∂

∂vk2 (v;η) =
−C0 andC0 converges to∞ as v tends to∞. Therefore, we must also have kv (v;η)→ −∞
as v tends∞. Additionally, ∂

∂vk2 (v;η) , ∂∂vk1 (v;η) → η as v → −∞. This implies that the
same must hold for kv (v;η).

The above lemma implies that the function k (v;η) is hump-shaped in v. Therefore,
it must be maximized at some value v∗. Now, suppose that the sustainability constraint
is binding. A binding sustainability constraint implies that v′ = V −ω [logC1 −H (Y)].
In addition, the FOC with respect to v′ implies that kv < 0. Replacing the sustainability
constraint in the optimization in (P4), we have the following first order conditions

−1 +
λ

C0
= 0

−
1

1 + r

[
1 + kv ·

ω

C1

]
+
λβ

C1
= 0

1 +
1

1 + r
kv ·ωH′ (Y) − λ

[
ψ

1 − Y
+ (1 +ψ+β)H′ (Y)

]
= 0

Using extensive algebra and the implicit function theorem, we can show that

dY

dλ
=

βH′ 1
1−ω2kvv/C1

+
[
ψ

1−Y + (1 +ψ+β)H′ (Y)
]

−λ
[

ψ

(1−Y)2 + (1 +ψ+β)H′′ (Y)
]
+ ω2

1+r∗
1

1−ω2P′′/C1
(H′)2 kvv +

ω
1+r∗kvH

′′

The numerator of the above expression is positive, since kvv < 0 and H′ > 0, while its
denominator is negative, since kv < 0. Thus the above expression is negative. As in the
proof of Theorem 1, this implies that

dv′

dλ
=

−ωβ (1 + r∗) 1
C1

+ωH′ dYdλ
1 −ω2kvv/C1

< 0

That the policy function v′ (v;η) is decreasing follows from concavity of the value function
k (v;η).

It remains to characterize the dynamics of v over time. This dynamics mainly depends
on the value of v∗ and whether the sustainability constraint is binding at this value or not.
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Note that if the sustainability constraint is slack at v∗, we must have that

kv (v
∗;η) = 0 = η− λ

λ

C0
= 1

βλ

C1
=

1
1 + r

λ

[
1

1 − Y
+ (1 +ψ+β)H′ (Y)

]
= 1

v′∗ = logC0 +β logC1 +ψ log (1 − Y) − (1 +ψ+β)H (Y)

The above define v∗ as a function of η together with the allocations C0, C1, and Y. Given
these values, the left hand side of the sustainability constraint is an increasing function of
η and therefore, if η is low enough, the sustainability constraint must be binding. Next,
we turn to determination η. The optimization in (P3) can be written as

K

({
ai−1

}N
i=1

,V0

)
= min

η
max
P0,v1

−P0 −
∑
i

µiai−1 +k (v0;η)+η
β

β̂

∑
αiµi log

(
ai−1 + P0

)
−ηV0

subject to
ω
∑

αiµi log
(
ai−1 + P0

)
+ v0 > V

Since the objective is concave and the constraint set is convex, the function K
(
{a−1}

i ,V0

)
is concave. By envelope theorem

KV = −η

Therefore, η increases with V0. In addition, the value K
({
ai−1
}

,V0
)

is equal to debt B0

and is decreasing in V0. Thus for high values of initial debt, V0 is low and so is η. The
same argument holds for inequality – dispersion of ai−1’s. This concludes the proof.

Q.E.D.

8.7 Proof of Proposition 4

To prove the claim in the Proposition, we start by showing some preliminary results for
the optimization in (P’).

Claim 1. w(B̂) is strictly decreasing, concave and differentiable.

Proof. We are going to use techniques similar to Abreu et al. (1990). The operator implic-
itly defined by the right hand side of (P’) is monotone. Then, we can show along the lines
of Theorem 5 in Abreu et al. (1990) that if we start iterating on it from w0 > w then the
sequence {wn} converges to w.
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Moreover, note that if wn is concave then wn+1 is concave as well because the con-
straint set in (P’) is convex and the objective function is concave. Then the limit must
be concave as well. A similar argument can be applied to show that w is decreasing.
Differentiability follows from Benveniste-Scheinkman’s theorem.

Claim 2. The political sustainability constraint is always binding.

Proof. Suppose by way of contradiction that the current government chooses a policy(
C0, Y,C1, B̂′

)
such that (24) is slack. Then the government can increase the value of cur-

rent generation by increasing external debt by a small amount (still respecting incentive
of next period government not to default) and increasing consumption of young agents.
This variation clearly increases the value, a contradiction. Hence the sustainability is al-
ways binding.

Now, we turn to prove the claim in the Proposition by analyzing the problem in (P’).
Letting λ and η be the multipliers on (23) and (24), the FOCs are

1
C0

− λ = 0 (50)

−Ω′ (Y) − ηωH′ (Y) + λ = 0 (51)

β
1
C1

+ η

[
ω

C1
+w′

(
B̂′
)]

= 0 (52)

λ

1 + r
+ ηw′

(
B̂′
)

= 0 (53)

where we define Ω (Y) = −ψ log (1 − Y) + (1 +ψ+β)H (Y) and the envelope condition
is w′ (B) = −λ. Using (50) in (53) to substitute for λ we can express the multiplier η as

η = −
C0

1 + r

1
w′
(
B̂′
) (54)

Moreover, using (54) in (51) to substitute for η and rearranging we obtain

βC1

(
1
C0

−
1

1 + r

)
−

ω

1 + r

1
w′
(
B̂′
) = 0. (55)

We first show that C0 is decreasing in B̂. The fact that C0 is decreasing in B̂ follows
from combining (50) with the envelope condition and using concavity of w.

We now turn to show that B̂′ is decreasing in B̂. Suppose by way of contradiction that
B̂′ is increasing in B̂ for some B̂ and so dB̂′/dB̂ > 0 for some B̂. Totally differentiating (55)
we obtain

β

(
1
C0

−
1

1 + r

)
dC1

dB̂
= β

C1

C2
0

dC0

dB̂
+

ω

1 + r

w′′
(
B̂ ′
)(

w′
(
B̂′
))2

dB′

dB̂
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Because of concavity of w, the fact that C0 is decreasing, and the contradiction hypoth-
esis that B̂′ is decreasing, the expression above implies that C1 must be decreasing in B̂.
Using this fact and the contradiction hypothesis that B̂′ is increasing in the sustainability
constraint - which is binding by Claim 2 above - it follows that Y must be decreasing in
B̂′. But totally differentiating the first order condition for output (51) we obtain

[
Ω′′ + ηωH′′

] dY
dB̂

= −ωH′
dη

dB̂
+
dλ

dB̂
(56)

Totally differentiating (54) we obtain

dη

dB̂
= −

1
1 + r

1
w′
(
B̂′
) dC0

dB̂
+

C0

1 + r

w′′
(
B̂ ′
)(

w′
(
B̂′
))2

dB̂′

dB̂
< 0

Using this into (56) and noticing that H′ > 0, dλ/dB̂ > 0, and the term in square brackets
is positive because of convexity ofΩ andH imply that dY/dB̂ > 0. This is a contradiction.
Hence it must be that B̂′ is decreasing.

8.8 Proof of Proposition 5

As in the proof of Proposition 1, we consider the dual of the problem solved by the gov-
ernment. A proof similar to the one in section 8.2 establishes that these two problems are
equivalent. With shocks this dual problem is given by

B̂ (V) = max
Y,C0,C1,V ′(s′)

Y −C0 −C1 +
1

1 + r

∑
s′
π
(
s′
)
B̂
(
V ′
(
s′
))

(P5)

subject to

β

β̂
logC1 + [logC0 +ψ log (1 − Y) − (1 +ψ+β)H (Y)] + β̂

∑
s′
π
(
s′
)
V ′
(
s′
)

= V

V ′
(
s′
)
−
β

β̂
H (Y) > W

(
s′
)

where note that s is not part of the state because the term G (s) is additive. Then foreign
debt is B̂ (V) −

[
G (s) +

EG(s′)
r

]
.

We first show the following Lemma:

Lemma 4. The solution to the functional equation (P5) satisfies the following:
A unique B̂(V) exists that satisfies (P5). Furthermore, B̂(V) is strictly decreasing, strictly

concave and differentiable.
The policy function V ′(V , s) is increasing in s.
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Proof. Properties of the Value Function. The proof follows closely that of Proposition 1
and Lemma 2. Specifically since the function H(Y) is concave in Y, the constraint set is
convex and as a result the value function is strictly concave. The rest of the claim can be
proven using standard techniques from Stokey et al. (1989).

Properties of the Policy Function. Here, we show that V ′(V , s) is increasing in s. Note
that for any s, we must have that

β

β̂C1 (s)
= −

1
B̂′ (V ′ (s))

This implies that if C1 (s) > C1 (s
′), then V ′ (s) > V ′ (s′), since B̂ (·) is decreasing and

concave. Consider the set of states S1 ⊂ S for which the sustainability constraint is slack.
Then, the first order conditions associated with (P5) imply that

∀s, s′ ∈ S1,C1 (s) = C1
(
s′
)

,V ′ (s) = V ′
(
s′
)

.

Consider a state s ∈ S − S1. We show that min S − S1 > maxS1. Suppose not. Let
ŝ = maxS1 > s̃ = minS− S1. Then, it must be that

β

β̂
logC1 (ŝ) + V

′ (ŝ) > W (ŝ) +
β

β̂
H (Y) (57)

β

β̂
logC1 (s̃) + V

′ (s̃) = W (s̃) +
β

β̂
H (Y)

Since W (s) is increasing in s, simply because government spending decreases with s,
we must have W (ŝ) > W (s̃). Hence, the above inequality and equality imply that
V ′ (ŝ) > V ′ (s̃). We show that if this is the case, there is a perturbation that increases the
objective and hence we have a contradiction. Consider a small increase in V ′ (s̃) by ε > 0
and a small decrease in V ′ (ŝ) by π(s̃)

π(ŝ)ε. This perturbation does not change the value that
the current government receives from the allocation and hence the promise keeping con-
straint is satisfied. Furthermore, since ε is small and (57) is strict inequality, sustainability
constraints are satisfied. However, the difference between the value of the objective for
this perturbation to the original objective is given by

π (s̃) B̂
(
V ′ (s̃) + ε

)
+ π (ŝ) B̂

(
V ′ (ŝ) −

π (s̃)

π (ŝ)
ε

)
− π (s̃) B̂

(
V ′ (s̃)

)
− π (ŝ) B̂

(
V ′ (ŝ)

)
The derivative of the above expression at ε = 0 is given by

−π (s̃) B̂′
(
V ′ (s̃)

)
− π (s̃) B̂′

(
V ′ (ŝ)

)
= π (s̃)

[
B̂′
(
V ′ (s̃)

)
− B̂′

(
V ′ (ŝ)

)]
> 0
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where the last inequality follows from strict concavity of B̂. This means that for ε > 0
and small enough this perturbation increases the value of the objective in (P1) and hence
we have a contradiction. Therefore, it must be that minS− S1 > maxS1. Hence, if we let
s∗ = maxS1, we must have

β

β̂
logC1 (s) + V

′ (s) = W (s) +
β

β̂
H (Y) ,∀s > s∗,

β

β̂
logC1 (s) + V

′ (s) > W (s) +
β

β̂
H (Y) ,∀s 6 s∗

The first set of equalities above imply that V ′ (s) must be increasing in s. Furthermore,
a similar argument to the perturbation above can be used to show that V ′ (s′) = V ′ (s∗) <
V ′ (s), for all s > s∗ > s′. This implies that V ′ (s) is weakly decreasing.

Next, we prove the claims in Proposition 5.
Proof of 1.
As the proof in Lemma 4 shows, for each V there is a state s∗ so that for all s 6 s∗,

the sustainability constraint is slack while for all s > s∗, the sustainability constraint is
binding. By continuity of the policy function, it must be that this property holds for an
interval including V . We can then use the binding sustainability constraints to solve for
V ′ (s) and write the promise keeping constraint as

logC0 +ψ log (1 − Y) − (1 +ψ)H (Y)

+
∑
s6s∗

π (s)
[
−βH (Y) +β logC1 (s) + β̂V

′ (s)
]
+ β̂
∑
s>s∗

π (s)W (s) = V

while the value of the objective is given by

Y −C0 +
1

1 + r

∑
s6s∗

[
−C1 (s) + B̂

(
V ′ (s)

)]
+

1
1 + r

∑
s>s∗

π (s)

[
−C1 (s) +B

(
W (s) −

β

β̂
(logC1 (s) −H (Y))

)]

Hence, the FOC associated with Y as well as that of {C1 (s)}s>s∗ are given by

1 +
∑
s>s∗

π (s)
β

β̂ (1 + r)
B̂′
(
V ′ (s)

)
H′ (Y) − λ

[
ψ

1 − Y
+

(
1 +ψ+β

∑
s6s∗

π (s)

)
H′ (Y)

]
= 0(58)

1 + B̂′
(
V ′ (s)

) β

β̂C1 (s)
= 0

Note that as before, the envelope condition implies that B̂′ (V) = −λ and in order to show
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that Y (V) is decreasing in V , it is sufficient to show that as λ rises, Y decreases. Taking
total derivative from the above equations:

dC1 (s) = −
β

β̂
B̂′′
(
V ′ (s)

)
dV ′ (s)

dV ′ (s) = −
β

β̂

[
1

C1 (s)
dC1 (s) −H

′ (Y)dY
]

The above imply that

dV ′ (s) = −
β

β̂

[
−

β̂

βB̂′ (V ′ (s))
dC1 (s) −H

′ (Y)dY
]

= −
β

β̂

[
β̂

βB̂′ (V ′ (s))

β

β̂
B̂′′
(
V ′ (s)

)
dV ′ (s) −H′ (Y)dY

]

dV ′ (s) =

β

β̂
H′ (Y)dY

1 + β

β̂

B̂′′(V ′(s))
B̂′(V ′(s))

Taking a total derivative from (58) and by extensively using the implicit function theorem
we have

dY

dλ
=

− ψ
1−Y −

(
1 +ψ+β

∑
s6s∗ π (s)

)
H′

λ
[

ψ

(1−Y)2 +
(
1 +ψ+β

∑
s6s∗ π (s)

)
H′′
]
+ β

β̂(1+r)

∑
s>s∗ π (s)

[
B′′ (s)

−β
β̂
(H′)2

1+β
β̂

B′′(s)
B′(s)

−B′ (s)H′′
]

The denominator of the above expression is positive while the denominator is negative.
This is because H′ > 0, H′′ > 0, B̂′ < 0, and B̂′′ < 0. Therefore, dYdλ < 0. This proves the
first claim.

Proof of 2.
Given the first claim that Y (V) is decreasing, whenever the sustainability constraint is

binding, we must have

β

β̂
[logC1 (s) −H (Y)] + V ′ (s) =W (s)

Since Y is decreasing in V , we must have that

β

β̂
logC1 (s) + V

′ (s) =W (s) +
β

β̂
H (Y)
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and since H is decreasing, β
β̂

logC1 (s) + V
′ (s) must be decreasing in V as well. Since

β

β̂C1 (s)
= −

1
B′ (V ′ (s))

C1 (s) and V ′ (s) must move together and hence,C1 (s) and V ′ (s) are decreasing whenever
the sustainability constraint is binding.

It remains to show that there must exist V∗ (s) so that for all values of V < V∗ (s),
the sustainability constraint for state s is binding and vice versa. Suppose this does not
hold. That is, suppose that V1 exists such that for a neighborhood of values of V below
V1, the sustainability constraint is slack while for a neighborhood of values of V above V1,
the sustainability constraint is binding. Then by continuity of the policy function from
the theorem of the maximum, it must be that at V1 the sustainability constraint is binding.
Note that since for values of V ∈ (V1 − ε,V1) for a small ε > 0, the sustainability constraint
is slack, and we must have

1
1 + r

B̂′
(
V ′ (V , s)

)
− β̂B̂′ (V) = 0

−
1

1 + r
−βB̂′ (V)

1
C1 (V , s)

= 0

where we have used the FOCs associated with C1 and V ′ and the envelope condition.
From concavity of the value function, the above imply that V ′ (V , s) and C1 (V , s) are both
increasing in V . Hence, it must be that

V ′ (V1, s) > V ′ (V , s) ,∀V ∈ (V1 − ε,V1)

C1 (V1, s) > C1 (V , s) ,∀V ∈ (V1 − ε,V1)

From part 1, we know that Y (V1) 6 Y (V), ∀V ∈ (V1 − ε,V1). Therefore, forV ∈ (V1 − ε,V1)

β

β̂
[logC1 (V1, s) −H (Y (V1))] + V

′ (V1, s) >
β

β̂
[logC1 (V , s) −H (Y (V))] + V ′ (V , s)

> W (s)

Which is a contradiction. This completes the proof.
Proof of 3.
Suppose not. That is, there exists i, i + 1 such that V∗ (s (i)) > V∗ (s (i+ 1)). This

implies that for values of V ∈ (V∗ (s (i+ 1)) ,V∗ (s (i))), the sustainability constraint for
s (i) is binding but that of s (i+ 1) is slack. We know from Lemma 4 that V ′ (s (i+ 1)) >
V ′ (s). Hence a perturbation of the form V̂ ′ (s (i+ 1)) = V ′ (s (i+ 1)) − ε and V̂ ′ (s (i)) =

V ′ (s (i)) + επ(s(i+1))
π(s(i)) increases the objective and satisfies the all the constraints. This con-
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cludes the proof.
Q.E.D

8.9 Proof of Existence of Invariant Distribution

Here, we show the existence of a invariant distribution in our stochastic economy. Given
a solution to the above functional equation, B̂(V) and its associated policy function for
continuation values, V ′(V , s), the ergodic set associated with this dynamic system is given
by V ⊂ R where

V ′(V,S) = V. (59)

Furthermore, the invariant distribution associated with V ′(V , s) is given by µ which is a
probability measure on (V,V) where V is the set of all Borel subsets of V and must satisfy

µ(A) =

ˆ
V

∑
s∈S

π(s)1[V ′(V , s) ∈ A]dµ(V) (60)

Lemma 5. The dynamic system implied by the policy function V ′(V , s) has a compact ergodic set
V ⊂ R. Furthermore, a probability measure µ exists that satisfies (60).

Proof. We first show that there exists an ergodic set V that is a subset of a bounded in-
terval. Namely, let V = V ′ (V∗ (s (1)) , s (1)) and V = V ′ (V , s (K)). We show that for
any V ∈

[
V ,V

]
and ∀s ∈ S, then V ′ (V , s) ∈

[
V ,V

]
. Note that for any V > V∗ (s (1)),

V ′ (V , s (1)) > V ′ (V∗ (s (1)) , s (1)) = V . Furthermore, from lemma 4, we have that

V ′ (V , s (i)) > V ′ (V , s (1)) > V ,∀1 6 i 6 K

Now suppose that V < V∗ (s (1)), then from proposition 5 we have that

V ′ (V , s (i)) > V ′ (V , s (1)) > V ′ (V∗ (s (1)) , s (1)) = V

Hence, for all V , we must have that V ′ (V , s) > V .
Now, suppose that V ∈

[
V ,V

]
. Then either sustainability constraint for s (K) is binding

or slack. If it is slack, then we must have

B̂′
(
V ′ (V , s (K))

)
= (1 + r) β̂B̂′ (V)

since β̂ (1 + r) < 1 and B̂′ < 0,

B̂′ (V) < B̂′
(
V ′ (V , s (K))

)
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and concavity of B̂ (·) implies that V > V ′ (V , s (K)). Hence,

V > V > V ′ (V , s (K)) > V ′ (V , s (i)) ,∀i

If the sustainability constraint is binding,

V < V → V ′ (V , s (K)) < V ′ (V , s (K)) = V

and furthermore
V ′ (V , s (i)) < V ′ (V , s (K)) = V .

This establishes that any ergodic set V must be a subset of
[
V ,V

]
.

Next, we show that a stationary distribution µ exists. Since
[
V ,V

]
is a compact sub-

set of R, then by Riesz Representation Theorem (Dunford and Schwartz (1958), IV.6.3),
the space of regular measures on

[
V ,V

]
is isomorphic to the space C∗

([
V ,V

])
, the dual

of the space of bounded continuous functions on
[
V ,V

]
. Moreover, by Banach-Alaoglu

Theorem (Rudin (1991), Theorem 3.15), the set
{
f ∈ C∗

([
V ,V

])
; ‖f‖ 6 k

}
is a compact

set in the weak-* topology for any k > 0. Equivalently, the set of regular measures, ψ,
with ‖ψ‖ 6 1, is compact. Since non-negativity and full measure on

[
V ,V

]
are closed

properties, we must have the set

M
([
V ,V

])
=
{
ψ;ψ a regular measure on

[
V ,V

]
,ψ
([
V ,V

])
= 1,ψ > 0

}
is compact in weak-* topology. Since any ergodic set V is a subset of

[
V ,V

]
, the transfor-

mation T on M
([
V ,V

])
given by

T (ψ) (A) =

ˆ
[V ,V]

∑
s∈S

π (s) 1
[
V ′ (V , s) ∈ A

]
dψ (V)

maps M
([
V ,V

])
into itself. Since from theorem of maximum, V ′ (V , s) is continuous in V ,

the above mapping is continuous. Thus by Schauder-Tychonoff Theorem (Dunford and
Schwartz (1958), V.10.5), T has a fixed point µ. This concludes the proof.

Q.E.D.

9 Policy Game

In this section, we describe the policy game underlying the analysis in section 3. The
game is a dynamic game whose state variable is the distribution of government debt(
Bt,
{
ait
}N
i=1

)
where Bt is external government debt and ait is the government debt held
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by old agents of type i. In any period, t, and given the state of the game, the timing of the
actions is as follows:

• The government chooses it policy, πt =
(
Bt+1,Bdt+1, τl,t, τa,t, Tt,Pt, δt

)
∈ Π. The

government policy πt must be consistent with the government budget constraint.

• After the government chooses its policy, private agents act. Old agents consumes
their savings and pension payments, young agents choose their consumption, la-
bor supply and savings, ci0t, l

i
t, a

i
t+1, subject to their budget constraint, and foreign

lenders choose their holdings of government bonds Bt+1 facing prices qt+1.

Let
ht =

(
ht−1,πt,

{
ci1t

}N
i=1

,
{
ci0t, l

i
t,a

i
t+1

}N
i=1

,qt,qdt

)
be the public history at the end of period t. Additionally, let the interim history htp =(
ht−1,πt

)
be the history following government’s announcement of policies. Let Ht and

Htp be the space of such histories. The strategies of all set of agents is denoted as fol-
lows: government’s strategy is denoted by σt : Ht−1 → Π, young households’ strategy
is denoted by σi0t : Htp → R3

+, old households’ strategy is denoted by σi1t : Htp → R+,
and foreign creditors’ strategy is denoted σ∗t : Htp → R+. Finally, let the pricing rule for
government debt be given by qt+1,qdt+1 : Htp → R+.

We can then define a sustainable equilibrium. A set of strategies (σπ,σy,σo,σ∗) is a
sustainable equilibrium if: i) For all ht−1 the government strategy maximizes social wel-
fare as described in section 3, and ii) for all htp the equilibrium strategies induce gov-

ernment policies
{
Bt,Bdt , τl,t, τa,t, Tt,Pt, δt

}∞
t=0, allocations

{
cit,0, cit,1,yit,a

i
t

}∞
t=0

and prices{
qt,qdt

}∞
t=0 that are competitive equilibrium with taxes.

Given this policy game, it is immediate that autarky is an equilibrium. Given that
households do not save and foreign creditors do not lend to the government, the govern-
ment’s best response is to find labor income taxes to finance transfers to the young and
pensions for the old – this value is found by maximizing social welfare. They can also set
asset taxes at 100%. In response to this policy, households find it optimal to not to save.
In addition, knowing that future governments will be in autarky, the current government
does not want to deviate from such policy. Hence, autarky is an equilibrium.

Since autarky is an equilibrium and we can construct allocations by triggering to au-
tarky following deviations by the government, any allocation that results from such an
equilibrium must at least deliver a value higher than autarky. Thus the sustainability
constraint (14) must be satisfied.
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10 Optimal Policies with Commitment

In this section, we describe policies when the government can commit. The optimal policy
with commitment (the Ramsey outcome) is associated with the competitive equilibrium
with taxes that attains the highest social welfare as described in section 3. We charac-
terize the optimal policy using the primal approach. Using the characterization of com-
petitive equilibrium outcomes in Lemma 1, optimal allocations must solve the following
programming problem:

max
{C0,t,C1,t,Yt}

β

β̂

∑
i

µiαi log
(
ai−1 + P0

)
+

∞∑
t=0

β̂t [logC0t +ψ log (1 − Yt) +β logC1,t+1 + (1 +ψ+β)H (Yt)]

subject to

∞∑
t=0

(
1

1 + r

)t
[ZYt −C0,t −C1,t −Gt] 6 B0{

ai−1

}N
i=1

,B : given

The first order conditions for the problem for t > 0 are given by

β̂t
1
C0,t

= λ

(
1

1 + r

)t
β̂t

β

C0,t+1
= λ

(
1

1 + r

)t+1

β̂t
(

ψ

1 − Yt
− (1 +ψ+β)H′ (Yt)

)
= λ

(
1

1 + r

)t+1

Z

where λ is the multiplier on the consolidated budget constraint for the country. The above
can be written as

C0,t =
β̂t (1 + r)t

λ
, C0,t+1 = β

β̂t (1 + r)t

λ
, 1−Yt =

β̂t (1 + r)t

λ

[
ψ− (1 +ψ+β)H′ (Yt) (1 − Yt)

]
.

It is then clear that if β̂t(1 + r) < 1 then {C0,t,C1,t+1, 1 − Yt}
∞
t=0 have a downward trend

converging to zero. Instead if β̂t(1+ r) = 1 then all the allocations are constant over time.
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11 Characterization of SPE Outcomes in the Political Econ-

omy Model

We start our analysis by characterizing the set of SPE of the political economy game. As
in the baseline case, we focus on symmetric equilibria that can be supported by triggering
to autarky following deviations by the government. The following lemma characterizes
the set of allocations that can be implemented as a SPE of the political economy game
with reversion to autarky.

Lemma 6. Given the international interest rate r, initial external debt, B0, and an initial dis-
tribution of assets for the initial old,

{
ai−1
}

, government policies
{
Bt,Bdt , τl,t, τa,t, Tt,Pt, δt

}∞
t=0,

allocations
{
cit,0, cit,1,yit,a

i
t

}∞
t=0

and prices
{
qt,qdt

}∞
t=0 are a SPE outcome if and only if:

1. The allocations, prices and government policies are a competitive equilibrium with taxes;
2. The allocations satisfy the following political sustainability constraint for all t > 0

ω
∑
i

αiµiuit−1,1 +
∑
i

αiµiuit,0 > V ,

where V is the value of the autarkic equilibrium and it is given by the following programming
problem:

V = max
ci0,c1,yi,τl,T

ω
∑
i

αiµiu (c1) +
∑
i

αiµiu
(
ci0,yi; θi

)
(61)

s.t.
∑
i

µici0 + c1 +G = Z
∑

µiyi

θi (1 − τl)u
i
c,0 + u

i
y = 0

ci0 = (1 − τl)Zy
i + T

The proof for this lemma is omitted because the argument is essentially the same as in
Chari and Kehoe (1990) and Abreu (1988).

11.1 Best SPE Outcome

Under our preference specification, aggregate welfare can be written solely in terms of
aggregate allocations and initial pension payments as

β/β̂
∑
i

µiαi log
(
(1 − τa,0)a

i
0 + P0

)
+

∞∑
t=0

β̂t [logC0t −Ω (Yt) +β logC1t+1] , (62)
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where we defineΩ (Y) = −ψ log (1 − Y) + (1 +ψ+β)H (Y) . The problem for the planner
at t = 0 is then to choose an aggregate allocation {C0t,C1t, Yt}

∞
t=0 and time zero policies

{P0, τa,0, δ0} that maximize (62) subject to the present value version of the consolidated
budget constraint for the country

∑
t

(
1

1 + r

)t
[ZYt −C0t −C1t −G] > Bδ0 (63)

and the sequence of political sustainability constraints from t = 1 and onward,

ω [logC1t −H (Yt−1)] + [logC0t −Ω (Yt) +β logC1t+1] > V , (64)

and for t = 0,

ω
∑
i

µiαi log
(
(1 − τa,0)a

i
0 + P0

)
+ [logC0t −Ω (Yt) +β logC1t+1] > V . (65)

11.2 EG Political Equilibrium

Setup. We make our selection operational by setting up the equilibrium recursively.18

The state variable is (B, z) where B =
(
B,
{
ai
}

,Pe
)
, Pe are pension payments promised

by the previous government, and z ∈ {0, 1} is a variable that records if previous govern-
ments defaulted. We adopt the convention that z = 1 if previous governments defaulted
in the past and zero otherwise. Given our selection, if z = 1 then value for the current
government is V for all B, V (B, 0) = V . Taking as given the decision of the future gov-
ernments, denoted by a bar, the value function for the government that inherited a state
(B, 0) is given by

V (B, 0) = max {v (B) ,V} (66)

where the value v is the value associated with honoring all debt obligations and it can be
expressed in primal form as

v (B) = max
π=(P,C0,Y,B′)

ω
∑
i

µiαi log
(
ai + P

)
+ logC0 − Ω̂ (Y)+β

∑
i

µiαi log
(
ai′ + P̄

(
B′
))

(67)

18This is equivalent on assigning a Pareto weight of 1 to the first generation and a Pareto weight of zero
to each generation thereafter.
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subject to

∑
i

µi
(
ai + P

)
+C0 +B+G 6 Y +

1
1 + r

B (68)

P > Pe (69)

v̄
(
B′
)

> V (70)

ai′ + P̄
(
B′
)

= ϕi (Y)

(∑
i

µiai′ + P̄
(
B′
))

(71)

where Ω̂ (Y) = − log (1 − Y)+ (1+ψ+β)H(Y)=Ω (Y)+βH(Y), P̄ and v̄ are the policy rule
and the value function used by future government. Recall that ϕi (Y) is the consumption
share for type i household given by (10).

The constraint (68) is the consolidated budget constraint for the country in sequential
form. Constraint (69) requires that the pension payments by the current government, P,
are at least what promised by the previous government, Pe. The constraint (70), guaran-
tees that next period government has no incentive to default. The current government
leaves a state to next period government such that it finds not optimal to default. Fi-
nally, constraint (71) ensures that assets holdings

{
ai′
}

are consistent with optimality of
the households saving decisions. With log-preferences, this amount to assume that next
period consumption share of type i agent is equal to current consumption share ϕi (Y) .

Notice that requiring that the current government passes a state to the future govern-
ment such that it does not have a strict incentive to default is without loss of generality. In
fact, suppose to the contrary that the current government chooses B′ such that v (B′) < V .
Then it follows that the price of external debt equals zero and so no resources can be raised
from foreign creditors. Moreover, since there is a default next period, private agents opti-
mality implies that ai′ = 0 for all i. Hence, the current government is better off defaulting
today, strictly if external debt is strictly positive or there is domestic asset inequality, con-
tradicting optimality for the current government.

A Markov equilibrium are policy rules P̄, C̄0, Ȳ, B̄′ and value functions V̄ and v̄ such that
they satisfy

P
(
B|P̄, v̄

)
= P̄ (B) , C0

(
B|P̄, v̄

)
= C̄0 (B) , Y

(
B|P̄, v̄

)
= Ȳ (B) ,

B′
(
B|P̄, v̄

)
= B̄′ (B) , and v

(
B|P̄, v̄

)
= v̄ (B)

for all B such that v̄ (B) > V where P,C0, Y, B′,V , and v are the policy rule and the value
associated with the problem in (66) and (67) given P̄ and v̄.

Characterization. We now turn to show that outcomes obtained from the policy rules
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associated with (P’) and its associated time zero problem

w0

(
B,
{
ai
}

,Pe
)
= max

{
V , max

P>Pe

∑
i

µiαilog
(
ai + P

)
+w

(∑
i

µiai + P+B

)}
(72)

are a Markov equilibrium outcome. To this end, let
(
Cw0 , Yw,C′w1 ,B ′w

)
be the policy func-

tions associated with the problem (P’) and Pw0 be the optimal pension policy associated
with the time zero problem (72).

Lemma 7. Given an initial condition (B, 0) such that it is not optimal to default in period zero,
the outcome obtained for all t > 0 as

(C0t, Yt,C1t+1,B) =
(
Cw0 , Yw,C′w1 ,B

)
(C1t +B)

where C1,0 =
∑
i µ
i log

(
ai + Pw0 (B)

)
is a Markov equilibrium outcome of the political economy

game.

Proof. Consider the largestw that solves the functional equation defined by the right hand
side of (P’). For all B such that w0 (B) > VAUT , let Pw0(B) be the decision rule associated
with problem (72). We can construct the other equilibrium objects for a Markov equilib-
rium as follows:

P̄ (B) = Pw0 (B)

C̄0 (B) = Cw0 (x (B)) , Ȳ (B) = Yw (x (B)) , B′ (B) = Bw′ (x (B)) ,

P̄e (B) = ϕ1 (Yw (x (B)))Cw1 (x (B)) , āi (B) = ϕi (Yw (x (B)))Cw1 (x (B)) − P̄e (B) ,

and v̄ (B) = w0 (B) where we define x (B) as

x (B) ≡ B+
∑
i

µiai + Pw0 (B) .

To show that our constructed policy rules and values constitute a Markov equilibrium, we
have to show that for all B such that w0 (B) > V we have that P

(
B|P̄ (·) , v̄ (·)

)
= Pw0 (B)

and v
(
B|Pw0 (·) ,w0 (·)

)
= w0 (B).

First, notice that we can combine problems (P’) and (72) to obtain

w0 (B) = max
(P,C0,Y,C′1,B′)

ω
∑
i

µiαi log
(
bi + P

)
+ logC0 −Ω (Y) +β

[
−H (Y) + log

(
C′1
)]
(73)
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subject to

∑
i

µi
(
bi + P

)
+C0 +B+G 6 ZY +

B′

1 + r
(74)

ω [−H(Y) + logC1] +w
(
B′ +C1

)
> V (75)

Second, since the sustainability constraint is always binding, it is without loss of general-
ity to replace the constraint (75) with

w0
(
B′
)
> V

where B′ =
(
B′,
{
ϕi (Y)C1 − P

e
}

,Pe
)

. In fact, we know that in general

w0
(
B′
)
> ω [−H(Y) + logC1] +w

(
B′ +C1

)
but at the optimum in (P’) the above is an equality. To see this, suppose by way of contra-
diction that

w0
(
B′
)
> ω [−H(Y) + logC1] +w

(
B′ +C1

)
= V

Note that for this to be the case we must have that P′ > Pe otherwise we have an equality.
So the next period government wants to redistribute resources toward the old. Hence we
can equivalently write

ω [−H(Y) + logC1] +w
(
B′ +C1

)
= ω

∑
i

µiαi log
(
ϕ̂i (Y)C1

)
+w

(
B′ +C1

)
<

< max
∆>0

ω
∑
i

µiαi log
(
ϕ̂i (Y)C1 +∆

)
+w

(
B′ +C1 −∆

)
where ∆ > 0 are the additional pension payments provided by the future government.
Given concavity of w established in Claim 1, the optimal ∆∗ is greater than zero if and
only if

Θ
ω

C1
> −w′(B̂′) (76)

where Θ ≡ ∑i µ
iαi/ϕ̂i (Y) > 1. Consider now the following variation that increases

pensions by ε, decreases output by εy and increases external debt by ε∗. The variation is
feasible in (P’) if

ωH′εy +
ω

C1
ε = Θ

ω

C1
ε⇒ εy =

(Θ− 1) ωC1

ωH′
ε > 0

[
Θ
ω

C1
+w′(B̂′)

]
ε+w′(B̂′)ε∗ = 0⇒ ε∗ =

[
Θ ω
C1

+w′(B̂′)
]

−w′(B̂′)
ε
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where ε∗ > 0 given (76). If the original allocation is optimal, it must be that this variation
does not increase the objective value so

∆obj =
1
C0

(
ε∗

1 + r
− εy

)
+
β

C1
ε+

[
ψ

1 − Y
+ (1 +ψ+β)H′(Y)

]
εy 6 0

⇒ ∆obj
ε

=
1
C0

[
Θ ω
C1

+w′(B̂′)
]

−w′(B̂′)(1 + r)
+
β

C1
+

[
ψ

1 − Y
+ (1 +ψ+β)H′(Y) −

1
C0

]
(Θ− 1) ωC1

−ωH′
6 0

Note that under (76), the first term is positive, the second is positive. For the right hand
side to be negative it is necessary that the last term is negative. From (51), we know that

η =

ψ
1−Y + (1 +ψ+β)H′(Y) − 1

C0

ωH ′(Y)
> 0

and so also the last term is positive. Hence at the optimum (76) cannot hold. Then it must
be that future government does not want to redistribute toward the old by increasing
pension payments beyond what promised by the previous government. Hence we can
rewrite (73) as

w0 (B) = max
(P,C0,Y,C′1,B∗′,Pe)

ω
∑
i

µiαi log
(
bi + P

)
+ logC0 −Ω (Y) +β

[
−H (Y) + log

(
C′1
)]

(77)
subject to

∑
i

µi
(
bi + P

)
+C0 +B+G 6 Y +

B′

1 + r
(78)

w0
(
B′
)

> V (79)

B′ =
(
B′,
{
ϕ̂i (Y)C1 − P

e
}

,Pe
)

(80)

It is then evident that (77) is equivalent to (67) and so P
(
B|P̄ (·) , v̄ (·)

)
= Pw0 (B) and

v
(
B|Pw0 (·) ,w0 (·)

)
= w0 (B).

12 A Model of The World Economy

In this section, we describe a world economy consisted of identical countries who expe-
rience i.i.d. shocks to government spending. We show that in the steady state of such
economy, the world interest rate is constant and satisfies the relationship β̂ (1 + r) < 1.

The world consists of a continuum of countries that are as described in section 5. The
initial state of each country is defined by its initial inequality Φ−1, external debt B and
government spending represented by s0. We let x = (Φ−1,B, s0) and ψ0 be the initial
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distribution of x across countries. In particular, let X be the set of all possible x. Then,
from market clearing ψ0 must satisfy

ˆ
X

B (x)dψ0 (x) = 0

Allocations for each country can be identified by its history of shocks and its initial state
x. These allocations are given by

{
Ct,0

(
st, x

)
,Ct−1,1

(
st, x

)
, Yt
(
st, x

)
,Φt

(
st, x

)}
, where

st = (s1, · · · , st).
Hence, the world planning problem that treats each country symmetrically can be

written as

max
ˆ
X

{
β

β̂
U
p
1 (C−1,1 (x) ;Φ−1 (x)) + (81)

∞∑
t=0

∑
st

β̂tπ
(
st
)
Up
(
Ct,0

(
st, x

)
,Ct,1

(
st+1, x

)
, Yt
(
st, x

)
;Φt

(
st, x

))}
dψ0 (x)

subject to

ˆ
X

∑
st

π
(
st
) [
Ct,0

(
st, x

)
+Ct−1

(
st, x

)
+G (st) −ZYt

(
st, x

)]
dψ0 (x) = 0 (82)

β

β̂
U
p
1

(
Ct−1,1

(
st, x

)
;Φt−1

(
st, x

))
+ (83)

∞∑
τ=t

∑
sτ%st

π
(
sτ|st

)
β̂τ−tUp

(
Cτ,0 (s

τ, x) ,Cτ,1

(
sτ+1, x

)
, Yτ (sτ, x) ;Φτ (sτ, x)

)
> W (st)

Note that at each point in time, the state of the economy can be characterized by the the
distribution of external debt, inequality and government spending given by ψt appro-
priately defined. Let λt be the Lagrange multiplier associated with aggregate resource
constraint (82). Then it must be that in a steady state where ψt = ψt+1, λt+1/λt = q is
constant. The ratio q is equal to 1

1+r where r is the international interest rate considered in
section 5. In particular, it can be shown that the state of each country can be represented
by promised utility Vt as defined in section 3. Then, it can be shown that each individual
country’s problem at each point in time is equivalent to the recursive formulation in (P5).

Note that first order conditions of the above problem with respect to consumption
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imply that β̂t + ∑
sτ-st

β̂t−τµτ (s
τ, x)

 1
Ct,0 (st, x)

= λtβ̂t−1 +
∑
sτ-st

β̂t−1−τµτ (s
τ, x)

 β

Ct−1,1 (st, x)
= λt

Hence,

Ct+1,0
(
st+1, x

)
Ct,0 (st, x)

=
λt

λt+1

β̂t+1 +
∑
sτ-st+1 β̂t+1−τµτ (s

τ, x)

β̂t +
∑
sτ-st β̂

t−τµτ (sτ, x)
=

λt

λt+1

(
β̂+

µt+1
(
st+1, x

)
β̂t +

∑
sτ-st β̂

t−τµτ (sτ, x)

)
Ct,1

(
st+1, x

)
Ct−1,1 (st, x)

=
λt

λt+1

β̂t+1 +
∑
sτ-st+1 β̂t+1−τµτ (s

τ, x)

β̂t +
∑
sτ-st β̂

t−τµτ (sτ, x)
=

λt

λt+1

(
β̂+

µt+1
(
st+1, x

)
β̂t +

∑
sτ-st β̂

t−τµτ (sτ, x)

)

Note that the above equations imply that

Ct+1,0
(
st+1, x

)
Ct,0 (st, x)

>
β̂

q

Ct,1
(
st+1, x

)
Ct−1,1 (st, x)

>
β̂

q

with strict inequality if the sustainability constraint binds for
(
st+1, x

)
. This implies that

we must have that in a steady state β̂
q 6 1, otherwise aggregate consumption increases

without bounds. Additionally, if the sustainability constraint binds with positive proba-
bility, we must have that βq < 1. Hence, we have the following proposition:

Proposition 6. Consider a steady state of the planning problem in (81) where λt+1/λt = q is the
ratio of the multiplier on (82). Then it must be that β̂/q 6 1. Furthermore, if in steady state, the
sustainability constraint (83) binds with positive probability, then β̂/q < 1.

13 Other Preferences

In this section, we show that our basic insight extends to other preferences. To this end,
we first state a generalization of Lemma 1 for general preferences:

Lemma 8. Given initial asset distribution for the initial old,
{
ai0
}
i=1,...,N, and an initial for-

eign government debt, B0, an allocation
{{
cit,0, ci1t−1,yit,a

i
t

}
i∈{1,··· ,N}

}∞
t=0

can be supported as a

competitive equilibrium with taxes if and only if it satisfies the following:
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1. There exist a vector of market weights
{
Φt =

(
ϕit
)
i∈{1,··· ,N}

}∞
t=0

where
∑
i µ
iϕit = 1 such

that
{
cit,0,yit

}
i∈{1,··· ,N}

solves

UM0 (Ct,0, Yt;Φt) = max
ci0,yi

N∑
i=1

ϕiµiU
(
ci0, 1 − yi/θi

)
(84)

subject to
N∑
i=1

µici0 = Ct,0 and
N∑
i=1

µiyi = Yt

and
{
cit,1

}
i∈{1,··· ,N}

solves

UM1 (Ct,1;Φt) = max
ci1

N∑
i=1

ϕiµiu
(
ci1

)
(85)

subject to
N∑
i=1

µici1 = Ct,1

where Ct,0, Yt, and Ct,1 are the aggregate consumption of the young, aggregate effective hours
worked, and aggregate consumption of the old born at t, respectively. The solution to the above
optimization problems is represented by the policy functions ĉi0 (Ct,0, Yt;Φt), ŷi (Ct,0, Yt;Φt),
and ĉi1 (Ct,1;Φt).

2. The following implementability condition holds for all t > 0

UM0,C (Ct,0, Yt;Φt) ĉi0 (Ct,0, Yt;Φt) +UM0,Y (Ct,0, Yt;Φt) ŷi (Ct,0, Yt;Φt) (86)

+βUM1,C (Ct,1;Φt) ĉi1 (Ct,1;Φt) = T̂t

for some constant T̂t, where UM0,C,UM0,Y ,UM1,C are respectively partial derivatives of UM0 and UM1
with respect to C0, Y, and C1.

3. Aggregate allocations satisfy present value version of the consolidated budget constraint

B0 +

∞∑
t=0

1
(1 + r∗)t

[Ct,0 +Ct−1,1 +G] 6
∞∑
t=0

1
(1 + r∗)t

Yt (87)

Proof. The proof closely follows that of Werning (2007). We first show that any com-
petitive equilibrium with taxes must satisfy conditions 1–3. The first order conditions
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associated with the households’ maximization problem are given by

(1 − τl,t)uc(c
i
t,0,yit; θ

i) = −uy(c
i
t,y

i
t; θ

i)

qdtuc(c
i
t,0,yit; θ

i) = β(1 − τa,t+1)u
′i
t,1

This implies that for all i, j ∈ {1, · · · ,N},

uc(c
i
t,0,yit; θ

i)

uc(c
j
t,0,yjt; θj)

=
uy(c

i
t,y

i
t; θ

i)

uy(c
j
t,y

j
t; θj)

uc(c
i
t,0,yit; θ

i)

uc(c
j
t,0,yjt; θj)

=
u′it,1
u
′j
t,1

Hence, ϕi’s must exists so that

uc(c
i
t,0,yit; θ

i)

uc(c
j
t,0,yjt; θj)

=
uy(c

i
t,y

i
t; θ

i)

uy(c
j
t,y

j
t; θj)

=
u′it,1
u
′j
t,1

=
ϕj

ϕi
(88)

Furthermore, the value of
∑
i µ
iϕi is indeterminate and can be normalized to 1. The above

equations coincide with the FOC’s associated with planning problems (84) and (85). This
implies that

{
cit,0, cit,1,yit

}
i∈{1,··· ,N}

must be solutions to the planning problems (84) and

(85). This proves condition 1.
Furthermore, the envelope conditions associated with (84) and (85) imply that

(1 − τl,t)U
M
0,Yt

UM0,Ct
+ 1 = 0 (89)

qdt
(1 − τa,t+1)

=
βUM1,Ct

UM0,Ct
(90)

The inter-temporal budget constraint for the household is given by

cit,0 − y
i
t(1 − τl,t) +

qdt
(1 − τa,t+1)

cit,1 = T

Using the envelope relationships above, we can replace for taxes into the budget con-
straint to obtain

cit,0 +
UM0,Yt

UM0,Ct
yit +

βUM1,Ct

UM0,Ct
cit,1 = T

Multiplying by UM0,Ct gives condition 2. Condition 3 simply follows by summing up all
the budget constraints.

To show the reverse, it suffices to construct taxes from (89) and (90) while government
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transfers and government debt are not pinned down due to Ricardian equivalence. The
value of foreign debt can be simply determined by the present value of the difference
between aggregate consumption and aggregate output. This completes the proof.

13.1 GHH Preferences

When preferences are GHH of the form log (c0 −ψl
γ/γ) + β log c1 we can show that our

main result holds. For these preferences, the problem of determining allocations given
market weights ϕi or the market utility problem is given by

UM0 (C, Y;Φ) = max
∑

ϕiµi log
(
ci −ψ

(
li
)γ
/γ
)

subject to ∑
µici = C,

∑
µiθili = Y

Then FOCs are given by

ϕi

ci −ψ (li)
γ
/γ

= λC

ϕi

ci −ψ (li)
γ
/γ
ψ
(
li
)γ−1

= λYθ
i

and we must haveψ
(
li
)γ−1

= θiλC
λY

. Then

li =

(
θiλC
ψλY

)ε
→ θili =

(
θi

θj

)1+ε

θjlj → θili =

(
θi
)1+ε∑

µj (θj)
1+εY

We define average productivity as

θ̂1+ε =
∑

µj
(
θj
)1+ε

Then,

li =

(
θi
)ε

θ̂1+ε
Y
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Furthermore

ϕi

λC
= ci −ψ

(
li
)γ
/γ

1
λC

=
∑

µici −ψ
∑

µi
(
li
)γ
/γ

= C−
ψ

γ

∑
µi
(
θi
)1+ε

θ̂(1+ε)γ
Yγ

= C−
ψ

γ

θ̂(1+ε)

θ̂(1+ε)γ
Yγ

= C−
ψ

γ
θ̂(1+ε)(1−γ)Yγ

= C−
ψ

γ
θ̂−γYγ

= C− v
(
Y/θ̂

)
Then,

ci =
(
C− v

(
Y/θ̂

))
ϕi +

ψ

γ

((
θi
)ε

θ̂1+ε
Y

)γ

= ϕiC−ϕiv
(
Y/θ̂

)
+
ψ

γ

(
θi
)1+ε

θ̂(1+ε)γ
Yγ

= ϕiC−ϕiv
(
Y/θ̂

)
+

(
θi
)1+ε

θ̂1+ε

ψ

γ
θ̂(1+ε)(1−γ)Yγ

= ϕiC− v
(
Y/θ̂

)(
ϕi −

(
θi

θ̂

)1+ε)

Then the market utility can be written as

UM (C, Y;Φ) =
∑

µiϕi log
((
C− v

(
Y/θ̂

))
ϕi
)

= log
(
C− v

(
Y/θ̂

))
+
∑

ϕiµi logϕi

and so

UC =
1

C− v
(
Y/θ̂

)
UY = −

1
C− v

(
Y/θ̂

) 1
θ̂
v′
(
Y

θ̂

)
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Hence, the budget constraint can be written as

UC0c
i
0 − θ

iliUY0 +βUC1c
i
1 = T̂

1
C0 − v

(
Y/θ̂

) [ϕiC0 − v
(
Y/θ̂

)(
ϕi −

(
θi

θ̂

)1+ε)]
−

1
C0 − v

(
Y/θ̂

) 1
θ̂
v′
(
Y

θ̂

) (
θi
)1+ε

θ̂1+ε
Y +βϕi = T̂

(1 +β)ϕi −
1
ε

1
C0 − v

(
Y/θ̂

) (θi
θ̂

)1+ε

v
(
Y/θ̂

)
= T̂

1 +
1

1 +β

v
(
Y/θ̂

)
C0 − v

(
Y/θ̂

) (θi)1+ε
− θ̂1+ε

θ̂1+ε
= ϕi

The objective for the government is

(1 +β)
∑

αiµi logϕi + log
(
C0 − v

(
Y/θ̂

))
+β logC1

So, we can write the recursive problem as

B (V) = max Y −C0 −
1

1 + r
C1 +

1
1 + r

B
(
V ′
)

subject to

(1 +β)
∑

αiµi logϕi + log
(
C0 − v

(
Y/θ̂

))
+β logC1 + β̂V

′ = V

β

β̂

∑
αiµi logϕi + logC1 + V

′ > W

1 +
1

1 +β

v
(
1/θ̂
)

C0Y−γ − v
(
1/θ̂
) (θi)1+ε

− θ̂1+ε

θ̂1+ε
= ϕi

Some preliminary results:

LetH (Y,C0) =
∑
αiµi log

(
1 + 1

1+β
v(1/θ̂)

C0Y−γ−v(1/θ̂)
(θi)

1+ε
−θ̂1+ε

θ̂1+ε

)
= Ĥ (C0Y

−γ) where Ĥ (x) =∑
αiµi log

(
1 + 1

1+β
v(1/θ̂)
x−v(1/θ̂)

(θi)
1+ε

−θ̂1+ε

θ̂1+ε

)
. Then we have:

Lemma 9. The function Ĥ is strictly increasing and concave. Furthermore, the functionH (Y,C0)

is decreasing in Y and increasing in C0 and if γ > 2, it is strictly concave in (Y,C0).

Proof. Extensive algebra - available upon request - shows that:
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Ĥ′ (x) = −
∑ αi

ϕi
µi

1
1 +β

v
(
1/θ̂
)(

x− v
(
1/θ̂
))2

(
θi
)1+ε

− θ̂1+ε

θ̂1+ε
> 0

Ĥ′′ (x) = 2
∑ αi

ϕi
µi

1
1 +β

v
(
1/θ̂
)(

x− v
(
1/θ̂
))3

(
θi
)1+ε

− θ̂1+ε

θ̂1+ε

−
∑ αi

(ϕi)
2µ

i

(
1

1 +β

v
(
1/θ̂
)(

x− v
(
1/θ̂
))2

(
θi
)1+ε

− θ̂1+ε

θ̂1+ε

)2

< 0

(γ+ 1) Ĥ′ (x) + γxĤ′′ (x) =
v
(
1/θ̂
)(

x− v
(
1/θ̂
))3

[
(γ+ 1) v

(
1/θ̂
)
+ (γ− 1) x

]∑ αi

ϕi
µi

1
1 +β

(
θi
)1+ε

− θ̂1+ε

θ̂1+ε

− γx
∑ αi

(ϕi)
2µ

i

(
1

1 +β

v
(
1/θ̂
)(

x− v
(
1/θ̂
))2

(
θi
)1+ε

− θ̂1+ε

θ̂1+ε

)2

< 0

−γĤ′ (x) − γxĤ′′ (x) = −
v
(
1/θ̂
)(

x− v
(
1/θ̂
))3

[
γv
(
1/θ̂
)
+ γx

]∑ αi

ϕi
µi

1
1 +β

(
θi
)1+ε

− θ̂1+ε

θ̂1+ε

+ γx
∑ αi

(ϕi)
2µ

i

(
1

1 +β

v
(
1/θ̂
)(

x− v
(
1/θ̂
))2

(
θi
)1+ε

− θ̂1+ε

θ̂1+ε

)2

> 0

and

HC = Y−γĤ′
(
C0Y

−γ
)
> 0

HY = −γC0Y
−γ−1Ĥ′

(
C0Y

−γ
)
< 0

HCC = Y−2γĤ′′
(
C0Y

−γ
)
< 0

HYY = γC0Y
−γ−2 [(γ+ 1) Ĥ′

(
C0Y

−γ
)
+ γC0Y

−γĤ′′
(
C0Y

−γ
)]
< 0

HYC = −γY−γ−1Ĥ′
(
C0Y

−γ
)
− γY−2γ−1C0Ĥ

′′ (C0Y
−γ
)
> 0

HYYHCC − (HYC)
2 = −γY−2γ−2Ĥ′


[
(γ− 2) x+ γv

(
1/θ̂
)]∑

αi

ϕi
µi 1

1+β
v(1/θ̂)

(x−v(1/θ̂))
3
(θi)

1+ε
−θ̂1+ε

θ̂1+ε

−(γ− 1) x
∑

αi

(ϕi)
2µ
i

(
1

1+β
v(1/θ̂)

(x−v(1/θ̂))
2
(θi)

1+ε
−θ̂1+ε

θ̂1+ε

)2


The above expression is positive as long as γ > 2. This implies that the function H is
concave, decreasing in Y and increasing in C.

Let β̃ = β̂
β .

Note that with the above definition, we can write the problem

B (V) = max Y −C0 −
1

1 + r
C1 +

1
1 + r

B
(
V ′
)

(91)
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subject to

log
(
C0 − v

(
Y/θ̂

))
+ (1 +β)H (C0, Y) +β logC1 + β̂V

′ = V

β̃ logC1 + β̃H (C0, Y) + V ′ > W

We analyze two cases:
Case 1. V is high so that the sustainability constraint is not binding. Then FOCs are

given by

−1 +
λ

C0 − v
(
Y/θ̂

) + (1 +β) λHC (C0, Y) = 0

−
1

1 + r
+
βλ

C1
= 0

1 −
λ

C0 − v
(
Y/θ̂

)v′ (Y/θ̂) 1
θ̂
+ (1 +β) λHY (C0, Y) = 0

1
1 + r

B′
(
V ′
)
+ β̂λ = 0

After rearranging, the first and third equations can be written as

1
C0 − v

(
Y/θ̂

) + (1 +β)HC (C0, Y) =
1
λ

1
C0 − v

(
Y/θ̂

)v′ (Y/θ̂) 1
θ̂
− (1 +β)HY (C0, Y) =

1
λ

or, using the definition of HC and HY as

1
C0 − v

(
Y/θ̂

) + (1 +β) Y−γĤ′
(
C0Y

−γ
)

=
1
λ

1
C0 − v

(
Y/θ̂

)v′ (Y/θ̂) 1
θ̂
+ (1 +β)γY−γ−1C0Ĥ

′ (C0Y
−γ
)

=
1
λ

Multiplying the first equation by C0 and the second equation by Y
γ and subtracting the

second from the first, we have

1 =
C0 − Y/γ

λ
→ C0 = λ+

Y

γ

So, the equation that governs Y can be written as

1
λ+ Y/γ− Yγv

(
1/θ̂
) + (1 +β) Y−γĤ′

(
(λ+ Y/γ) Y−γ

)
=

1
λ
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We can rewrite the above equation as

1
(λ+ Y/γ) Y−γ − v

(
1/θ̂
) + (1 +β) Ĥ′

(
(λ+ Y/γ) Y−γ

)
=
Yγ

λ

As we have noted above, inequality is governed by the variable x = C0Y
−γ = (λ+ Y/γ) Y−γ

– As x goes up inequality goes down. We want to characterize the behavior of various
variables as a function of V . Note that since the value function is concave – the constraint
set is convex and the objective is linear, B′ (V) is a decreasing function of V . Since by the
envelope condition B′ (V) = −λ and hence as V increases λ increases as well. So the char-
acterization comes down to the behavior of various variables as a function of λ. We start
with inequality x. Note that

dx = Y−γdλ+

[
−γY−γ−1λ+

1 − γ

γ
Y−γ

]
dY

= Y−γdλ− tdY

dY =
dx− Y−γdλ

t

where t = γY−1−γλ+ γ−1
γ Y

−γ > 0. Then we can write the above equation as

λ

[
1

x− v
+ (1 +β) Ĥ′ (x)

]
− Yγ = 0

Taking derivatives

dλ

[
1

x− v
+ (1 +β) Ĥ′ (x)

]
+ λ

[
−

1
x− v

+ (1 +β) Ĥ′′ (x)
]
dx− γYγ−1dY = 0

or

dλ

[
γY−1

t
+

1
x− v

+ (1 +β) Ĥ′ (x)
]
+

[(
−

1
x− v

+ (1 +β) Ĥ′′ (x)
)
λ−

γYγ−1

t

]
dx = 0

As a result
dx

dλ
= −

γY−1

t + 1
x−v + (1 +β) Ĥ′ (x)(

− 1
x−v + (1 +β) Ĥ′′ (x)

)
λ− γYγ−1

t

> 0

and this is positive since the numerator is negative and denominator is positive. This
implies that x increases with V and as a result inequality decreases as V increases.

Case 2. Suppose that the constraint is binding. Then we can write the program as

B (V) = max Y −C0 −
1

1 + r
C1 +

1
1 + r

B
(
W − β̃−1 logC1 − β̃

−1H (C0, Y)
)
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subject to
log
(
C0 − v

(
Y/θ̂

))
+H (C0, Y) + β̂W = V

The FOCs are

−1 −
λ

C0 − v
(
Y/θ̂

) − 1
β̃ (1 + r)

B′
(
V ′
)
Y−γĤ′

(
C0Y

−γ
)
+ λY−γĤ′

(
C0Y

−γ
)

= 0

−
1

1 + r
−

1
β̃ (1 + r)

B′
(
V ′
) 1
C1

= 0

1 +
1

β̃ (1 + r)
γY−γ−1Ĥ′

(
C0Y

−γ
)
B′
(
V ′
)
− λ

v′
(
Y/θ̂

)
/θ̂

C0 − v
(
Y/θ̂

) − λγY−γ−1Ĥ′
(
C0Y

−γ
)

= 0

Note that as before
C0 = λ+

Y

γ

So similar to what we had before, we can write

dx = Y−γdλ+

[
−γY−γ−1λ+

1 − γ

γ
Y−γ

]
dY

= Y−γdλ− tdY

dY =
dx− Y−γdλ

t

We can write the first FOC as

−Yγ −
λ

C0Y−γ − v
(
1/θ̂
) − 1

β̃ (1 + r)
B′
(
V ′
)
Ĥ′
(
C0Y

−γ
)
+ λĤ′

(
C0Y

−γ
)
= 0

or
−Yγ −

λ

x− v
−

1
β̃ (1 + r)

B′
(
V ′
)
Ĥ′ (x) + λĤ′ (x) = 0

Taking derivative we can write

−γYγ−1dY + λ

(
−

1
(x− v)2 + Ĥ′′ (x)

)
dx+

(
1

x− v
+ Ĥ′ (x)

)
dλ

−
1

β̃ (1 + r)
B′
(
V ′
)
Ĥ′′ (x)dx−

1
β̃ (1 + r)

Ĥ′ (x)B′′
(
V ′
)
dV ′ = 0
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From the FOCs, we have

C1 = −
1
β̃
B′
(
V ′
)
→ dC1 = −

1
β̃
B′′
(
V ′
)
dV ′

V ′ = W − β̃−1 logC1 − β̃
−1Ĥ (x)→ dV ′ = −

1
β̃

1
C1
dC1 −

1
β̃
Ĥ′ (x)dx

dC1 = −
1
β̃
B′′
(
V ′
) [

−
1
β̃

1
C1
dC1 −

1
β̃
Ĥ′ (x)dx

]
= −

1
β̃
B′′
(
V ′
) [ 1
B′ (V ′)

dC1 −
1
β̃
Ĥ′ (x)dx

]
= −

1
β̃

B′′

B′
dC1 +

1
β̃2B

′′Ĥ′dx

dC1 =

1
β̃2B

′′Ĥ′

1 + 1
β̃
B′′
B′
dx

dV ′ = −
1
B′′
β̃dC1 → dV ′ = −

1
β̃
Ĥ′

1 + 1
β̃
B′′
B′
dx

Note that B
′′
B′ > 0. So we can rewrite

−γYγ−1dx− Y
−γdλ

t
+ λ

(
−

1
(x− v)2 + Ĥ′′ (x)

)
dx+

(
1

x− v
+ Ĥ′ (x)

)
dλ

−
1

β̃ (1 + r)
B′
(
V ′
)
Ĥ′′ (x)dx+

1
β̃ (1 + r)

Ĥ′ (x)B′′
(
V ′
) 1

β̃
Ĥ′

1 + 1
β̃
B′′
B′
dx = 0

and we can write

dx

[
−
γYγ−1

t
+ λ

(
−

1
(x− v)2 + Ĥ′′ (x)

)
−

1
β̃ (1 + r)

B′
(
V ′
)
Ĥ′′ (x)

+
1

β̃ (1 + r)
Ĥ′ (x)B′′

(
V ′
) 1

β̃
Ĥ′

1 + 1
β̃
B′′
B′

 =

[
−Ĥ′ −

1
x− v

−
γY−1

t

]
dλ→ dx

dλ
> 0

dV ′

dλ
= −

1
β̃
Ĥ′

1 + 1
β̃
B′′
B′

dx

dλ
< 0

This completes the proof that V ′ is decreasing in λ and as a result in V . Hence, we have
the following proposition:

Proposition 7. The continuation value for the policy function V ′ (V) in (91) is U-shaped in V .
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13.2 BGP Preferences

For generic time separable preferencesU(C0, Y)+βU(C1, 0), we cannot write the planning
problem recursively using external government debt as a state variable. However, there
is an alternative formulation in which we use total debt B̂ as a state variable and solve:

V
(
B̂
)
= max

∑
i

µiαi
[
U
(
ci0,yi

)
+βU

(
ci1, 0

)]
+ β̂V

(
ci1

1 + r
+B′

)

subject to

∑
i

µi

[
ci0 +

ci1
1 + r

]
+G+ B̂ 6

∑
i

µiyi +
B′

1 + r

β

β̂

∑
i

µiαiU
(
ci1, 0

)
+ V

(
B̂′
)

> W

Let preferences be BGP (Cobb-Douglass):

U(c, l) =

(
c1−ψ(1 − l)ψ

)1−σ

1 − σ

Using the characterization of competitive equilibrium outcomes in Lemma 8, we can
write the programming problem above solely in terms of aggregates. In fact, if the mar-
ket weights are Φ =

{
ϕi
}

then from the FOCs for market utility problem we can express
individual allocations as

c0i =
ϕ

1/σ
i θ

ψ(σ−1)/σ
i∑

j µj

[
ϕ

1/σ
j θ

ψ(σ−1)/σ
j

]C0 = si0 (Φ)C0 (92)

1 − li =
ϕ

1/σ
i θ

ψ(σ−1)/σ
i∑

j µj

[
ϕ

1/σ
j θ

ψ(σ−1)/σ
j

] (1 − Y)

θi
= si0 (Φ)

(1 − Y)

θi
(93)

c1i =
ϕ

−1/[(1−ψ)(1−σ)−1]
i∑

j µjϕ
−1/[(1−ψ)(1−σ)−1]
j

C1 = si1(Φ)C1 (94)

so that ∑
i

µiαiU
(
ci0,yi

)
= A0 (Φ)U (C0, Y) (95)∑

i

µiαiU
(
ci1, 0

)
= A1 (Φ)U (C, 0) (96)
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where

A0 (Φ) =
∑
i

µiαisi0 (Φ)1−σ θ
−ψ(1−σ)
i (97)

A1 (Φ) =
∑
i

µiαisi1 (Φ)(1−σ)(1−ψ) (98)

Moreover the implementability conditions are

T̂ = ci0 +β
(1 −ψ)

(
ci1
)(1−ψ)(1−σ)−1

(1 −ψ)(1 − σ)U(ci0, li)/ci0
ci1 −

ψ

1 −ψ

ci
1 − li

li (99)

for some T̂ . Using (92), (93), and (94) in (99) implicitly defines Φ = Φ (C0, Y,C1). We can
then write the problem (in dual form) using only aggregates as

B̂ (V) = maxZY −C0 −
C1

1 + r
−G+

1
1 + r

B̂
(
V ′
)

subject to

A0 (Φ (C0, Y,C1))U (C0, Y) +βA1 (Φ (C0, Y,C1))U (C1, 0) + β̂V ′ = V

β

β̂
A1 (Φ (C0, Y,C1))U (C1, 0) + V ′ > W

Figure 5 shows the policy functions associated with this problem. The result is that V ′ (V)
is U-shaped (and so B̂′ and B′ are hump-shaped).

14 Three-Period OLG

In this section, we argue that overshooting and the cyclical dynamics are robust features
of the environment and not special to the two-period OLG structure considered in the
text. To address this point, consider an economy where agents live for three periods an
work only when young. The preferences are

log c0 +ψ log (1 − y/θ) +β log c1 +β
2 log c2.

Using a similar logic to the one used for the baseline economy, we can solve for the
best sustainable equilibrium recursively using foreign debt B and past period output Y−
as state variables:

V (B, Y−) = max
B′,Y

κ log
(
Y +

B′

1 + r
−B−G

)
+ψ log (1 − Y)−(1+ψ+β+β2)H(Y)+ β̂V

(
B′, Y

)
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Figure 5: Policy functions with BGP preferences

subject to

W (B, Y−, Y) = −

(
β

β̂

)2

H (Y−) −

(
β+β2)
β̂

H (Y) + V
(
B′, Y

)
>W

where κ now is given by 1+β/β̂+(β/β̂)2 andW is defined in a similar way to the analog
in our baseline economy.

A complete analytical characterization of the dynamics is not available. However, we
are still able to show that for any given Y− the policy function for foreign debt B′ (B, Y−)
is hump-shaped in B as shown in Figure 6. That is, given Y−, B′ (B, Y−) is increasing in B
for low values of B and when the sustainability constraint is not binding. Furthermore, it
is decreasing in B for high values of B and when the sustainability constraint is binding.19

19A proof is available upon request.
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Figure 6: Policy Functions with three-period OLG

Hence this economy features overshooting as our baseline case.
The fact that B′ is hump-shaped in B is not enough to show that a sample path has an

oscillatory dynamics if β̂(1 + r) < 1. This is because the level of foreign debt issued also
negatively depends on lagged output (current inequality among middle aged people) as
shown in Figure 6. However, we can solve the model numerically and show that this
economy still has a cyclical pattern. Figure 7 shows a typical outcome path. When the
government inherits high foreign debt – above the steady state value – the convergence
to the final steady state is cyclical. The difference here is that now the length of each cycle
lasts two periods and not one.
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