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Abstract

We study bilateral trade with a seller owning multiple units of a good, where each
unit is of binary quality. The seller privately knows her “type” — defined by the number
of lemons that she owns — and which units in her endowments are the lemons (“within-
type adverse selection”). We characterize the set of informationally constrained Pareto
optimal allocations and show that every such allocation must involve a trade char-
acterized by a threshold λ∗, with types having less (more) than λ∗ units of lemons
selling only their lemons (selling their entire endowment). We provide conditions for a
distribution shift that give Pareto-improving allocations.
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1 Introduction

Since the seminal work of Akerlof (1970), it has been well-accepted that adverse selection
is a key factor that contributes to market failures. Akerlof illustrated the effects of adverse
selection in a model in which sellers each own an indivisible good of privately known quality
and attempt to sell their good to uninformed buyers. Subsequent works have extended the
analysis to situations in which the seller owns multiple units of a good of homogenous quality
and can sell any part of her endowment (i.e., a divisible good). In this paper, we further
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extend this literature by studying a setting in which the seller not only has multiple units
of a good but also each unit is of potentially different quality, which is indistinguishable by
the buyer ex ante.

Such a setting describes many wholesale trades, such as the trade of used cars between
car dealers and car rental companies and the liquidation of assets after a business shutdown.
In patent trades, the project owner (such as a startup company) also often owns multiple
projects that look similar to outsiders, and the project owner has private information about
each project’s potential. In the financial market, banks securitize their loans and sell them
to institutional investors. The quality of each loan varies, and the banks also often have
private information about the quality.

A distinctive feature in such lemon markets is the presence of “within-type adverse se-
lection,” where, fixing the seller’s endowment realization (or type), the buyer also cannot
distinguish the lemons from the high-quality units in the seller’s endowment. Therefore, at
any per-unit price, the buyer is more likely to be supplied with the seller’s lemons.1 This
problem is potentially mitigated using a bundled trade, where the seller is given only the
options to either trade her entire endowment or nothing at all, because a bundled trade pre-
vents the seller from self-selecting only her lemons for trade.2 However, the overall quality
of the seller’s endowment is also her private information (“across-type adverse selection”).
Therefore, a given bundle price is also more likely to attract a seller who owns more lemons
but completely drive out a seller with more high-quality units, and this makes it even more
difficult for a trade of high-quality units to occur.

In this paper, we study a bilateral trade model with a buyer (he) facing a seller (she)
who owns multiple units of a good. Each unit can be of either high or low quality. The
two players’ valuations of each unit are correlated, but the quality of each unit is privately
known to only the seller. We characterize all the Pareto optimal allocations that satisfy
the incentive constraints arising from the seller’s private information about the quality. We
show that every such constrained Pareto optimal allocation must involve a trade that has
a “threshold property,” where, if the seller has more than some (endogenously determined)

1For example, Calem et al. (2011) document evidence that banks cherry-picked their riskier loans to
securitize during the subprime mortgage crisis.

2A common example of a bundled trade in practice is an “output contract,” which is often used in
trade with smaller farms to prevent farmers from keeping their better products or side-selling them to other
buyers. In the entertainment industry, telecommunication companies also often purchase all of the programs
produced by a studio each year. Patent trades also often have such a “bulk purchase” feature. For instance,
in 2012, Microsoft purchased 800 patents and the licenses to more than 300 patents from AOL Inc. for more
than $1 billion. Similarly, when Google purchased Motorola’s mobile business arm for $12.5 billion, the sale
included the transfer of all of Motorola’s more than 22000 patents (see Sandhu et al. (2013) for details).
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threshold (denoted by λ∗) units of lemons, she trades her entire endowment, whereas if
the seller has less than λ∗ units of lemons, she trades all of her lemons but none of her
high-quality units.

Let us use a few examples to briefly describe some key issues and results in our model. Let
H and L denote a high-quality and a low-quality unit, respectively. The seller’s opportunity
costs for H and L are cH and cL, respectively, with cH > cL, and the buyer’s valuations are
such that there are gains from a trade for both an H and an L. To make the explanation
more concrete, we assume here that the seller has a finite number of units (whereas the main
model considers a continuum of units) and the buyer makes a take-it-or-leave-it offer to the
seller (whereas the main analysis studies a mechanism design problem to derive the set of
constrained Pareto optimal allocations.).

Suppose first that the seller has two units and her “type” is either {H,H} or {L,L},
each occurring with equal probability.3 In this case, the best that the buyer can do is either
offer a per-unit price of cL (and buy from only type {L,L}) or cH (and buy from both types
but give some rent to type {L,L} in the process).

Suppose now that the quality distribution changes, with the seller having exactly 1 H

and 1 L with a probability of one. Note that the expected quality of a given unit is un-
changed from above, and the buyer still cannot distinguish H from L in the economy ex ante.
However, the buyer can now offer a two-unit bundle price of cH + cL for the seller’s entire
endowment and obtain the first best utility. This simple example illustrates how, fixing the
expected quality of each unit of good in the economy, the equilibrium efficiency also depends
on how quality is distributed across different types of sellers.

Next, suppose that the seller has three units instead, and her type is either θ̄ = {L,H,H}
or θ = {L,L,H}. Now, regardless of the probabilities of types θ̄ and θ, there is not a full-
bundle price that allows the buyer to obtain the first best utility. If the buyer offers a high
three-unit bundle price of cL + 2cH , both types of sellers will accept the offer, and type θ
earns a rent of cH − cL. Suppose that this purchasing strategy is suboptimal for the buyer
because his expected utility is higher from offering a lower three-unit bundle price of 2cL+cH ,
which allows him to buy from only type θ but without giving her any rent. Observe that
the buyer can further increase his expected utility by complementing this low bundle price
of 2cL + cH with a low per-unit price offer of cL, which will induce type θ̄ to sell her one unit
of L, generating an additional surplus for the buyer. However, it is not immediately clear

3Note that in our main analysis, to simplify the language, we refer to the seller’s “type” as simply the
quantity of L in her endowment.
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if the buyer can improve his utility even further by offering some two-unit bundle option to
also buy one H from type θ̄.

Our key result — that trade in any constrained Pareto optimum must have the “threshold
property” — implies that the answer is no. The threshold property implies that each type
of seller either sells her entire endowment or sells all of her Ls but none of her Hs. Thus,
if the buyer finds it worthwhile to offer a two-unit bundle to entice type θ̄ to sell an H, he
must also find it worthwhile to entice type θ̄ to sell her entire endowment, which has been
assumed not to be the case. This means that the buyer’s optimal purchasing strategy is
to offer a menu that consists of the low three-unit bundle price (meant for θ) and the low
per-unit price (meant for θ̄).

In the classic lemon market models — for example, Akerlof (1970), where the seller owns
an indivisible unit of a good, and Attar et al. (2011), where the seller owns a divisible unit
with homogenous quality —, when quality is binary, the equilibrium trade always takes one
of the following two forms: either all of the units in the economy are traded, or only the
Ls and none of the Hs are traded. By contrast, in the example here, whether an H unit is
traded also depends on which type of seller owns it — an H unit is traded if it belongs to
type θ but is not traded if it belongs to type θ̄.

The remainder of this paper proceeds as follows. We first discuss the related literature in
the next subsection. Next, we present our model in Section 2 and provide the main analysis
in Sections 3 and 4. We then describe a few extensions in Section 5 and, finally, we conclude
in Section 6. Unless stated otherwise, all of the proofs are provided in Appendix A, and an
Online Appendix provides additional details.

1.1 Related literature

Within the adverse selection literature, our paper is most closely related to works on the
lemon market with a divisible good. For example, Rothschild and Stiglitz (1976), Attar
et al. (2011, 2014, 2017), and Ales and Maziero (2016) consider competition on the buyer’s
side; Stiglitz (1977) and Chade and Schlee (2012, 2020) consider the monopsony case; and
Gerardi et al. (2022) consider a dynamic model. Our main point of departure is that we con-
sider heterogeneous quality within the seller’s endowment; this leads to within-type adverse
selection, which is absent in the aforementioned papers.4

4Nguyen (2022) empirically studies the social health insurance market in Vietnam and shows that
bundling health insurance at the household level mitigates inefficiency due to an analogous form of within-
type adverse selection, where each household privately knows the health risks of its members and self-selects
only the high risk members into insurance.
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Huangfu and Liu (2022) study a bargaining problem with adverse selection where there
are two goods, a seller owns one indivisible unit of each good, and the quality of her two
goods are correlated. Crocker and Snow (2011) study a similar setup framed as an insurance
screening problem in which the insuree has multiple perils with correlated risk type. Our
setting is substantially different from theirs because we have only one good, although the
seller has multiple units of this good with potentially different quality levels.

Our paper is also related to Samuelson (1984), who considers the bargaining problem
with one-sided incomplete information, with the seller having an indivisible unit of a good.
Because of the linearity in the preferences in Samuelson’s model, the buyer cannot benefit
from offering a menu of contracts to screen the seller. Our preference specification is similar to
Samuelson’s; however, because our seller’s endowment is divisible and contains portions with
different quality levels, single-crossing is satisfied in our setup. Another notable difference is
that in our model, trade in the Pareto optimal allocations, including the seller-optimal and
the buyer-optimal ones, all feature the threshold property, whereas in Samuelson’s analysis,
the trade pattern in the buyer-optimal equilibrium can be quite different from that in the
seller-optimal equilibrium.

One of the reasons that the threshold property arises in our model is due to within-type
adverse selection; thus, one has to run down the seller’s endowment of lemons using low
prices for the early units. Such a trade pattern is reminiscent of that in dynamic lemon
markets (e.g., Daley and Green (2012), Fuchs et al. (2016), Kim (2017), Kaya and Kim
(2018) and Gerardi et al. (2022)), where the low-quality sellers are “skimmed off” over time
with low prices in the early stages.5 However, there are two substantial differences between
our paper and the aforementioned literature. First, in a dynamic lemon market, the buyer’s
cost of offering a low price for the early units is a delay in trade with the high-quality seller,
whereas the associated cost in our model is the potential of completely driving a seller with
many high-quality units out of the market. Second, in a dynamic lemon market, the buyer
usually has no commitment to future prices, whereas the prices of each unit in our model
are determined from the start.6

Finally, our paper is also related to the literature on commodity bundling (e.g., Adams
5The basic trade pattern is as follows: the buyer offers a low price in the early stages, and a low-quality

seller randomizes between accepting and rejecting/waiting, whereas a high-quality seller always waits. Over
time, the buyer becomes more confident of the quality and more willing to offer a high price.

6This distinction on the commitment to prices is of particular relevance to Gerardi et al. (2022), who
consider the case in which the seller’s good is divisible and the buyer can make offers to buy small portions
of it over time. They show that when there is diminishing marginal utility from consumption, the lack of
commitment to future contracts harms the buyer à la Coasian dynamics.
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and Yellen, 1976; McAfee et al., 1989; Fang and Norman, 2006; Armstrong, 2013; Chen and
Riordan, 2013; Chen and Li, 2018), whereby a multiproduct seller finds it worthwhile to offer
a discount price for a predetermined basket of distinct goods. In this literature, bundling
refers to a trade of (possibly multiple units of) at least two distinct goods. By contrast, in
our model, there are multiple units of only one good, and bundling simply refers to trading
high quantities instead of individual units. Thus, the logic behind the gains from bundling
is quite different.

2 Model

A buyer (he) faces a seller (she), who is endowed with a continuum of a good with a total
measure of one. Each marginal unit of the good is of either quality L or quality H. For
brevity, we call an L-quality (H-quality) unit L (H). The seller’s endowment can consist of
both Ls and Hs, and the quality of each marginal unit is the seller’s private information.
The buyer’s valuations of L and H are vL and vH , respectively, and the seller’s opportunity
costs of L and H are cL and cH , respectively, with cL < cH . Let the trade surplus for L and
H be denoted by sL := vL − cL and sH := vH − cH , respectively. We assume that sH , sL > 0,
implying a trade of any unit is always socially efficient.

A trade contract is described by (q, t), where q ∈ [0, 1] is the quantity supplied by the
seller to the buyer, and t ∈ R is the monetary transfer from the buyer to the seller. If a
trade (q, t) occurs with the seller fulfilling the quantity obligation with xL units of L and xH
units of H, where xL + xH = q, then the buyer’s utility is xLvL + xHvH − t, and the seller’s
utility is t− xLcL − xHcH . In the absence of a trade, both of the players’ outside options are
zero. Because cH > cL, the seller will first run down her Ls before providing any H.7 Let
[x]+ := max {x, 0}. Thus, the cost for a seller with λ units of L to supply q units is C (q, λ),
and the buyer’s valuation of these q units is V (q, λ), where

C (q, λ) := qcL + [q − λ]+ (cH − cL) , (1)

V (q, λ) := qvL + [q − λ]+ (vH − vL) . (2)

Therefore, the seller’s private information is fully captured by λ, which is henceforth referred
to as the seller’s type. Under a trade (q, t) between the buyer and the type-λ seller, the

7We assume that after agreeing to trade q units, the choice of which q units to trade is determined by
the seller.
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utilities of the buyer and the seller are V (q, λ)−t and t−C (q, λ), respectively. Let F denote
the commonly known distribution of λ. We maintain the following assumption throughout:

Assumption 1. F is continuous and admits a density f that is strictly positive over (0, 1).
The hazard rate f/ (1 − F ) is nondecreasing.

Assumption 1 is a common assumption in the mechanism design literature and is satisfied
by many common distributions, including the uniform distribution, Beta distribution, and
the truncated normal and logistic distributions.

Remark 1. The crucial distinction between the two players in the model is that only one
of them has private information. Our convention is that the player with (without) private
information is labeled the “seller” (“buyer”). These labels are not important because we
do not restrict the signs of v, c and t. For example, in the insurance market, the roles
of the “buyer” and the “seller” are different from their literal meanings — the “buyer” is
the insurance company, the “seller” is the insuree, and the “good” is the insuree’s risk. In
this case, the valuation (v) and the cost (c) of the good are both negative; therefore, the
transfer t is negative, representing an insurance premium paid by the insuree to the insurance
company.

2.1 Single-Unit Seller Benchmark.

To compare our results with the classic lemon market models, we first provide a “single-unit
seller benchmark” that fixes the quantity and quality of the units in the economy, but each
unit is now owned by a different seller. Specifically, in this benchmark economy, instead
of facing one seller, the buyer faces a continuum of sellers of a total measure of one, but
each seller owns only a marginal unit of the good. Thus, the total measure of goods in the
economy is still one. The probability of facing a seller with an L is E [λ] :=

∫ 1
0 λf (λ) dλ, and

the buyer’s expected valuation of each marginal unit is E [v] := E [λ] vL + (1 − E [λ]) vH .
Say that there is severe (mild) adverse selection if E [v] < (≥) cH . Regardless of how

the trade contracts are determined, there are only two possible equilibrium outcomes in this
benchmark economy, as follows: either (i) all the Ls but none of the Hs in the economy
are traded, or (ii) every unit in the economy is traded. In particular, under severe adverse
selection, the trade outcome is always (i), whereas outcome (ii) can arise only under mild
adverse selection. Akerlof (1970) establishes this result in a market equilibrium where the
players are price-takers, and Attar et al. (2011) provide a strategic foundation for this result in
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an environment in which the seller has a divisible unit and there is nonexclusive competition
on the buyer’s side.

3 Constrained Pareto Optimal Allocations

We study the set of Pareto optimal allocations that satisfy the players’ incentive and par-
ticipation constraints in our model. To define the problem, let {q (λ) , t (λ)}λ∈[0,1] denote
a direct mechanism.8 Given a direct mechanism, let UB (λ) = V (q (λ) , λ) − t (λ) and
US (λ) = t (λ) − C (q (λ) , λ). For a given b ≥ 0, define program (P) as follows:

max
{q(λ),t(λ)}λ∈[0,1]

∫ 1
0 U

S (λ) f (λ) dλ, s.t. (ICS), (IRS) and (IRB) , (P)

where

US (λ) ≥ t (λ′) − C (q (λ′) , λ) ∀λ, λ′, (ICS)

US (λ) ≥ 0 ∀λ, (IRS)∫ 1

0
UB (λ) f (λ) dλ ≥ b. (IRB)

Program (P) finds the mechanism that maximizes the seller’s expected utility, subject to
the mechanism satisfying every type of seller’s truth-telling and participation constraints and
also providing the buyer an expected utility of at least b. By varying b, the player’s utilities
in the solutions to program (P) characterize the informationally constrained Pareto optimal
allocations, which are hereafter referred to (for short) as the second best (SB) allocations.

3.1 Threshold Property of Second Best Allocations

Let I be the indicator function, where I (x) = 1 if x holds, and I (x) = 0 otherwise.

Lemma 1. The solution to program (P) must satisfy the following conditions:

US (λ) = US (0) + (cH − cL)
∫ λ

0
I (q (l) > l) dl ∀λ, (3)

q (·) is nondecreasing. (4)
8By the revelation principle, it is without loss of generality to consider only direct mechanisms. We

consider only deterministic mechanisms for now. We discuss stochastic mechanisms in Section 5.4.
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Constraint (ICS) holds whenever these two conditions are satisfied.

Using standard envelope theorem arguments, conditions (3) and (4) are jointly suffi-
cient conditions for the seller’s truth-telling constraint (ICS). However, condition (4) is
not a necessary condition — i.e., a nonmonotonic q (·) can still be incentive-compatible
because single-crossing holds only weakly here. Nevertheless, we can show that an incentive-
compatible but nonmonotonic q (·) must be strictly suboptimal for program (P). Therefore,
we can still restrict our attention to only monotonic q (·).

From equation (3), US (λ) increases with λ; thus, the seller’s participation constraint
(IRS) holds for all types if it holds for type λ = 0. Moreover, equation (3) implies that

t (λ) = US (0) + (cH − cL)
∫ λ

0
I (q (l) > l) dl + C (q (λ) , λ) . (5)

By substituting this expression of t (λ) into the objective function of program (P) and the
buyer’s expected utility in (IRB), we can show that (IRB) must bind at the optimum because
if it does not bind, we can shift some utility from the buyer to the seller by increasing US (0)
via increasing the transfer schedule uniformly.9

Putting these observations together, program (P) becomes program (P̃), as follows:

max
q(·),US(0)

∫ 1
0 S (q (λ) , λ) f (λ) dλ− b s.t.

q (·) is nondecreasing , US (0) ≥ 0︸ ︷︷ ︸(
˜IRS
) , and

∫ 1

0
ψB (q (λ) , λ) dλ− US (0) = b︸ ︷︷ ︸(

˜IRB
) , (P̃)

where

S (q, λ) :=V (q, λ) − C (q, λ)

ψS (q, λ) := (cH − cL) I (q > λ) [1 − F (λ)]

ψB (q, λ) :=S (q, λ) f (λ) − ψS (q, λ) .

In words, S (q, λ) is the total surplus from trading q units with type λ. Fixing the type-0
seller’s utility, which is denoted by US (0), ψS (q, λ) is the type-λ seller’s virtual information
rent beyond US (0), and ψB (q, λ) is the buyer’s share of the trade surplus when trading with

9See Lemma 4 in Appendix A for the formal argument.
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type λ.10 Thus, program (P̃) is equivalent to maximizing the total expected surplus among
all nondecreasing quantity schedule q (·), subject to the participation constraint of the type-0
seller and the buyer receiving exactly an expected utility of b.

The solution to program (P̃) gives the optimal quantity schedule for program (P). Let

b̄ := max
nondecreasing q(·)

∫ 1

0
ψB (q (λ) , λ) dλ (6)

If b > b̄, it is impossible to simultaneously satisfy both constraints ( ˜IRS) and ( ˜IRB).

Definition 1. q (·) is a “threshold schedule” if there exists a threshold x ∈ [0, 1] such that
q (λ) = λ for all λ < x and q (λ) = 1 for all λ ≥ x.

Proposition 1. For all b ∈
[
0, b̄

]
, a solution to program (P̃) exists. If q (·) is a solution to

program (P̃), then q (·) must be a threshold schedule.

Under a threshold schedule, there is never a partial trade of the seller’s endowment of a
particular quality — if the seller is of type λ < x, she trades all of her Ls but none of her
Hs; if she is of type λ ≥ x, she trades her entire endowment. Proposition 1 implies that any
SB allocation must involve a trade with such a property. This result is useful because each
threshold schedule is fully characterized by its scalar threshold; thus, the SB allocation can
be obtained by optimizing over the set of possible thresholds, [0, 1].

3.1.1 Sketch of proof of Proposition 1

We explain the main arguments for Proposition 1 next. A reader who prefers to skip these
details can jump to Subsection 3.2, where we use the threshold property of the optimal
schedule to derive the set of SB allocations.

First, observe that both S (q, λ) and ψB (q, λ) are increasing in q when q ̸= λ.11 This
implies that if q (·) is a solution to program (P̃), it must have the following two properties:
(i) q (λ) cannot be smaller than λ, and (ii) if q (λ) > λ over some interval (λ1, λ2), then
q (·) must exhibit bunching in (λ1, λ2). To see these two points visually, consider quantity
schedule q0 (·) in the left panel (in blue) of Figure 1. By increasing the quantities for each
λ ∈ (λ0, λ1) to q (λ) = λ and for each λ ∈ (λ1, λ2) to q (λ) = λ2 — see schedule q1 (·) in the

10Note that this means that the seller’s expected utility can also be expressed as
∫ 1

0 ψ
S (q (λ) , λ) dλ +

US (0), and the buyer’s expected utility is the left-hand side of constraint ( ˜IRB).
11S (q, λ) always increases with q because sL and sH are both positive. ψS (q, λ) is constant over q ∈ [0, λ)

and q ∈ (λ, 1] but has a discrete jump at q = λ. Thus ψB (q, λ) increases with q when q ̸= λ, but it has a
discrete jump at q = λ that is possibly downward.
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Figure 1: On the Suboptimality of Nonthreshold Schedules

(The diagonal dotted lines are the 45-degree lines.)
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q0 (·) is suboptimal relative to q1 (·) because there are types in which q0 (λ) < λ.
When λ2 < 1, it is possible to construct schedule q2 (·) that dominates q1 (·), where η (·) is
defined in equations (8) and (9).

middle panel (in red) — the schedule is still nondecreasing, but both the objective value and
the buyer’s surplus on the left-hand side of constraint ( ˜IRB) become higher because of the
properties of S and ψB noted above. By increasing US (0) accordingly, constraint ( ˜IRB) will
also hold for schedule q1 (·), which thus makes it a feasible and better schedule than q0 (·).

Next, we claim that schedule q1 (·) is strictly suboptimal if λ2 < 1, which will then imply
that the solution q (·) must be a threshold schedule. This result relies on the following
statistical property of F , which is proven in Appendix A:

Lemma 2. When f/ (1 − F ) is nondecreasing, the following property holds: for any λ1 < λ2,
if ε1, ε2 > 0 are such that

∫ λ2+ε2
λ1+ε1

1 − F (λ) dλ =
∫ λ2
λ1

1 − F (λ) dλ, then

∫ λ2+ε2

λ1+ε1

[
(λ2 + ε2) − λ

]
f (λ) dλ >

∫ λ2

λ1
[λ2 − λ] f (λ) dλ. (7)

To explain why Lemma 2 implies that λ2 < 1 is always suboptimal, first note that
under schedule q1 (·), each of types λ ∈ [λ1, λ2) sells (λ2 − λ) units of H and derives some
information rent. Let the expected virtual rent given to the types in [λ1, λ2) be denoted by

R =
∫ λ2

λ1
ψS (q1 (λ) , λ) dλ = (cH − cL)

∫ λ2

λ1
1 − F (λ) dλ. (8)
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Instead of obtaining Hs from the types in [λ1, λ2), consider now obtaining Hs from the types
in [λ1 + ε, λ′

2) for some ε > 0. (Note that this is possible only if λ2 < 1.) If we restrict that
the rent provided to these types is R, then λ′

2 is some λ2 +η (ε) characterized (implicitly) by

R = (cH − cL)
∫ λ2+η(ε)

λ1+ε
1 − F (λ) dλ. (9)

This is illustrated by quantity schedule q2 (·) in the right panel (in green) of Figure 1. In
terms of the surplus generated, the upside of schedule q2 (·) is that each λ within the interval
selling some Hs now sells λ2 +η (ε)−λ units of H, which is an increase of η (ε) units per type
relative to under q1 (·). However, the downside is that the types in [λ1, λ1 + ε) no longer sell
their Hs and are replaced by the types in [λ2, λ2 + η (ε)), who have fewer units of H each.
The resulting net change in the expected surplus (i.e., objective value of program (P̃)) is

δε =
∫ 1

0
S (q2 (λ) , λ) f (λ) dλ−

∫ 1

0
S (q1 (λ) , λ) f (λ) dλ

=sH
[∫ λ2+η(ε)

λ1+ε
(λ2 + η (ε) − λ) f (λ) dλ−

∫ λ2

λ1
(λ2 − λ) f (λ) dλ

]
(10)

From equations (8) and (9), Lemma 2 implies that δε is strictly positive. Note that∫ 1
0 ψ

B (q2 (λ) , λ) −ψB (q1 (λ) , λ) dλ = δε as well. Thus, if q1 (·) satisfies constraint ( ˜IRB), we
can increase the value of US (0) by δε; in turn, q2 (·) will also satisfy constraint ( ˜IRB) under
this new value of US (0). This shows that q2 (·) is feasible but attains a higher objective
value than q1 (·). Thus, q1 (·) is strictly suboptimal if λ2 < 1.

Summarizing the previous argument, to extract Hs from the seller, we must give her
information rent. The quantity of H (and hence surplus) that we can extract from each type
depends on the type interval chosen to extract the Hs from. Fixing the rent to allocate,
Lemma 2 implies that when f/ (1 − F ) is nondecreasing, the surplus generated is always
higher when extracting the Hs from (and giving this rent to) the higher types. This property
leads to the threshold property of the solution quantity schedule.

Remark 2. The role of the monotone hazard rate property here is quite different from that in
standard mechanism design problems. In standard mechanism design problems, the mono-
tone hazard rate property ensures that the point-wise optimum of the virtual surplus is
monotonic in the type, hence making it the solution to the mechanism design problem. By
contrast, even when the hazard rate is monotonic here, the point-wise optimum is still gen-
erally not monotonic and is hence not a solution because it violates incentive-compatibility.
Instead, as explained above, the monotone hazard rate property ensures that the solution
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quantity schedule has the threshold property, and we can then use this property to solve for
the solution in the next subsection.

3.2 The Set of Second Best Allocations

By Proposition 1, for program (P̃), we can optimize over only threshold schedules, which
are parametrized by their (scalar) thresholds. For brevity, call the threshold schedule with
threshold x the threshold-x schedule. When q (·) is the threshold-x schedule, the values of∫ 1

0 S (q (λ) , λ) f (λ) dλ and
∫ 1

0 ψ
S (q (λ) , λ) dλ are, respectively,

Ŝ (x) :=E [λ] sL +
∫ 1

x
(1 − λ) sHf (λ) dλ, (11)

ψ̂S (x) :=
∫ 1

x
(cH − cL) [1 − F (λ)] dλ. (12)

Restricting attention to only threshold schedules, program (P̃) becomes

max
x∈[0,1], US(0)≥0

Ŝ (x) − b s.t. Ŝ (x) − ψ̂S (x) − US (0) = b. (13)

Ŝ (x) is strictly decreasing in x. Therefore, if Ŝ (0) − ψ̂S (0) ≥ b, the solution to program
(13) is x = 0 and US (0) = Ŝ (0) − ψ̂S (0) − b. If Ŝ (0) − ψ̂S (0) < b instead, the optimal
threshold x for program (13) is the smallest x satisfying the program’s constraint. This
implies that US (0) must be zero. Thus, in this case, the optimal x is

λ∗ (b) := min Λ (b) , where Λ (b) :=
{
z
∣∣∣∣z ∈ [0, 1] and Ŝ (z) − ψ̂S (z) = b

}
. (14)

Note that because b̄ is also equal to maxx∈[0,1] Ŝ (x) − ψ̂S (x), the set Λ (b) is nonempty for
all b ∈

[
Ŝ (0) − ψ̂S (0) , b̄

]
, meaning that λ∗ (b) is well-defined. The solution to program (13)

gives the optimal q (·) for program (P), and the optimal t (·) is obtained from equation (5).

Proposition 2. For all b ∈
[
0, b̄

]
, program (P) has a unique solution.

• (A1): If b ≤ E [v] − cH , the solution is (q∗ (λ) , t∗ (λ)) = (1, E [v] − b) for all λ ∈ [0, 1].
The seller’s expected utility is Ŝ (0) − b.

• (A2): If b > E [v] − cH , the solution is

(q∗ (λ) , t∗ (λ)) =

(λ, λcL) , ∀λ < λ∗ (b)

(1, C (1, λ∗ (b))) , ∀λ ≥ λ∗ (b)
.
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The seller’s expected utility is ψ̂S (λ∗ (b)), and λ∗ (b) is strictly positive and strictly
increasing in b.

Proposition 2 characterizes the set of SB allocations and the unique direct mechanism
that attains each SB allocation. The argument for the proposition follows from the discussion
above and also noting that Ŝ (0) − ψ̂S (0) = E [v] − cH .

To highlight some general features of the SB allocations, we categorize them into two
classes — A1 and A2. In an A1 SB allocation, trade occurs under the threshold-0 schedule
— i.e., every unit is traded. This is because the type-0 seller’s participation constraint is slack
(i.e., US (0) > 0). Thus, from constraint

(
˜IRB

)
in program (P̃), utility can be transferred

between the buyer and the seller without any efficiency loss. Therefore, the sum of the two
players’ utilities is always the first best surplus of Ŝ (0), which is the surplus derived when all
the units are traded. An A1 SB allocation can exist only if there is mild adverse selection,
but mild adverse selection does not guarantee that all the SB allocations are of class A1.12

By contrast, in an A2 SB allocation, trade occurs under the threshold-λ∗ (b) schedule,
where λ∗ (b) is strictly positive. Here, the type-0 seller’s participation constraint binds and
transferring utility from the seller to the buyer requires distortion away from the first best
trade. This distortion worsens with the buyer’s required expected utility b because λ∗ (b)
increases with b and the total expected surplus decreases with the threshold. When there is
severe adverse selection, all the SB allocations are of class A2, but there can also be A2 SB
allocations under mild adverse selection.

As for the mechanism, each SB allocation involves a trade described by some threshold-x
schedule, where each type λ < x sells all of her Ls (and none of her Hs) for the price of
λcL, and each type λ ≥ x sells her entire endowment at the price of the cost of type x’s
endowment, C (1, x). The following are two possible ways of implementing this mechanism:
the first is “mixed bundling,” where the seller is offered the options to either sell her entire
endowment at a full bundle price of C (1, x) or sell à la carte at a marginal price of cL. The
second way is “marginal pricing with a switch,” where the seller is offered a marginal price
of cL for the first x units and upon selling x units, the seller is offered a marginal price of cH
for all her subsequent units. When the transfers are negative (e.g., in insurance), this latter
way is simply a quantity discount.

The buyer-optimal (seller-optimal) SB allocation is the allocation of program (P) under
b = b̄ (b = 0). Let the optimal threshold of the buyer-optimal and seller-optimal programs
be denoted by λB∗ and λS∗, respectively. Proposition 2 implies that λS∗ ≤ λB∗, with the

12Recall that there is mild (severe) adverse selection if E [v]−cH ≥ (<) 0, and E [v]−cH = Ŝ (0)− ψ̂S (0).
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inequality holding strictly unless λS∗ = 1 or λB∗ = 0. Moreover, if the threshold-x schedule
is the trade schedule for some SB allocation, it must be the case that x ∈

[
λS∗, λB∗

]
. This

implies the following efficiency ranking:

Corollary 1. The buyer-optimal (seller-optimal) SB allocation always attains the lowest
(highest) total surplus among all the SB allocations.

The observation that every optimal threshold x must be in the set
[
λS∗, λB∗

]
also implies

that in any SB allocation, a type λ < λS∗ always sells only her Ls and none of her Hs,
whereas a type λ ≥ λB∗ always sells her entire endowment. By contrast, the trade for a type
in
(
λS∗, λB∗

)
— assuming that this set of types is nonempty — depends on the particular

SB allocation. For example, in the seller-optimal SB allocation, every such type continues
to sell her entire endowment, whereas in the buyer-optimal SB allocation, every such type
sells only her Ls.

As an example, Figure 2 plots the set of SB allocations for the case where F is the uniform
distribution. The details of the associated closed-form solution are found in Appendix B.
When adverse selection is very mild (sH ≥ cH − cL), all the SB allocations are of class A1;
thus, the slope of the frontier is always −1. When adverse selection is only moderately mild
(sH + sL ≥ cH − cL > sH), both classes of SB allocations are possible. The slope of the
frontier for the A2 allocations is always steeper than −1, and, for the specific case of the
uniform distribution, this slope is the constant − cH−cL

cH−cL−sH
.13

4 Pareto-improving Distribution Shifts

Fix some SB allocation of distribution F and let it be denoted by AF . Let G be another
distribution of λ and assume that G has the same mean as F and satisfies Assumption 1.14

In this section, we derive conditions for G such that there is an SB allocation of distribution
G that Pareto dominates AF . Let λ̂F denote the threshold of the threshold quantity schedule
associated with allocation AF . To ensure that the analysis is nonvacuous, we restrict our
attention to only AF in which λ̂F ∈ (0, 1).15

13Note that the linear frontier for the A2 SB allocations in Figure 2 is specific to the uniform distribution.
The frontier is generally nonlinear and Online Appendix D.1 provides a sufficient condition on F for the
frontier to be concave.

14i.e.,
∫ 1

0 λdG (λ) =
∫ 1

0 λdF (λ), G has a density that has full support over (0, 1), and the hazard rate of
G is nondecreasing.

15When G and F have the same mean, the first best surplus values of the two distributions are the same.
If λ̂F = 0, the total expected surplus in AF is the first best surplus; thus, it is impossible for AF to be Pareto
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Figure 2: Constrained Pareto Frontier under the Uniform Distribution
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For x ∈ [0, 1], define γ (x) implicitly by
∫ 1

γ(x)
1 −G (λ) dλ =

∫ 1

x
1 − F (λ) dλ. (15)

γ (x) is well-defined because G is strictly increasing.

Proposition 3. There exists a SB allocation of distribution G that Pareto dominates AF if
and only if16

(
1 − γ

(
λ̂F
)) [

1 −G
(
γ
(
λ̂F
))]

>
(
1 − λ̂F

) [
1 − F

(
λ̂F
)]
. (16)

Let q̂γF denote the threshold schedule with threshold γ
(
λ̂F
)
. To briefly explain the role

of each condition in Proposition 3, first note that from equations (12) and (15), the seller’s
expected utility under schedule q̂γF in distribution G is the same as her expected utility in
allocation AF . Next, the inequality in (16) is a condition that implies that the total expected
surplus under schedule q̂γF in distribution G is strictly higher than the total expected surplus
in allocation AF .17 Therefore, if (16) holds, schedule q̂γF in distribution G gives an allocation
that Pareto dominates AF .

A class of G that is of particular interest to us is when G is obtained from a sequence
of mean-preserving contractions (MPC) on F . To elaborate on it, recall that there are two
forms of adverse selection in our model — within-type and across-type. Intuitively, within-
type adverse selection is absent for types λ = 0 and λ = 1 because the quality of each of
their respective endowments is homogenous, but the across-type adverse selection problem
is most severe between these two types because the difference in the overall quality of their
endowments is the greatest. By contrast, if F is degenerate at the mean type (assumed
to be in (0, 1)), there is no across-type adverse selection and the adverse selection problem
is due entirely to the seller’s private information regarding which units are the Ls in her
endowment — i.e., within-type. Therefore, a MPC provides a natural way to shift adverse
selection from across-type to within-type, while maintaining the expected quality, and it is
hence of interest to explore how such a shift can affect the set of SB allocations.

From Rothschild and Stiglitz (1970), we know that if G is obtained from a sequence of

dominated by any SB allocation of G. If λ̂F = 1, then in AF , the seller’s expected utility is zero and the
buyer’s expected utility is E [λ] sL, meaning that every SB allocation of G either leads to the same expected
utilities as AF or Pareto dominates AF . Therefore, in both cases, the analysis is trivial.

16We thank a referee for pointing out the necessity part of this condition.
17This point follows from doing an integration by parts on the surplus function Ŝ in equation (11), and

the details are provided in equations (27) to (30) in Appendix A.
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MPCs on F , then G second-order stochastically dominates F (“G ⪰SOSD F” for short),
which is equivalent to the following condition:18

γ (λ) ≤ λ ∀λ ∈ (0, 1) . (17)

The following property is readily verified:

Lemma 3. If G
(
λ̂F
)
< F

(
λ̂F
)
, then γ

(
λ̂F
)

≤ λ̂F implies that inequality (16) holds.

Therefore, if G is obtained from a sequence of MPCs on F and G
(
λ̂F
)
< F

(
λ̂F
)
,

Proposition 3 implies that AF is always Pareto dominated by some SB allocation of G.
More generally, say that “G dominates F” if every SB allocation of F is Pareto dominated

by some SB allocation of G. From the preceding discussion, given any G that is obtained
from a sequence of MPCs on F , the condition to check whether G dominates F is narrowed
down to verifying inequality (16) for only the types in which G (λ) ≥ F (λ). For some
distributions, this condition is readily checked. Example 1 below provides an example when
F is the uniform distribution.

Example 1. Suppose that F is the uniform distribution.19 Let G be another distribution
that has the same mean as F and G ⪰SOSD F — i.e., G is obtained from a sequence of
MPCs on F . If, additionally, G intersects F exactly once in (0, 1) — with the intersecting
type denoted by λ′ — and is concave over (λ′, 1), then the inequality in (16) holds for all
λ ∈ (0, 1).20 Thus, G dominates F . In this example, G (λ) is greater than F (λ) only for
λ ≥ λ′, and the inequality in (16) is readily verified to hold for such λs when G is concave
and F is uniform. The proof is in Appendix A.

5 Extensions

Our characterization results rest on Proposition 1, which shows that the quantity schedule
in any SB allocation must be a threshold schedule. In Online Appendix C, we extend our

18The commonly used definition for G ⪰SOSD F is
∫ x

0 G (λ) dλ ≤
∫ x

0 F (λ) dλ for all x ∈ (0, 1). When
G has the same mean as F , we have

∫ 1
0 G (λ) dλ =

∫ 1
0 F (λ) dλ. Thus, this implies that G ⪰SOSD F if∫ 1

x
1 −G (λ) dλ ≤

∫ 1
x

1 − F (λ) dλ for all x ∈ (0, 1). Since 1 −G (λ) is strictly positive for all λ ∈ (0, 1), the
last inequality is equivalent to γ (x) ≤ x for all x ∈ (0, 1).

19As noted above, to ensure that the example is nonvacuous, we assume that the associated optimal
threshold of every SB allocation of F is strictly in the set (0, 1).

20An example of such a distribution G is G (λ) = 0.5 + 0.5 (2λ− 1)
1
k for any positive and odd integer k.
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baseline model in a few directions and provide sufficient conditions for an analogous version
of Proposition 1 to hold in these extensions. We briefly describe these extensions below.

5.1 Nonbinary Quality

The following is a way to extend our model to incorporate more than two quality levels. Let
k ≥ 2 be the number of quality levels, where k is a finite integer. For i ∈ {1, . . . , k}, let vi
and ci denote the buyer’s valuation and the seller’s cost of a marginal unit of quality i, with
vi < vi′ and ci < ci′ for all any i < i′. Let τ : {0, 1, . . . , k} × [0, 1] → [0, 1] be a commonly
known function. The seller’s privately known type is summarized by a scalar θ ∈ [0, 1],
where τ (i|θ) is the quantity of units with a quality level less than or equal to i in type-θ
seller’s endowment.21 As the seller will supply her lower quality units first, the cost for a
type-θ seller to supply q units and the buyer’s valuation for these q units are (with an abuse
of notation), respectively,

C (q, θ) =qc1 +
k−1∑
i=1

[q − τ (i|θ)]+ (ci+1 − ci) (18)

V (q, θ) =qv1 +
k−1∑
i=1

[q − τ (i|θ)]+ (vi+1 − vi) (19)

In this setup, the main program is still program (P), except that the type λ is replaced by
θ. From equation (18), the seller’s utility satisfies (weak) single-crossing (as in the baseline
model) if for every i, τ (i|θ) is increasing in θ.22 With single-crossing, the argument used to
transform program (P) into program (P̃) in the baseline model applies here.

A threshold schedule in the current setup is a schedule q (θ) in which there are thresholds
θ1 ≤ θ2 ≤ · · · ≤ θk such that if θ ∈ [θi−1, θi), q (θ) = τ (i|θ), with the convention that
θ0 = 0. In words, if θ ∈ [θi−1, θi), then type θ sells all of her units that are of quality i or
lower (and nothing else). Thus, there is never a partial trade of the seller’s endowment of
a particular quality. In Online Appendix C.1, we provide an illustration for the k = 3 case
and a sufficient condition (see Condition 1) for the distribution of θ and the τ -function such
that the quantity schedule of the solution to program (P) in this setup with three quality
levels is always a threshold schedule, as just defined.

21Thus, for type θ, the quantity of quality i is τ (i|θ) − τ (i− 1|θ), with the convention that τ (0|θ) = 0.
This implies that for all θ, τ (i|θ) must be nondecreasing in i and τ (k|θ) = 1. Therefore, τ (·|θ) is also the
CDF of the quality of type-θ seller’s endowment.

22Per the previous footnote, when interpreting τ (·|θ) as a CDF, single-crossing is satisfied if τ (·|θ) first-
order stochastically dominates τ (·|θ′) for any θ < θ′.
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5.2 Asymmetric Information on Endowment Size

In Online Appendix C.2, we extend our baseline model to allow the seller’s endowment size to
also be her private information. The setup is as follows: let n ∈ [0, 1] denote the endowment
size. The seller now has a two-dimensional type (n, λ), with λ ≤ n. Type (n, λ) has λ units
of Ls and (n− λ) units of Hs. A trade contract is still (q, t), and type (n, λ) can accept the
contract only if q ≤ n. After accepting the contract, the seller’s utility is still t − C (q, λ),
and the buyer’s utility is still V (q, λ) − t, with C and V defined in equations (1) and (2).

A threshold schedule in this setup is a schedule q (n, λ) in which there is a threshold x

such that if λ ≤ x, type (λ, n) sells only her Ls and none of her Hs (i.e., q (n, λ) = λ),
and if λ > x, type (λ, n) sells her entire endowment (i.e., q (n, λ) = n). In Appendix C.2,
we provide a sufficient condition for the type distribution (see Condition 2) such that the
quantity schedule of the solution to program (P) in this current problem with asymmetric
information on the endowment size must be a threshold schedule of the form just described.

5.3 Diminishing Marginal Utility

Our baseline model assumes that the buyer’s utility for each marginal unit depends on
only the quality but not the quantity. In Online Appendix C.3, we allow the buyer to
have diminishing marginal utility. Specifically, when the buyer receives q units consisting
of xL units of L and xH units of H, his total valuation for these q = xL + xH units is
νL (xL) + νH (xH). We assume that for i ∈ {L,H}, νi (0) = 0, νi is strictly increasing and
strictly concave (i.e., diminishing marginal utility), and ν ′

i (1) > ci, where the last assumption
implies that a trade of any marginal unit is still always socially efficient. The specification
for the seller remains unchanged. Thus, under a trade (q, t) with type-λ seller, the buyer’s
utility is (with an abuse of notation) V (q, λ) − t, where, now, V (q, λ) = νL (q) if q ≤ λ, and
V (q, λ) = νL (λ) + νH (q − λ) if q > λ. The type-λ seller’s utility is t − C (q, λ), where the
definition of C is still the same as that in equation (1). We provide a sufficient condition (see
Condition 3 in Appendix C.3) for the type distribution F together with the νH function —
without any restriction on νL — such that the quantity schedule of the solution to program
(P) in this setup (with diminishing marginal utility) is still always a threshold schedule,
defined in Definition 1. We also show (see Lemma 10 in Appendix C.3) that Condition 3 is
always satisfied when F is the uniform distribution.
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5.4 Stochastic Mechanism

In Online Appendix C.4, we consider the use of stochastic mechanisms to solve program
(P).23 Because the utility functions of both the seller and the buyer are linear in the
transfers, it is sufficient to allow for stochasticity only in the quantity. Let a stochastic
contract be a double (α, t), where t is still the transfer from the buyer to the seller, and α is
the distribution of the quantity that the seller must supply to the buyer. Under a contract
(α, t) between the buyer and the type-λ seller, the buyer’s and the seller’s expected utility
are

∫ 1
0 V (q, λ) dα (q)− t and t−

∫ 1
0 C (q, λ) dα (q), respectively, where C and V are defined in

equations (1) and (2). Thus, a direct stochastic mechanism is a menu of stochastic contracts
{α (·|λ) , t (λ)}λ∈[0,1].

We show that if (1 − λ) f (λ) / [1 − F (λ)] is nondecreasing in λ, the solution to program
(P) is still always the deterministic mechanism considered in our baseline analysis. This
condition on the type distribution is strictly stronger than Assumption 1, but it is still
satisfied by many distributions.24 For example, it is satisfied by the uniform distribution,
any power distribution F (λ) = λz with z ≥ 1, and the Beta(a, b) distribution with shape
parameters a ≥ 1 and b > 0.

6 Conclusion

In this paper, we studied a model of trade with adverse selection in which a seller owns
multiple units that are of potentially different quality levels. In our model, the seller not
only privately knows the overall quality of her endowment (across-type adverse selection)
but also the quality of each of her units (within-type adverse selection). We characterize the
informationally constrained Pareto optimal allocations when the quality is binary. A key
feature in all of these second best allocations is that trade always occurs via a “threshold
schedule,” where the types higher than some threshold sell their entire endowments, whereas
the types lower than the threshold sell only their lemons (and none of their Hs).

In our model, because of within-type adverse selection, the seller’s endowment of Ls must
first be run down before she can be expected to supply any Hs. This feature is distinct from
existing models of the lemon market and raises a few issues that could be worthwhile for

23Strausz (2006) shows that in screening problems, a sufficient condition for the suboptimality of a stochas-
tic mechanism is that the optimal deterministic mechanism does not have any contract pooling. This con-
dition is violated whenever the optimal threshold is less than 1.

24This condition has also been used in some dynamic mechanism design problems. See, for example,
Boleslavsky and Said (2013).
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further research, particularly in a market setting with multiple buyers behaving strategically.
First, our analysis is based on an exclusive bilateral trade — i.e., a seller is not allowed

to sell to multiple buyers. Attar et al. (2011) have shown that when the seller’s endowment
is divisible but homogenous, nonexclusive competition can vastly alter the equilibrium out-
come. With within-type adverse selection, nonexclusivity raises the additional problem of
the buyers wanting to “free-ride” on the other buyers to run down the seller’s endowment
of Ls. In turn, this raises the questions of whether information on the (bilateral) trade con-
tracts offered/accepted by a seller should be made public and whether the contracts should
be allowed to be conditioned on the other contracts that the seller has entered.

Relatedly, if the seller’s endowment is sold over time, information on past trade behaviors
can have a very different effect under within-type adverse selection. When the quality within
the seller’s endowment is homogenous (as is the case in most existing models), information
that a seller has previously sold some units at low prices signals to the market that the rest of
her endowment is also of low quality. In contrast, with within-type adverse selection, knowing
that the seller has already sold some units can increase the market’s expected valuation of
the units left in the seller’s endowment because the seller is expected to sell her lemons first.
How this feature affects the equilibrium trade dynamics is then unclear. We leave the study
of these issues to future research.
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A Appendix: Proofs

Proof of Lemma 1

Proof. Let uB (q, t;λ) := V (q, λ) − t and uS (q, t;λ) := t − C (q, λ). Suppose that q (·)
and t (·) are jointly a solution to program (P). Since they satisfy constraint (ICS), by
the envelope theorem, d

dλ
uS (q (λ) , t (λ) ;λ) = −∂C(q(λ),λ)

∂λ
= I (q (λ) > λ) (cH − cL). Thus,
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the first condition in Lemma 1 is a necessary condition for constraint (ICS). By standard
arguments, if this condition holds and q (·) is also nondecreasing, constraint (ICS) holds.

Suppose that λ2 > λ1 but q (λ2) < q (λ1). Constraint (ICS) implies that

q (λ1) ≤ λ1 or q (λ2) ≥ λ2. (20)

To see why, suppose, for a contradiction, that statement (20) is false. The negation of
statement (20) is q (λ1) > λ1 and q (λ2) < λ2. Constraints (ICS) for λ1 and λ2 imply that

C (q (λ2) , λ1) + C (q (λ1) , λ2) − C (q (λ1) , λ1) ≥ C (q (λ2) , λ2)

⇐⇒ [q (λ2) − λ1]+ + [q (λ1) − λ2]+ − [q (λ1) − λ1]+ ≥ [q (λ2) − λ2]+

The right-hand side (RHS) is zero. Since q (λ1) > λ1, at least one of [q (λ2) − λ1]+ or
[q (λ1) − λ2]+ must be strictly positive. If [q (λ1) − λ2]+ = 0 and only [q (λ2) − λ1]+ > 0, then
the left-hand side (LHS) is q (λ2) − q (λ1) < 0. Thus, [q (λ1) − λ2]+ must be strictly positive.
Therefore, every term on the LHS is strictly positive. Thus, the LHS is (q (λ2) − λ1) +
(q (λ1) − λ2) − (q (λ1) − λ1) = q (λ2) − λ2, but this is strictly negative — contradiction.
Therefore, statement (20) must hold.

Given that statement (20) holds, we first consider the case of q (λ1) ≤ λ1. With
q (λ2) < q (λ1), it must imply that t (λ1) − t (λ2) = cL [q (λ1) − q (λ2)]; if not, one of the
two types has a profitable deviation from taking the other type’s contract. This implies that
uS (q (λ2) , t (λ2) ;λ2) = uS (q (λ1) , t (λ1) ;λ2). In this case, replacing type λ2’s contract with
(q (λ1) , t (λ1)) maintains incentive-compatibility for all types because this gives type λ2 the
same utility as before, and because (q (λ1) , t (λ1)) was already part of the mechanism, it
does not affect the incentive-compatibility of the other types. With this replacement, the
buyer’s utility from λ2 strictly increases by [q (λ1) − q (λ2)] sL. This implies that we can
then increase t (λ) by some small ε > 0 for all λ without violating the buyer’s participation
constraint (IRB), and this change increases the objective value of program (P). This con-
tradicts the assumption that q (·) and t (·) are jointly a solution to program (P). Therefore,
q (λ1) ≤ λ1 cannot hold.

The preceding paragraph implies that q (λ2) ≥ λ2 must hold, which implies that t (λ1) −
t (λ2) = cH [q (λ1) − q (λ2)]. By the same argument, by replacing λ2’s contract with λ1’s
contract, incentive-compatibility of all types is maintained, but the buyer’s surplus from
λ2 increases by [q (λ1) − q (λ2)] sH . In turn, we can raise t (·) uniformly and increase the
objective value, and this contradicts the assumption that q (·) and t (·) are jointly a solution
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to program (P). Therefore, q (λ2) ≥ λ2 also cannot hold.
From the two preceding paragraphs, statement (20) cannot hold, and we thus have a

contradiction to λ2 > λ1 and q (λ2) < q (λ1).

Derivation of Program (P̃)

Lemma 4. Under the solution to program (P), (IRB) must bind. Moreover, if q (·) is part
of a solution to program (P̃), q (·) is also part of a solution to program (P).

Proof. Using the expression of t (λ) in equation (5) and doing an integration by parts,
∫ 1

0
t (λ) f (λ) dλ = US (0) + (cH − cL)

∫ 1

0
I (q (λ) > λ) [1 − F (λ)] dλ+

∫ 1

0
C (q (λ) , λ) f (λ) dλ.

= US (0) +
∫ 1

0
ψS (q (λ) , λ) dλ+

∫ 1

0
C (q (λ) , λ) f (λ) dλ.

Therefore, the objective function of program (P) becomes
∫ 1

0
t (λ) f (λ) dλ−

∫ 1

0
C (q (λ) , λ) f (λ) dλ = US (0) +

∫ 1

0
ψS (q (λ) , λ) dλ, (21)

and constraint (IRB) becomes
∫ 1

0
V (q (λ) , λ) f (λ) dλ−

∫ 1

0
t (λ) f (λ) dλ ≥ b

⇐⇒
∫ 1

0
[V (q (λ) , λ) − C (q (λ, λ))] f (λ) dλ−

∫ 1

0
ψS (q (λ) , λ) dλ− US (0) ≥ b

⇐⇒
∫ 1

0
ψB (q (λ) , λ) dλ− US (0) ≥ b. (22)

If constraint (IRB), as expressed in equation (22), does not bind, we can raise US (0) to
increase the objective value in equation (21). Thus, constraint (IRB) must bind, implying
that

US (0) =
∫ 1

0
ψB (q (λ) , λ) dλ− b

=
∫ 1

0
S (q, λ) f (λ) dλ−

∫ 1

0
ψS (q, λ) dλ− b.

Substituting this expression of US (0) into the objective function in equation (21), the objec-
tive function becomes

∫ 1
0 S (q, λ) f (λ) dλ− b. Therefore, together with Lemma 1, we obtain

program (P̃).
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Proof of Proposition 1

Fix some b ∈
[
0, b̄

]
. We first prove some important properties of the solution to program

(P̃). Throughout, we consider only schedules q (·) that are right-continuous — i.e., for any x,
limλ↓x+ q (λ) = q (x). This is without loss of generality because q (·) must be a bounded and
nondecreasing function over [0, 1]. Therefore, the set of discontinuous points is countable and
has a Lebesgue measure of zero. Since F has no atom anywhere, the discontinuous points of
q (·) do not affect the values of the objective function and the constraints in program (P̃).

Lemma 5. Suppose that q∗ (·) is a solution to program (P̃).

1. It holds that q∗ (λ) ≥ λ for all λ ∈ [0, 1].

2. Let X be the set of λ such that q∗ (λ) > λ.

(a) If X is empty, then q∗ (·) is a threshold schedule, with q∗ (λ) = λ for all λ.

(b) Suppose that X is nonempty. Let λ1 denote the smallest λ in X , and let λ2

denote the smallest λ ∈ (λ1, 1] such that q∗ (λ) = λ. It holds that q∗ (λ) = λ2 for
all λ ∈ [λ1, λ2].

Proof. For any λ, S (q, λ) and ψB (q, λ) are both strictly increasing in q for any q ∈ [0, λ).
Thus, point 1 follows. Point 2a is a corollary of point 1.

For point 2b, we first note that if X is nonempty, the smallest element of X must exist
because q∗ (·) is right-continuous. Similarly, λ2 must also exist because q∗ (1) = 1 (from point
1) and q∗ (·) is right-continuous. Since q∗ (·) is nondecreasing, we know that q∗ (λ) ≤ λ2 for
all λ ∈ [λ1, λ2]. Moreover, for all λ ∈ [λ1, λ2), λ2 > λ implies that S (λ2, λ) ≥ S (q∗ (λ) , λ)
and ψB (λ2, λ) ≥ ψB (q∗ (λ2) , λ), where the inequality holds strictly if q∗ (λ) < λ2. Therefore,
q∗ (λ) must be λ2 for all λ ∈ [λ1, λ2].

Corollary 2. Suppose that q∗ (·) is a solution to program (P̃). Let X and λ2 be as defined
in Lemma 5. If X is nonempty, q∗ (·) is a threshold schedule if and only if λ2 = 1.

The proof of Proposition 1 is as follows:

Proof. Let q∗ (·) be an optimal schedule for program (P̃), assumed (without loss of generality)
to be right-continuous, and let u∗ denote the corresponding optimal value of US (0). Let λ1

and λ2 be as defined in Lemma 5. We know that q∗ (λ) = λ2 for all λ ∈ [λ1, λ2]. By Corollary
2, we only have to prove that λ2 = 1.
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Suppose, for a contradiction, that λ2 < 1. This implies that there exists λ3 > λ2 such
that q∗ (λ) = λ for all λ ∈ [λ2, λ3]. For some small ε > 0, define η (ε) implicitly by

∫ λ2+η(ε)

λ1+ε
1 − F (λ) dλ =

∫ λ2

λ1
1 − F (λ) dλ. (23)

We choose ε to be small enough such that λ2 + η (ε) ≤ λ3. Next, define schedule q̂ε (·) as
follows (see the schedule on the right panel of Figure 1 for an illustration):

q̂ε (λ) =



q∗ (λ) , if λ /∈ [λ1, λ3)

λ , if λ ∈ [λ1, λ1 + ε)

λ2 + η (ε) , if λ ∈ [λ1 + ε, λ2 + η (ε)]

λ , if λ ∈ [λ2 + η (ε) , λ3)

. (24)

Observe that
∫ 1

0
ψB (q̂ε (λ) , λ) dλ−

∫ 1

0
ψB (q∗ (λ) , λ) dλ =

∫ λ3

λ1
ψB (q̂ε (λ) , λ) dλ−

∫ λ3

λ1
ψB (q∗ (λ) , λ) dλ

=
∫ λ3

λ1
[S (q̂ε (λ) , λ) − S (q∗ (λ) , λ)] f (λ) dλ,

because
∫ λ3

λ1
ψS (q̂ε (λ) , λ) dλ−

∫ λ3

λ1
ψS (q∗ (λ) , λ) dλ

=
∫ λ2+η(ε)

λ1+ε
(cH − cL) [1 − F (λ)] dλ−

∫ λ2

λ1
(cH − cL) [1 − F (λ)] dλ,

which is zero from equation (23). Moreover,

δε :=
∫ λ3

λ1
S [(q̂ε (λ) , λ) − S (q∗ (λ) , λ)] f (λ) dλ (25)

=
∫ λ2+η(ε)

λ1+ε
(λ2 + η (ε) − λ) sHf (λ) dλ−

∫ λ2

λ1
(λ2 − λ) sHf (λ) dλ > 0,

where the inequality follows from Lemma 2, which is proved below. Since q̂ε is also nonde-
creasing, the schedule q̂ε (·) together with US (0) = u∗ + δε also satisfy all the constraints
for program (P̃), and the resulting objective value increases by δε > 0. This contradicts the
optimality of q∗.
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Proof of Lemma 2

Proof. We first show the following property:

If f/ (1 − F ) is nondecreasing, then λ′ > λ =⇒ F (λ′) − F (λ)
[1 − F (λ′)] (λ′ − λ) >

f (λ)
1 − F (λ) . (26)

Fix any λ ∈ (0, 1). For λ′ ∈ (λ, 1), let A (λ′) := F (λ′)−F (λ)
[1−F (λ′)](λ′−λ) . Observe that limλ′↓λA (λ′) =

f(λ)
1−F (λ) and limλ′↑1 A (λ′) = ∞. Suppose, for a contradiction, that there exist λ′ > λ in
which A (λ′) ≤ f(λ)

1−F (λ) . Since A (·) is continuous, by the mean value theorem, there must
exist λ̃ ∈ (λ, 1) such that A′

(
λ̃
)

= 0 and A
(
λ̃
)

≤ f(λ)
1−F (λ) . By some algebra, A′

(
λ̃
)

=
(λ̃−λ)f(λ̃)[1−F (λ)]−[F(λ̃)−F (λ)][1−F(λ̃)]

[1−F(λ̃)]2(λ̃−λ)2 . Therefore, A′
(
λ̃
)

= 0 implies that

f
(
λ̃
)

1 − F
(
λ̃
) =

F
(
λ̃
)

− F (λ)(
λ̃− λ

)
[1 − F (λ)]

= A
(
λ̃
)

︸ ︷︷ ︸
≤ f(λ)

1−F (λ)

1 − F
(
λ̃
)

1 − F (λ)


︸ ︷︷ ︸

<1

< K = f (λ)
1 − F (λ) .

However, λ̃ > λ implies that f(λ̃)
1−F(λ̃) ≥ f(λ)

1−F (λ) — contradiction.
We prove Lemma 2 now. Fix any λ1, λ2 > 0. For x ≥ λ1, define ϕ (x) to be such that∫ ϕ(x)

x 1 − F (λ) dλ =
∫ λ2
λ1

1 − F (λ) dλ. ϕ (x) is strictly increasing in x and, by the implicit
function theorem, differentiable at x , with ϕ′ (x) = 1−F (x)

1−F (ϕ(x)) . Let

D (x) :=
∫ ϕ(x)

x
(ϕ (x) − λ) f (λ) dλ−

∫ λ2

λ1
(λ2 − λ) f (λ) dλ.

Our goal is to show that D (x) > 0 for all x ∈ (λ1, λ1 + δ) for some δ > 0. Note that D (x)
is also differentiable at x, with

D′ (x) = [F (ϕ (x)) − F (x)] 1 − F (x)
1 − F (ϕ (x)) − [ϕ (x) − x] f (x)

=
[

F (ϕ (x)) − F (x)
[1 − F (ϕ (x))] [ϕ (x) − x] − f (x)

1 − F (x)

]
(1 − F (x)) (ϕ (x) − x) .

Since ϕ (x) > x, property (26) implies that D′ (x) > 0. Since D (x) is continuous and
D (λ1) = 0, D′ (x) > 0 for all x ∈ (λ1, λ1 + δ) implies that D (x) > 0 for all x ∈ (λ1, λ1 + δ).
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Proof of Proposition 2

Proof. For class A1, from the discussion in the main text, q∗ is the threshold-0 schedule,
and US (0) = Ŝ (0) − ψ̂S (0) − b = E [v] − cH − b. Therefore, for all λ, q∗ (λ) = 1 and∫ λ

0 I (q∗ (l) > l) dl = λ, which means that

t (λ) = (E [v] − cH − b) + (cH − cL)λ+ C (1, λ) = E [v] − b.

For class A2, from the discussion in the main text, q∗ is the threshold-λ∗ (b) schedule, and
US (0) = 0. For λ < λ∗ (b), q∗ (λ) = λ and

∫ λ
0 I (q∗ (l) > l) dl = 0. Therefore, t (λ) =

C (λ, λ) = λcL. For λ ≥ λ∗ (b), q∗ (λ) = 1 and
∫ λ

0 I (q∗ (l) > l) dl = λ− λ∗ (b). Therefore,

t (λ) = (cH − cL) [λ− λ∗ (b)] + C (1, λ) = C (1, λ∗ (b)) .

Finally, to show that λ∗ (b) is strictly increasing in b, let ψ̂B (x) := Ŝ (x)−ψ̂S (x). Suppose,
for a contradiction, that there exist b′ > b but λ∗ (b′) ≤ λ∗ (b). Note that ψ̂B (λ∗ (b′)) = b′ > b.
By the intermediate value theorem, since ψ̂B is continuous and ψ̂B (0) < b < ψ̂B (λ∗ (b′)),
there exists z ∈ (0, λ∗ (b′)) such that ψ̂B (z) = b. Because z < λ∗ (b′) ≤ λ∗ (b), this contradicts
λ∗ (b) being the smallest x in which ψ̂B (x) = b.

Proof of Proposition 3

Proof. Let the distribution involved for Ŝ and ψ̂S be indicated by a subscript.25 In allocation
AF , since the optimal threshold λ̂F is positive, the value of US (0) is zero. This implies that
in AF , the seller’s expected utility is uSF := ψ̂SF

(
λ̂F
)

and the buyer’s expected utility is
uBF := ŜF

(
λ̂F
)

− ψ̂SF
(
λ̂F
)
. For distribution J ∈ {F,G}, let J̄ (λ) = (1 − λ) [1 − J (λ)]. By

an integration by parts,

ŜJ (x) =
∫ 1

0
λsLdJ (λ) +

∫ 1

x
(1 − λ) sHdJ (λ) (27)

=
∫ 1

0
λsLdJ (λ) + sH

[
− (1 − x) J (x) +

∫ 1

x
J (λ) dλ

]
(28)

=
∫ 1

0
λsLdJ (λ) + sH

[
(1 − x) (1 − J (x)) −

∫ 1

x
1 − J (λ) dλ

]
, (29)

=
∫ 1

0
λsLdJ (λ) + sH J̄ (x) −

(
sH

cH − cL

)
ψ̂SJ (x) (30)

25For J ∈ {F,G}, ŜJ (x) =
∫ 1

0 λsLdJ (λ) +
∫ 1

x
(1 − λ) sHdJ (λ), ψ̂S

J (x) =
∫ 1

x
(cH − cL) [1 − J (λ)] dλ.
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We first prove the “only if” direction. Let ÃG be the SB allocation of G that Pareto
dominates AF , let ũBG and ũSG denote the buyer’s and the seller’s expected utility under ÃG,
respectively, and let λ̃G denote the threshold that attains ÃG. Under our assumption that
λ̂F ∈ (0, 1), we know that uBF > E [v] − cH . Since ũBG > uBF , ũBG > E [v] − cH as well; thus,
ũSG = ψ̂SG

(
λ̃G
)
. Let λ̂G = γ

(
λ̂F
)
; thus, ψ̂SG

(
λ̂G
)

= ψ̂SF
(
λ̂F
)
. It is straightforward to see

that the threshold-λ̂G schedule is also associated with a SB allocation under distribution G.
Let this allocation be denoted by AG and let uBG and uSG denote the buyer’s and the seller’s
expected utility under AG, respectively. By a similar argument as above, uBG > E [v] − cH

and hence, uSG = ψ̂SG
(
λ̂G
)

= ψ̂SF
(
λ̂F
)

= uSF < ũSG. This implies that uBG > ũBG ≥ uBF . Thus,
ŜG

(
λ̂G
)

= uBG + uSG > uBF + uSF = ŜF
(
λ̂F
)
. Using equation (30), since ψ̂SG

(
λ̂G
)

= ψ̂SF
(
λ̂F
)
,

ŜG
(
λ̂G
)
> ŜF

(
λ̂F
)

implies that Ḡ
(
λ̂G
)
> F̄

(
λ̂F
)
.

Next, we prove the “if” direction. Let λ̂G = γ
(
λ̂F
)

again. Condition (16) states that
Ḡ
(
λ̂G
)
> F̄

(
λ̂F
)
. Therefore, using equation (30), since ψ̂SG

(
λ̂G
)

= ψ̂SF
(
λ̂F
)
, we have

ŜG
(
λ̂G
)

− ŜF
(
λ̂F
)

= s̄H
[
Ḡ
(
λ̂G
)

− F̄
(
λ̂F
)]
> 0, which means that

ŜG
(
λ̂G
)

− ψ̂SG
(
λ̂G
)
> ŜF

(
λ̂F
)

− ψ̂SF
(
λ̂F
)

= uBF (31)

Consider the program

max
x∈[0,1], US(0)≥0

ŜG (x) − b s.t. ŜG (x) − ψ̂SG (x) − US (0) = uBF + ε,

where ε is chosen such that ŜG
(
λ̂G
)

− ψ̂SG
(
λ̂G
)

= uBF + ε. Equation (31) implies that ε > 0,
meaning that the buyer’s expected utility of the SB allocation of the program above is strictly
higher than uBF . By construction, the threshold λ̂G together with US (0) = 0 are jointly a
feasible solution, meaning that the seller’s expected utility (i.e., the value of the program
above) is at least ψ̂SG

(
λ̂G
)

= ψ̂SF
(
λ̂F
)

= uSF . Thus, the allocation from the solution Pareto
dominates AF .

Proof of Lemma 3

Proof. Following the notations for Ḡ and F̄ in the previous proof, observe that the inequality
in (16) is equivalent to γ

(
λ̂F
)
< Ḡ−1

(
F̄
(
λ̂F
))
, where Ḡ−1 is the inverse of Ḡ. Moreover,

since Ḡ is strictly decreasing, G
(
λ̂F
)

≤ F
(
λ̂F
)

=⇒ Ḡ
(
λ̂F
)

≥ F̄
(
λ̂F
)

=⇒ λ̂F ≤
Ḡ−1

(
F̄
(
λ̂F
))

. The property thus follows.
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Figure 3: On
∫ 1
x 1 −G (λ) dλ < 1

2Ḡ (x) when G is concave.

λ

G(λ)

1

1

G(λ)

x

G(x)

∫ 1
x

1 −G (λ) dλ is the (blue) shaded area.
1
2 Ḡ (x) = 1

2 (1 − x) (1 −G (x)) is the area of the dashed triangle (in red).

Proof of Example 1

Proof. As noted in the main text, we only have to check that condition (16) holds for
x ∈ (λ′, 1), where G is concave. When G is concave at x,

∫ 1
x 1 − G (λ) dλ < 1

2Ḡ (x) —
see Figure 3 for a straightforward illustration of this property.26 When F is the uniform
distribution,

∫ 1
x 1 −F (λ) dλ = 1

2 F̄ (x). Combining these two observations, we have 1
2 F̄ (x) =∫ 1

x 1 − F (λ) dλ =
∫ 1
γ(x) 1 − G (λ) dλ < 1

2Ḡ (γ (x)), and F̄ (x) < Ḡ (γ (x)) =⇒ γ (x) <

Ḡ−1
(
F̄ (x)

)
— i.e., condition (16).

B Example: SB Allocations for Uniform Distribution

In this section, we provide a detailed characterization of the set of SB allocations when F

is the uniform distribution. When F (λ) = λ, there is mild (severe) adverse selection if
sH + sL ≥ (<) cH − cL. Let ψ̂B (x) := Ŝ (x) − ψ̂S (x). Thus,

Ŝ (x) = 0.5sL + 0.5 (1 − x)2 sH and ψ̂S (x) = 0.5 (1 − x)2 ∆c, where ∆c = cH − cL ;

ψ̂B (x) = 0.5sL + 0.5 (1 − x)2 (sH − ∆c) (32)
26Formally, since G is strictly increasing and concave when λ ≥ x, it implies that for any λ ∈ (x, 1),

1−G(λ)
1−λ < 1−G(x)

1−x ⇐⇒ 1−G(x)
1−x (1 − λ) > 1 −G (λ) . Thus,

∫ 1
x

1 −G (λ) dλ < 1−G(x)
1−x

∫ 1
x

(1 − λ) dλ = 1
2 Ḡ (x).
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Therefore, for x ∈ (0, 1), d
dx
ψ̂B (x) ≥ (≤) 0 if sH − ∆c ≤ (≥) 0. We break things down into

three possible cases.

Very mild adverse selection: sH ≥ ∆c.

Since sH ≥ ∆c, ψ̂B (x) is decreasing in x. Therefore, b̄ = ψ̂B (0) = E [v]−cH = 0.5 (vH + vL)−
cH . By Proposition 2, all the SB allocations are of class A1, where the seller’s expected util-
ity is Ŝ (0) − b = 0.5 (sH + sL) − b. Specifically, when b = 0 and b̄, the seller’s expected
utilities are Ŝ (0) = 0.5 (sH + sL) and Ŝ (0) − (E [v] − cH) = 0.5∆c.

Moderately mild adverse selection: sH + sL ≥ ∆c > sH.

Since sH < ∆c, ψ̂B (x) is increasing in x. This means that b̄ = ψ̂B (1) = 0.5sL, and
ψ̂B (1) > ψ̂B (0) =⇒ 0.5sL = b̄ > E [v] − cH . For b ≤ E [v] − cH , the SB allocation is of
class A1, which has been characterized above. For b ∈ (E [v] − cH , 0.5sL], the SB allocation
is of A2, where λ∗ (b) is characterized by ψ̂B (λ∗ (b)) = b. From equation (32) above, this
implies that

(1 − λ∗ (b))2 = 0.5sL−b
0.5(∆c−sH) ⇐⇒ λ∗ (b) = 1 −

√
0.5sL−b

0.5(∆c−sH)

ψ̂S (λ∗ (b)) = 0.5 (1 − λ∗ (b))2 ∆c =
(

0.5sL−b
∆c−sH

)
∆c,

and d
db
ψ̂S (λ∗ (b)) = − ∆c

∆c−sH
. Specifically, when b = E [v] − cH , λ∗ (b) = 0 and ψ̂S (λ∗ (b)) =

0.5∆c; when b = b̄ = 0.5sL, λ∗
(
b̄
)

= 1 and ψ̂S
(
λ∗
(
b̄
))

= 0.

Severe adverse selection: sH + sL < ∆c.

As in the case with moderately mild adverse selection, ψ̂B (x) is increasing in x, meaning
that b̄ = ψ̂B (1) = 0.5sL. Since E [v] − cH < 0, all SB allocations must be of A2, where
λ∗ (b) and ψ̂S (λ∗ (b)) have been characterized above. In particular, ψ̂S

(
λ∗
(
b̄
))

= 0 and
ψ̂S (λ∗ (0)) = 0.5sL

∆c−sH
∆c.
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C Online Appendix: Extensions

C.1 Three Quality Levels

Consider the setup described in Section 5.1 for k = 3. To streamline the exposition with
the baseline model, let the three quality levels be L, M and H, with vL < vM < vH and
cL < cM < cH . Let sM = vM − cM and assume that sM > 0. To shorten the notation
slightly, let τ (1|θ) = τL (θ) and τ (2|θ) = τM (θ). Therefore, type-θ seller has τL (θ) units of
L, τM (θ) − τL (θ) units of M , and 1 − τM (θ) units of H, and

C (q, θ) =qcL + [q − τL (θ)]+ (cM − cL) + [q − τM (θ)]+ (cH − cM) ,

V (q, θ) =qvL + [q − τL (θ)]+ (vM − vL) + [q − τM (θ)]+ (vH − vM) .

With an abuse of notation, let F denote the distribution of θ and f its density, assumed to
be strictly positive over θ ∈ (0, 1). To simplify the exposition, we also assume that τL and
τH are both differentiable, and τ ′

L (θ) , τ ′
M (θ) > 0 for all θ (i.e., single-crossing).

Our main program is program (P), with the type λ replaced by θ. Note that

∂C (q, θ)
∂θ

= I (q > τL (θ)) τ ′
L (θ) (cM − cL) + I (q > τM (θ)) τ ′

M (θ) (cH − cM) .

Thus, by the envelope theorem,

US (θ) = US (0) + (cM − cL)
∫ θ

0
τ ′
L (l) I (q (l) > τL (l)) dl

+ (cH − cM)
∫ θ

0
τ ′
M (l) I (q (l) > τM (l)) dl.

Following the same argument as that for the baseline model, program (P̃) in the current
setup is

max
q(·),US(0)

∫ 1
0 S (q (θ) , θ) f (θ) dθ − b s.t.

q (·) is nondecreasing , US (0) ≥ 0 , and
∫ 1

0 ψ
B (q (θ) , θ) dθ − US (0) = b

(33)
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where

S (q, θ) :=V (q, θ) − C (q, θ) ,

ψS (q, θ) := [(cM − cL) τ ′
L (θ) I (q > τL (θ)) + (cH − cM) τ ′

M (θ) I (q > τM (θ))] [1 − F (θ)] ,

ψB (q, θ) :=S (q, θ) f (θ) − ψS (q, θ) .

A threshold schedule here is a schedule q (·) in which there exist θM and θH , with θM ≤ θH ,
such that q (θ) = τL (θ) if θ < θM , q (θ) = τM (θ) if θ ∈ [θM , θH), and q (θ) = 1 if θ ≥ θH .

Lemma 6. If q (·) is a solution to program (33), it must satisfy the following properties:

1. q (θ) ≥ τL (θ) for all θ.

2. If there exists an interval X =
[
θ, θ̄

]
such that q (θ) > τM (θ) for all θ ∈ X, then there

is some q̂ such that q (θ) = q̂ for all θ ∈ X.

3. If there exists an interval X =
[
θ, θ̄

]
such that τL (θ) < q (θ) ≤ τM (θ) for all θ ∈ X,

then there is some q̂ such that q (θ) = min {τM (θ) , q̂} for all θ ∈ X.

Proof. Lemma 6 is the extension of Lemma 5 and follows from S (q, θ) and ψB (q, θ) being
strictly increasing in q when q < τL (θ), q ∈ (τL (θ) , τM (θ)) and q ∈ (τM (θ) , 1).

Next, let q∗ (·) denote a solution to program (33). Let χ be the set of θ in which q∗ (θ) /∈
{τL (θ) , τM (θ) , 1}. Note that if χ is empty, then q∗ is a threshold schedule. We will show
that χ is empty if the following condition holds:

Condition 1. f/ [1 − F ] is nondecreasing, τL and τM are weakly concave, and τM (θ)−τL(θ)
τ ′

L(θ)

(
f(θ)

1−F (θ)

)
is nondecreasing in θ.

The following is an example that satisfies Condition 1: F is log-concave (e.g., uniform
distribution), and τM and τL are affine functions, with τM weakly steeper than τL.

We will prove that χ is empty under Condition 1 now. As before, without loss of gen-
erality, we assume that q∗ is right-continuous. Let θ1 be the infimum of χ. Henceforth, let
q∗ (θ1) be denoted by q∗

1. Because of point 1 of Lemma 6 and that q∗ is right-continuous, it
must be the case that q∗

1 ∈ (τL (θ) , 1). We break things down into two cases:

• Case 1: τL (θ1) < q∗
1 ≤ τM (θ1).

• Case 2: τM (θ1) < q∗
1 < 1.
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Consider Case 1 first. By point 3 of Lemma 6, there exists θ2 < 1 such q∗ (θ) =
min {τM (θ) , τL (θ2)} for all θ ∈ [θ1, θ2] and there exists θ3 such that q∗ (θ) = τL (θ) for
all θ ∈ [θ2, θ3]. For some small ε > 0, define η1 (ε) implicitly by

∫ θ2+η1(ε)

θ1+ε
τ ′
L (θ) [1 − F (θ)] dθ =

∫ θ2

θ1
τ ′
L (θ) [1 − F (θ)] dθ. (34)

Pick the ε to be small enough such that θ2 + η1 (ε) < θ3 and τL (θ2 + η1 (ε)) < τM (θ1 + ε).
Let q̂1

ε be the schedule in which

q̂1
ε (θ) =



q∗ (θ) if θ /∈ [θ1, θ3)

τL (θ) if θ ∈ [θ1, θ1 + ε)

min {τM (θ) , τL (θ2 + η1 (ε))} if θ ∈ [θ1 + ε, θ2 + η1 (ε))

τL (θ) if θ ∈ [θ2 + η1 (ε) , θ3)

Thus,

δ1
ε =

∫ 1

0

[
S
(
q̂1
ε (θ) , θ

)
− S (q∗ (θ) , θ)

]
f (θ) dθ

=sM
∫ θ2+η1(ε)

θ1+ε

[
min

{
τM (θ) , τL

(
θ2 + η1 (ε)

)}
− τL (θ)

]
f (θ) dθ

− sM

∫ θ2

θ1
[min {τM (θ) , τL (θ2)} − τL (θ)] f (θ) dθ

By equation (34) and Lemma 7 below, we have δ1
ε > 0. Equation (34) implies that∫ 1

0 ψ
S (q̂1

ε (θ) , θ) dθ =
∫ 1

0 ψ
S (q∗ (θ) , θ) dθ. This implies that

∫ 1
0 ψ

B (q̂1
ε (θ) , θ) dθ−

∫ 1
0 ψ

B (q∗ (θ) , θ) dθ =
δ1
ε > 0. Thus, q̂1

ε is feasible, but q̂1
ε achieves a higher objective value than q∗, which is a con-

tradiction. This rules out Case 1.
Next, consider Case 2. Let θ2 be the largest θ in which q∗ (θ) = q∗

1. Lemma 6 implies
that either τM (θ2) = q∗

1 (Case 2A) or τL (θ2) = q∗
1 (Case 2B).

Consider Case 2A first. Under Case 2A, there must exist θ3 such that q∗ (θ) = τM (θ) for
all θ ∈ [θ2, θ3]. For some small ε > 0, define η2A (ε) implicitly by

∫ θ2+η2A(ε)

θ1+ε
τ ′
M (θ) [1 − F (θ)] dθ =

∫ θ2

θ1
τ ′
M (θ) [1 − F (θ)] dθ. (35)
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Pick the ε to be small enough such that θ2 + η2A (ε) < θ3. Let q̂2A
ε be the schedule in which

q̂2A
ε (θ) =



q∗ (θ) if θ /∈ [θ1, θ3)

τM (θ) if θ ∈ [θ1, θ1 + ε)

τM
(
θ2 + η2A (ε)

)
if θ ∈ [θ1 + ε, θ2 + η2A (ε))

τM (θ) if θ ∈ [θ2 + η2A (ε) , θ3)

Thus,

δ2A
ε =

∫ 1

0

[
S
(
q̂2A
ε (θ) , θ

)
− S (q∗ (θ) , θ)

]
f (θ) dθ

=sH
(∫ θ2+η2A(ε)

θ1+ε

[
τM

(
θ2 + η2A (ε)

)
− τM (θ)

]
f (θ) dθ −

∫ θ2

θ1
[τM (θ2) − τM (θ)] f (θ) dθ

)
.

By equation (35) and Lemma 8 below, we have δ2A
ε > 0. Equation (35) implies that∫ 1

0 ψ
S
(
q̂2A
ε (θ) , θ

)
dθ =

∫ 1
0 ψ

S (q∗ (θ) , θ) dθ. This implies that
∫ 1

0 ψ
B
(
q̂2A
ε (θ) , θ

)
dθ−

∫ 1
0 ψ

B (q∗ (θ) , θ) dθ =
δ2A
ε > 0. Thus, q̂2A

ε is feasible, but q̂2A
ε achieves a higher objective value than q∗, which is a

contradiction. This rules out Case 2A.
Consider Case 2B next. Under Case 2B, there must exist θ3 such that q∗ (θ) = τL (θ) for

all θ ∈ [θ2, θ3]. Let θ̃ be the type such that τM
(
θ̃
)

= q∗. Note that θ1 < θ̃ < θ2. For some
small ε > 0, define γ1 (ε) and γ2 (ε) implicitly by

∫ θ̃+γ1(ε)
θ1+ε τ ′

M (θ) [1 − F (θ)] dθ =
∫ θ̃
θ1
τ ′
M (θ) [1 − F (θ)] dθ (36)∫ θ2+γ2(ε)

θ̃+γ1(ε) τ ′
L (θ) [1 − F (θ)] dθ =

∫ θ2
θ̃
τ ′
L (θ) [1 − F (θ)] dθ (37)

Pick the ε to be small enough such that θ2 + γ2 (ε) < θ3. Let θ̃′ be the type such that
τM

(
θ̃′
)

= τL (θ2 + γ2 (ε)). Let q̂2B
ε be the schedule in which

q̂2B
ε (θ) =



q∗ (θ) if θ /∈ [θ1, θ3)

τM (θ) if θ ∈ [θ1, θ1 + ε)

τM
(
θ̃ + γ1 (ε)

)
if θ ∈ [θ1 + ε, θ̃ + γ1 (ε))

τM (θ) if θ ∈ [θ̃ + γ1 (ε) , θ̃′)

τL (θ2 + γ2 (ε)) if θ ∈ [θ̃′, θ2 + γ2 (ε))

τL (θ) if θ ∈ [θ2 + γ2 (ε) , θ3)
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Observe that equations (36) and (37) imply that
∫ 1

0 ψ
S
(
q̂2B
ε (θ) , θ

)
dθ =

∫ 1
0 ψ

S (q∗ (θ) , θ) dθ.
Moreover,

δ2B
ε =

∫ 1

0

[
S
(
q̂2B
ε (θ) , θ

)
− S (q∗ (θ) , θ)

]
f (θ) dθ

=sH
(∫ θ̃+γ1(ε)

θ1+ε

[
τM

(
θ̃ + γ1 (ε)

)
− τM (θ)

]
f (θ) dθ −

∫ θ̃

θ1

[
τM

(
θ̃
)

− τM (θ)
]
f (θ) dθ

)
(38)

+ sM

( ∫ θ2+γ2(ε)

θ̃+γ1(ε)
[min {τM (θ) , τL (θ2 + γ2 (ε))} − τL (θ)] f (θ) dθ (39)

−
∫ θ2

θ̃
[τL (θ2) − τL (θ)] f (θ) dθ

 (40)

Equation (36) and Lemma 8 below jointly imply that line (38) is positive. Equation (37) and
Lemma 7 below jointly imply that line (39) minus line (40) is positive. Therefore, δ2B

ε > 0.
This implies that

∫ 1
0 ψ

B
(
q̂2B
ε (θ) , θ

)
dθ−

∫ 1
0 ψ

B (q∗ (θ) , θ) dθ = δ2B
ε > 0. Thus, q̂2B

ε is feasible,
but q̂2B

ε achieves a higher objective value than q∗, which is a contradiction. This rules out
Case 2B as well.

Since both Case 1 and Case 2 are not possible, χmust be an empty set. Therefore, q∗ must
be a threshold schedule. We summarize the argument above in the following proposition:

Proposition 4. Suppose that Condition 1 holds. If q (·) is a solution to program (33), q (·)
must be a threshold schedule — i.e., there exist θM ≤ θH such that q (θ) = τL (θ) if θ < θM ,
q (θ) = τM (θ) if θ ∈ [θM , θH), and q (θ) = 1 if θ ≥ θH .

We conclude this subsection with the proofs of Lemmas 7 and 8.

Lemma 7. Let θ1 < θ′
1 < θ2 < θ′

2. Under Condition 1,
∫ θ′

2
θ′

1
τ ′
L (θ) [1 − F (θ)] dθ =

∫ θ2
θ1
τ ′
L (θ) [1 − F (θ)] dθ

implies that

∫ θ′
2

θ′
1

[min {τM (θ) , τL (θ′
2)} − τL (θ)] f (θ) dθ−

∫ θ2

θ1
[min {τM (θ) , τL (θ2)} − τL (θ)] f (θ) dθ > 0.

Proof. For x > θ1, define ϕ (x) by
∫ ϕ(x)
x τ ′

L (θ) [1 − F (θ)] dθ =
∫ θ2
θ1
τ ′
L (θ) [1 − F (θ)] dθ. This

implies that ϕ′ (x) = τ ′
L(x)[1−F (x)]

τ ′
L(ϕ(x))[1−F (ϕ(x))] . Let

D (x) =
∫ ϕ(x)

x
[min {τM (θ) , τL (ϕ (x))} − τL (θ)] f (θ) dθ−

∫ θ2

θ1
[min {τM (θ) , τL (θ2)} − τL (θ)] f (θ) dθ.

C-5



Suppose first that τM (x) > τL (ϕ (x)). This implies that

D (x) =
∫ ϕ(x)

x
[τL (ϕ (x)) − τL (θ)] f (θ) dθ −

∫ θ2

θ1
[τL (θ2) − τL (θ)] f (θ) dθ,

and

D′ (x) = [F (ϕ (x)) − F (x)] τ ′
L (ϕ (x))ϕ′ (x) − [τL (ϕ (x)) − τL (x)] f (x)

= [F (ϕ (x)) − F (x)] τ
′
L (x) [1 − F (x)]
[1 − F (ϕ (x))] − [τL (ϕ (x)) − τL (x)] f (x)

∝ F (ϕ (x)) − F (x)
[1 − F (ϕ (x))] [ϕ (x) − x] −

[
τL (ϕ (x)) − τL (x)

ϕ (x) − x
× 1
τ ′
L (x)

]
f (x)

1 − F (x)

≥ F (ϕ (x)) − F (x)
[1 − F (ϕ (x))] [ϕ (x) − x] − f (x)

1 − F (x)

where the inequality follows from τ ′
L (x) ≥ τL(ϕ(x))−τL(x)

ϕ(x)−x because τL is concave. Using the
same argument that establishes statement (26) in the proof of Lemma 2, the last line is
positive; thus, D′ (x) > 0.

Next, suppose that τM (x) ≤ τL (ϕ (x)). Let x̂ = τ−1
M (τL (ϕ (x))). Therefore,

D (x) =
∫ x̂

x
[τM (θ) − τL (θ)] f (θ) dθ+

∫ ϕ(x)

x̂
[τL (ϕ (x)) − τL (θ)] f (θ) dθ−

∫ θ2

θ1
[τL (θ2) − τL (θ)] f (θ) dθ

and

D′ (x) = − [τM (x) − τL (x)] f (x) + [F (ϕ (x)) − F (x̂)] τ ′
L (ϕ (x))ϕ′ (x)

= [F (ϕ (x)) − F (x̂)] τ
′
L (x) [1 − F (x)]
[1 − F (ϕ (x))] − [τM (x) − τL (x)] f (x)

∝ F (ϕ (x)) − F (x̂)
1 − F (ϕ (x)) − τM (x) − τL (x)

τ ′
L (x)

(
f (x)

1 − F (x)

)

≥ F (ϕ (x)) − F (x̂)
1 − F (ϕ (x)) − τM (x̂) − τL (x̂)

τ ′
L (x̂)

(
f (x̂)

1 − F (x̂)

)
(41)

= F (ϕ (x)) − F (x̂)
1 − F (ϕ (x)) − τL (ϕ (x)) − τL (x̂)

τ ′
L (x̂)

(
f (x̂)

1 − F (x̂)

)

∝ F (ϕ (x)) − F (x̂)
[1 − F (ϕ (x))] [ϕ (x) − x̂] −

[
τL (ϕ (x)) − τL (x̂)

ϕ (x) − x̂
× 1
τ ′
L (x̂)

]
f (x̂)

1 − F (x̂)

≥ F (ϕ (x)) − F (x̂)
[1 − F (ϕ (x))] [ϕ (x) − x̂] − f (x̂)

1 − F (x̂)
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The inequality in (41) is due to the last part of Condition 1. Therefore, as before, D′ (x) > 0.
For both cases, since limx↓θ1 D (x) = 0, this implies that D (x) > 0 for x > θ1, which

establishes the lemma.

Lemma 8. Let θ1 < θ′
1 < θ2 < θ′

2. Under Condition 1,
∫ θ′

2
θ′

1
τ ′
M (θ) [1 − F (θ)] dθ =

∫ θ2
θ1
τ ′
M (θ) [1 − F (θ)] dθ

implies that

∫ θ′
2

θ′
1

[τM (θ′
2) − τM (θ)] f (θ) dθ −

∫ θ2

θ1
[τM (θ2) − τM (θ)] f (θ) dθ > 0.

The proof of Lemma 8 follows the same argument as that for Lemma 7 for the case of
τM (x) > τL (ϕ (x)); thus, we omit it.

C.2 Asymmetric Information on Endowment Size

We consider an extension wherein the size of the seller’s endowment is also her private
information, as described in Section 5.2 of the main text.

Let F (·|n) denote the distribution of λ conditional on n and J (·) denote the distribution
of n. Let their respective densities be f (·|n) and j (·). With a slight abuse of notations, let
(q (n, λ) , t (n, λ))n∈[0,1],λ∈[0,n] denote a direct mechanism, and let UB (n, λ) = V (q (n, λ) , λ)−
t (n, λ) and US (n, λ) = t (n, λ) − C (q (n, λ) , λ). Program (P) in the current setup is

max
q(·),t(·)

∫ 1
0
∫ n

0 U
S (n, λ) f (λ|n) j (n) dλdn, s.t. (ICe

S), (IRe
S) and (IRe

B) (42)

where

US (n, λ) ≥ t (n′, λ′) − C (q (n′, λ′) , λ) ∀ (n, λ) , (n′, λ′) , (ICe
S)

US (n, λ) ≥ 0 ∀ (n, λ) (IRe
S)∫ 1

0

∫ n

0
UB (n, λ) f (λ|n) j (n) dλdn ≥ b (IRe

B)

Because the type is two-dimensional, the type space does not have a complete order, which
means that defining a monotonicity notion for the quantity schedule is not straightforward.
The following is the appropriate monotonicity notion:

Definition 2. q (·) is “monotonic” if

• for any two types (n′, λ′) and (n, λ) in which λ′ > λ, either q (n′, λ′) ≥ q (n, λ) or
q (n, λ) > n′ = q (n′, λ′).
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• for any two types (n′, λ) and (n, λ) in which n′ > n, either q (n′, λ) = q (n, λ) or
q (n′, λ) > n = q (n, λ).

In words, when λ′ > λ, the type with λ′ (or more Ls) must trade weakly more than the
type with λ whenever the endowment of λ′ permits. Therefore, if the lower λ trades more
than the higher λ′, it must imply that λ′ trades her entire endowment (i.e., her endowment
constraint binds). Next, if two types have the same λ, then they must trade the same
quantity whenever their endowments permit. Therefore, if q (n′, λ) > q (n, λ), it must imply
that type (n, λ) trades her entire endowment.

Similar to Lemma 1, the seller’s truth-telling constraint (ICe
S) can be replaced by the

following two conditions:

US (n, λ) = US (n, 0) + (cH − cL)
∫ λ

0
I (q (n, l) > l) dl ∀ (n, λ) , (43)

q (·) is monotonic according to Definition 2. (44)

From equation (43), for each n, constraint (IRe
S) holds for all (n, λ) if it holds for (n, 0).

Additionally, substituting in equation (43), the objective function of program (42) becomes
∫ 1

0
US (0, n) j (n) dn+

∫ 1

0
(cH − cL)

∫ n

0
I (q (λ) > λ) [1 − F (λ|n)] j (n) dλdn,

and constraint (IRe
B) becomes

∫ 1

0

∫ n

0
ψB (q (n, λ) , n, λ) j (n) dλdn−

∫ 1

0
US (0, n) j (n) dn ≥ b,

where (with an abuse of notation)

ψB (q, n, λ) = S (q, λ) f (λ|n) − (cH − cL) I (q > λ) [1 − F (λ|n)] .

This implies that constraint (IRe
B) must bind. Therefore, program (42) becomes

max
q(·),u0

∫ 1
0
∫ n

0 S (q (n, λ) , λ) f (λ|n) j (n) dλdn− b s.t.

q (·) is monotonic , u0 ≥ 0 , and
∫ 1

0
∫ n

0 ψ
B (q (n, λ) , n, λ) j (n) dλdn− u0 = b

. (45)

Lemma 9. If q (·) is a solution to program (45), q (·) must satisfy the following two condi-
tions:

1. q∗ (n, λ) ≥ λ for all (n, λ).
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2. Let X be the set of λ such that q (1, λ) > λ.

(a) If X is empty, then q (n, λ) = λ for all (n, λ).

(b) Suppose that X is nonempty. Let λ1 denote the smallest λ in X , and let λ2 denote
the smallest λ ∈ (λ1, 1] such that q∗ (1, λ) = λ. It holds that for all λ ∈ [λ1, λ2],
q (n, λ) = min {n, λ2}.

Proof. S (q, λ) is strictly increasing in q. When q < λ, ψB (q, n, λ) is also strictly increasing in
q. This explains point 1. Next, monotonicity of q (·) implies that for all λ, q (1, λ) ≥ q (n, λ).
Point 2a hence follows. Finally, for Point 2b, since ψB (q, n, λ) is also strictly increasing in q
when q > λ, it must be the case the q (1, λ) = λ2 for all λ ∈ [λ1, λ2]. Point 2b then follows
from the monotonicity of q (·).

Lemma 9 is the analog Lemma 5. Point 2b states that unless every type sells only
their Ls, the optimal quantity schedule must feature some bunching, similar to the middle
panel of Figure 1 for the baseline model. The difference is that because of the endowment
constraint for some types, such bunching might not always be possible. When this happens,
the endowment constraint for these types must bind.

The following is a sufficient condition for the solution quantity schedule to always be a
threshold schedule:

Condition 2. For all λ′ > λ, f(λ′|n≥λ′)
1−F (λ′|n≥λ′) − f(λ|n≥λ)

1−F (λ|n≥λ) ≥ ξ (λ′, λ), where ξ (x, λ) :=
− d
dx

log
∫ 1
x [1 − F (λ|n)] j (n) dn.

Note that ξ (λ′, λ) is always positive. Thus, Condition 2 requires the conditional hazard
rate to be increasing sufficiently quickly (as opposed to only increasing). The following is an
example that satisfies Condition 2: j (n) = 2n and F (λ|n) is the uniform distribution over
[0, n].27

Proposition 5. Under Condition 2, if q (·) is a solution to program (45), then q (·) must be
a threshold schedule — i.e., there exists x such that q (n, λ) = λ if λ ≤ x and q (n, λ) = n if
λ > x.

Proof. Let q∗ (·) be an optimal schedule. Let λ1 and λ2 be as defined in Lemma 9. The
lemma is proved by showing that λ2 = 1. Suppose, for a contradiction, that λ2 < 1. There

27To be precise, this means that f (λ|n) = 1
n for λ ∈ [0, n] and f (λ|n) = 0 for λ > n. It is readily verified

that f(λ|n≥λ)
1−F (λ|n≥λ) = 2

1−λ and ξ (λ′, λ) = 2(λ′−λ)
(1−λ′)(1−λ)+(λ′−λ)(1−λ′) ; thus Condition 2 holds.
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must then exist λ3 > λ2 such that q∗ (1, λ) = λ for all λ ∈ [λ2, λ3]. Since q∗ (·) is monotonic,
this also implies that for any n < 1 and λ ∈ [λ2, λ3], q∗ (n, λ) = λ. Observe that

∫ 1

0

∫ λ3

λ1
S (q∗ (n, λ) , λ) f (λ|n) j (n) dλdn

=
∫ n

λ3

∫ λ3

λ1
S (q∗ (n, λ) , λ) f (λ|n) j (n) dλdn +

∫ λ3

λ1

∫ n

λ1
S (q∗ (n, λ) , λ) f (λ|n) j (n) dλdn

=
∫ 1

0

∫ λ3

λ1
λsLf (λ|n) j (n) dλdn

+
∫ 1

λ2

∫ λ2

λ1
(λ2 − λ) sHf (λ|n) j (n) dλdn +

∫ λ2

λ1

∫ n

λ1
(n− λ) sHf (λ|n) j (n) dλdn

For some small ε > 0 and x ∈ [λ1, λ1 + ε], let ϕ (x) be such that

∫ 1

ϕ(x)

∫ ϕ(x)

x
(ϕ (x) − λ) sHf (λ|n) j (n) dλdn +

∫ ϕ(x)

x

∫ n

x
(n− λ) sHf (λ|n) j (n) dλdn

=
∫ 1

λ2

∫ λ2

λ1
(λ2 − λ) sHf (λ|n) j (n) dλdn +

∫ λ2

λ1

∫ n

λ1
(n− λ) sHf (λ|n) j (n) dλdn (46)

We restrict ε to be small enough such that ϕ (λ1 + ε) < λ3.
Define schedule q̂x as follows:

q̂x (n, λ) =



q∗ (n, λ) , if λ /∈ [λ1, λ3)

λ , if λ ∈ [λ1, x)

min {n, ϕ (x)} , if λ ∈ [x, ϕ (x))

λ , if λ ∈ [ϕ (x) , λ3)

By construction,
∫ 1

0

∫ n

0
S (q̂x (n, λ) , λ) f (λ|n) j (n) dλdn =

∫ 1

0

∫ n

0
S (q∗ (n, λ) , λ) f (λ|n) j (n) dλdn. (47)

Let
ψS (q, n, λ) = I (q > λ) (cH − cL) [1 − F (λ|n)] .

Therefore, ψB (q, n, λ) = S (q, λ) f (λ|n)−ψS (q, n, λ). The difference in the buyer’s expected
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utility between q̂x (·) and q∗ (·) is

D (x) =
∫ 1

0

∫ n

0

[
ψB (q̂x (n, λ) , n, λ) − ψB (q∗ (n, λ) , n, λ)

]
j (n) dλdn

=
∫ 1

0

∫ n

0

[
ψS (q∗ (n, λ) , n, λ) − ψS (q̂x (n, λ) , n, λ)

]
j (n) dλdn

=
∫ 1

λ3

∫ λ3

λ1

[
ψS (q∗ (n, λ) , n, λ) − ψS (q̂x (n, λ) , n, λ)

]
j (n) dλdn

+
∫ λ3

λ1

∫ n

λ1

[
ψS (q∗ (n, λ) , n, λ) − ψS (q̂x (n, λ) , n, λ)

]
j (n) dλdn

= (cH − cL)
[∫ 1

λ2

(∫ λ2

λ1
1 − F (λ|n) dλ

)
h (n) dn+

∫ λ2

λ1

(∫ n

λ1
1 − F (λ|n) dλ

)
j (n) dn

]

− (cH − cL)
[∫ 1

ϕ(x)

(∫ ϕ(x)

x
1 − F (λ|n) dλ

)
j (n) dn+

∫ ϕ(x)

x

(∫ n

x
1 − F (λ|n) dλ

)
j (n) dn

]
.

Differentiating D (x) with respect to x, we have

D′ (x) =
[∫ 1

x
[1 − F (x|n)] j (n) dn−

(∫ 1

ϕ(x)
[1 − F (ϕ (x) |n)] j (n) dn

)
ϕ′ (x)

]
(cH − cL)

From equation (46), we have

ϕ′ (x) =
∫ 1
ϕ(x) [ϕ (x) − x] f (x|n) j (n) dn+

∫ ϕ(x)
x (n− x) f (x|n) j (n) dn∫ 1

ϕ(x) [F (ϕ (x) |n) − F (x|n)] j (n) dn

>
[ϕ (x) − x]

∫ 1
x f (x|n) j (n) dn∫ 1

ϕ(x) [F (ϕ (x) |n) − F (x|n)] j (n) dn

Therefore, we have D′ (x) > 0 if

[ϕ (x) − x]
∫ 1
x f (x|n) j (n) dn∫ 1

ϕ(x) [F (ϕ (x) |n) − F (x|n)] j (n) dn
≤

∫ 1
x [1 − F (x|n)] j (n) dn(∫ 1

ϕ(x) [1 − F (ϕ (x) |n)] j (n) dn
)

⇐⇒
∫ 1
x f (x|n) j (n) dn∫ 1

x [1 − F (x|n)] j (n) dn
≤

∫ 1
ϕ(x) [F (ϕ (x) |n) − F (x|n)] j (n) dn

[ϕ (x) − x]
(∫ 1
ϕ(x) [1 − F (ϕ (x) |n)] j (n) dn

)

Fixing some λ, let LHS =
∫ 1

λ
f(λ|n)j(n)dn∫ 1

λ
[1−F (λ|n)]j(n)dn

, and let RHS (λ′) =
∫ 1

λ′ [F (λ′|n)−F (λ|n)]j(n)dn

(λ′−λ)
∫ 1

λ′ [1−F (λ′|n)]j(n)dn
.

By L’Hôpital’s rule, limλ′↓λRHS (λ′) = LHS and limλ′↑1 RHS (λ′) = ∞. Suppose, for a
contradiction, that there exists λ′ ∈ (λ, 1) such that LHS > RHS (λ′). This must imply
that there exists λ̂ ∈ (λ, 1) such that LHS > RHS

(
λ̂
)

and d
dλ′RHS (λ′)

∣∣∣∣
λ′=λ̂

= 0. By some
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algebra, d
dλ′RHS (λ′)

∣∣∣∣
λ′=λ̂

= 0 implies that

∫ 1
λ̂ f

(
λ̂|n

)
j (n) dn∫ 1

λ̂

[
1 − F

(
λ̂|n

)]
j (n) dn

= RHS
(
λ̂
) ∫ 1

λ̂

[
1 − F

(
λ̂|n

)]
j (n) dn∫ 1

λ̂ [1 − F (λ|n)] j (n) dn
+

[
1 − F

(
λ|λ̂

)]
j
(
λ̂
)

∫ 1
λ̂ [1 − F (λ|n)] j (n) dn

< LHS +

[
1 − F

(
λ|λ̂

)]
j
(
λ̂
)

∫ 1
λ̂ [1 − F (λ|n)] j (n) dn

=
∫ 1
λ f (λ|n) j (n) dn∫ 1

λ [1 − F (λ|n)] j (n) dn
− d

dλ̂
log

(∫ 1

λ̂
[1 − F (λ|n)] j (n) dn

)
,

where the inequality in the second line follows from λ < λ̂ and LHS > RHS
(
λ̂
)
. However,

this contradicts Condition 2.28 Therefore, it holds that LHS ≤ RHS (λ′), which implies
that D′ (x) > 0.

Since D (λ1) = 0, there exists x > λ1 such that D (x) > 0, thus implying that
∫ 1

0

∫ n

0
ψB (q̂x (n, λ) ;n, λ) j (n) dλdn >

∫ 1

0

∫ n

0
ψB (q∗ (n, λ) ;n, λ) j (n) dλdn (48)

This implies that q̂x (·) is also feasible, and from equation (47), q̂x (·) is also optimal. However,
equation (48) implies that constraint (IRe

B) does not bind, which is a contradiction.

C.3 Diminishing Marginal Utility

This subsection provides the details for the extension described in Subsection 5.3. Our main
program is still program (P), but with V now defined in Subsection 5.3.

The argument to transform program (P) to program (P̃) considers only the seller’s
incentives, which is unchanged here; thus, the argument still applies here. However, note
that in the current setup,

S (q, λ) =

νL (q) − qcL if q ≤ λ

νL (λ) − λcL + νH (q − λ) − (q − λ) cH if q > λ
. (49)

Let
s̄H (x) := νH (x) − xcH .

28Note that f (λ|n ≥ λ) =
∫ 1

λ
f(λ|n)j(n)dn

1−J(λ) and 1 − F (λ|n ≥ λ) =
∫ 1

λ
j(n)dn−

∫ 1

λ
F (λ|n)j(n)dn

1−J(λ) =∫ 1

λ
[1−F (λ|n)]j(n)dn

1−J(λ) . Therefore, f(λ|n≥λ)
1−F (λ|n≥λ) =

∫ 1

λ
f(λ|n)j(n)dn∫ 1

λ
[1−F (λ|n)]j(n)dn

.
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The condition required for the solution to program (P̃) to be a threshold schedule is as
follows:

Condition 3. For any z, x ∈ [0, 1] such that z > x,

∫ z

x
s̄′
H (z − λ) f (λ) dλ ≥ s̄H (z − x)

z − x
[F (z) − F (x)] . (50)

Note that equation (50) can be written as

∫ z

x

[
s̄′
H (z − λ) − s̄H (z − x)

z − x

]
f (λ) dλ ≥ 0.

Since s̄H is concave, by the mean value theorem, there exists λ̄ such that s̄′
H (z − λ) >

(=) [<] s̄H(z−x)
z−x if λ > (=) [<] λ̄ — i.e., there are both positive and negative terms in the

integrand. Thus, Condition 3 is a restriction on the curvature of s̄H together with the
distribution. The following is an example:

Lemma 10. Condition 3 always holds if F is the uniform distribution.

Proof. When F is the uniform distribution, F (z) − F (x) = z − x; thus, the right-hand
side of equation (50) is s̄H (z − x). Since f (λ) = 1, the left-hand side of equation (50) is∫ z
x s̄

′
H (z − λ) dλ. By the fundamental theorem of calculus, this is equal to s̄H (z − x).

Proposition 6. Under Condition 3, if q (·) is a solution to program (P̃) in the current setup,
then q (·) must be a threshold schedule, defined in Definition 1.

Proof. Since ν ′
L (x) > cL and ν ′

H (x) > cH for all x, S (q, λ) defined in equation (49) is still
always strictly increasing in q. In turn, ψB (q, λ) is also increasing in q when q < λ and when
q > λ. Thus, Lemma 5 in the proof of Proposition 1 still holds. Let λ1, λ2, λ3, η (ε) and q̂ε

be as defined in that proof. Following the exact arguments, we only have to show that δε in
equation (25) is positive, where, over here,

δε =
∫ λ3

λ1
S [(q̂ε (λ) , λ) − S (q∗ (λ) , λ)] f (λ) dλ

=
∫ λ2+η(ε)

λ1+ε
s̄H (λ2 + η (ε) − λ) f (λ) dλ−

∫ λ2

λ1
s̄H (λ2 − λ) f (λ) dλ .

This is indeed the case from Lemma 11 below.
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Lemma 11. Under Condition 3, when f/ (1 − F ) is nondecreasing, the following property
holds: for any λ1 < λ′

1 < λ2 < λ′
2, if

∫ λ′
2

λ′
1

1 − F (λ) dλ =
∫ λ2
λ1

1 − F (λ) dλ, then

∫ λ′
2

λ′
1

s̄H (λ′
2 − λ) f (λ) dλ >

∫ λ2

λ1
s̄H (λ2 − λ) f (λ) dλ. (51)

Proof. Fix any λ1, λ2 > 0. For x > λ1, define ϕ (x) to be such that
∫ ϕ(x)
x 1 − F (λ) dλ =∫ λ2

λ1
1−F (λ) dλ. ϕ is strictly increasing and (by the implicit function theorem) differentiable,

with ϕ′ (x) = 1−F (x)
1−F (ϕ(x)) . Let x̄ = ϕ−1 (1) and

D̄ (x) :=
∫ ϕ(x)

x
s̄H (ϕ (x) − λ) f (λ) dλ−

∫ λ2

λ1
s̄H (λ2 − λ) f (λ) dλ

Our goal is to show that D̄ (x) > 0 for all x ∈ (λ1, x̄]. Note that D̄ (x) is also differentiable
for x ∈ (λ1, x̄), with

D̄′ (x) =
(∫ ϕ(x)

x
s̄′
H (ϕ (x) − λ) f (λ) dλ

)
1 − F (x)

1 − F (ϕ (x)) − s̄H (ϕ (x) − x) f (x)

∝
[∫ ϕ(x)

x s̄′
H (ϕ (x) − λ) f (λ) dλ
s̄H (ϕ (x) − x)

]
1

1 − F (ϕ (x)) − f (x)
1 − F (x)

≥
[
F (ϕ (x)) − F (x)

ϕ (x) − x

]
1

1 − F (ϕ (x)) − f (x)
1 − F (x) ,

where the inequality holds because of Condition 3. In turn, from the property in equation
(26) in Appendix A, D̄′ (x) > 0. Since D̄ (x) is continuous for x ∈ [λ1, x̄] and D̄ (λ1) = 0,
D̄′ (x) > 0 for all x ∈ (λ1, x̄) implies that D̄ (x) > 0 for all x ∈ (λ1, x̄].

C.4 Stochastic Mechanism

We consider the use of stochastic mechanism in this subsection. Because the utility functions
of both the seller and the buyer are linear in the transfers, it suffice to allow for stochasticity
only in the quantity. A stochastic contract is a double (α, t), where t is still the transfer
from the buyer to the seller, and α is the CDF of the quantity that the seller must supply
to the buyer. The following are two important notations:

ᾱ (q) := 1 − α (q)

α∆ (q) := α (q) − sup
x<q

α (q)
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ᾱ (q) is the probability of having to supply more than q units under α. α∆ (q) denote the
mass at q; thus, a deterministic contract consists of α where there is a q in which α∆ (q) = 1.

Let

C̄ (α, λ) =
∫ 1

0
C (q, λ) dα (q)

V̄ (α, λ) =
∫ 1

0
V (q, λ) dα (q)

S̄ (α, λ) =V̄ (α, λ) − C̄ (α, λ) =
∫ 1

0
S (q, λ) dα (q)

where C and V are defined in equations (1) and (2). Thus, under a stochastic contract (α, t)
between the buyer and the type-λ seller, the buyer’s and the seller’s expected utility are
V̄ (α, λ) − t and t− C̄ (α, λ), respectively.

Let {α (·|λ) , t (λ)}λ∈[0,1] denote a direct stochastic mechanism. Let ŪB (λ) = V̄ (α (·|λ) , λ)−
t (λ) and ŪS (λ) = t (λ) − C̄ (α (·|λ) , λ). Our main program is

max
{α(·|λ),t(λ)}λ∈[0,1]

∫ 1
0 Ū

S (λ) f (λ) dλ, s.t. ( ¯ICS), ( ¯IRS) and ( ¯IRB) , (Pstoch)

where

ŪS (λ) ≥ t (λ′) − C̄ (α (·|λ′) , λ) ∀λ, λ′, ( ¯ICS)

ŪS (λ) ≥ 0 ∀λ, ( ¯IRS)∫ 1

0
ŪB (λ) f (λ) dλ ≥ b. ( ¯IRB)

By the envelope theorem, constraint ( ¯ICS) implies that

dŪS (λ)
dλ

= −∂C̄ (α (·|λ) , λ)
∂λ

= (cH − cL) ᾱ (λ|λ)

almost everywhere. Therefore,

ŪS (λ) = ŪS (0) + (cH − cL)
∫ λ

0
ᾱ (l|l) dl. ( ¯ICS′

)

Consider the program

max
{α(·|λ),t(λ)}λ∈[0,1]

∫ 1
0 Ū

S (λ) f (λ) dλ, s.t. ( ¯ICS′

), ( ¯IRS) and ( ¯IRB) , (52)
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Program (52) is a relaxed version of program (Pstoch) because it satisfies only a set of
necessary conditions for constraint ( ¯ICS). Thus, the value of program (52) is weakly higher
than the value of program (Pstoch). Say that a mechanism {α (·|λ)}λ∈[0,1] is deterministic
if {α (·|λ) , t (λ)} is a deterministic contract for all λ. We will provide a condition under
which program (52) has a solution mechanism that is deterministic and satisfies all the
constraints of program (Pstoch); thus, program (Pstoch) also has a solution mechanism that
is deterministic.

Condition 4. (1−λ)f(λ)
1−F (λ) is nondecreasing.

Proposition 7. Under Condition (4), there is a solution mechanism to program (Pstoch)
that consists of an {α (·|λ)}λ∈[0,1] that takes the form of a deterministic threshold schedule
— i.e., there exists a x such that α∆ (λ|λ) = 1 for all λ < x and α∆ (1|λ) = 1 for all λ ≥ x.

We first provide some preliminary results to prove Proposition 7. First, constraint ( ¯ICS′

)
implies that t (λ) must satisfy

t (λ) = ŪS (0) + (cH − cL)
∫ λ

0
ᾱ (l|l) dl + C̄ (α (·|λ) , λ) (53)

Doing integration by parts, we have
∫ 1

0
t (λ) f (λ) dλ = ŪS (0) + (cH − cL)

∫ 1

0
ᾱ (λ]|λ) [1 − F (λ)] dλ+

∫ 1

0
C̄ (α (·|λ) , λ) f (λ) dλ.

(54)
Therefore,
∫ 1

0
ŪB (λ) f (λ) dλ =

∫ 1

0
S̄ (α (·|λ) , λ) f (λ) dλ− (cH − cL)

∫ 1

0
ᾱ (λ|λ) [1 − F (λ)] dλ− ŪS (0) .

=
∫ 1

0
ψ̄B (α (·|λ) , λ) dλ− ŪS (0) ,

where
ψ̄B (α, λ) = S̄ (α, λ) f (λ) − (cH − cL) ᾱ (λ) [1 − F (λ)] . (55)

Following the same argument as the one for Lemma 4, constraint ( ¯IRB) must bind, and we
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can transform program (52) to the following program:

max
{α(·|λ)}λ∈[0,1],Ū

S(0)

∫ 1
0 S̄ (α (·|λ) , λ) f (λ) dλ− b s.t.

ŪS (0) ≥ 0 , and
∫ 1

0
ψ̄B (α (·|λ) , λ) dλ− ŪS (0) = b︸ ︷︷ ︸

( ¯IRB′
)

(P̃stoch)

Thus, our objective is to show that there exists a solution
{
{α (·|λ)}λ∈[0,1] , Ū

S (0)
}

for pro-
gram (P̃stoch) in which {α (·|λ)}λ∈[0,1] takes the form of a deterministic threshold schedule.
We note the following property, which should be obvious:

Lemma 12. For any
{
{α (·|λ)}λ∈[0,1] , Ū

S (0)
}
, if there exists {α̂ (·|λ)}λ∈[0,1] that has the

property that ψ̄B (α̂ (·|λ) , λ) ≥ ψ̄B (α (·|λ) , λ) and S̄ (α̂ (·|λ) , λ) > S̄ (α (·|λ) , λ) for a set of
λ that has a strictly positive measure, then {α (·|λ)}λ∈[0,1] cannot be part of a solution to
program (P̃stoch).

Next, observe that

S̄ (α, λ) =
∫
q∈[0,λ]

sLqdα (q) +
∫
q∈(λ,1]

[λsL + (q − λ) sH ] dα (q)

=
[∫

q∈[0,1]
min {q, λ} dα (q)

]
sL +

[∫
q∈(λ,1]

(q − λ) dα (q)
]
sH (56)

Lemma 13. If
{
{α (·|λ)}λ∈[0,1] , Ū

S (0)
}

is a solution to program (P̃stoch), then for all λ,
α∆ (λ|λ) + α∆ (1|λ) = 1.

Proof. Let {α∗ (·|λ)}λ∈[0,1] be a solution to program (P̃stoch). Let {α̂ (·|λ)}λ∈[0,1] be another
mechanism where α̂∆ (λ|λ) = α∗ (λ|λ) and α̂∆ (1|λ) = ᾱ∗ (λ|λ). Given the expression
in equation (56), it is immediate that S̄ (α̂ (·|λ) , λ) ≥ S̄ (α∗ (·|λ) , λ), with the inequal-
ity holding strictly if α∗ (·|λ) ̸= α̂ (·|λ). Next, since ¯̂α (λλ) = ᾱ (λ|λ), from equation
(55), ψ̄B (α̂ (·|λ) , λ) − ψ̄B (α∗ (·|λ) , λ) = S̄ (α̂ (·|λ) , λ) − S̄ (α∗ (·|λ) , λ), which is positive
from above. Therefore, if α∗ (·|λ) ̸= α̂ (·|λ) for a positive measure of λ, by Lemma 12,
{α∗ (·|λ)}λ∈[0,1] cannot be part of a solution to program (P̃stoch).

Henceforth, without loss of generality, we can restrict attention to only {α (·|λ)}λ∈[0,1]

with the property that α∆ (λ|λ) + α∆ (1|λ) = 1.

Lemma 14. Under Condition (4), if
{
{α (·|λ)}λ∈[0,1] , Ū

S (0)
}

is a solution to program (52),
then it must the case that for all λ, α∆ (λ|λ) = 1 or α∆ (1|λ) = 1.
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Proof. Suppose, for a contradiction, that the statement of the lemma does not hold — i.e.,
letting {α∗ (·|λ)}λ∈[0,1] be a solution to program (P̃stoch), there exists an interval [λ1, λ2]
such that α∗∆ (λ|λ) , α∗∆ (1|λ) ∈ (0, 1) for all λ. Let λo = λ1+λ2

2 , and for λ ∈ [λ1, λ
o], let

ζ (λ) = λo + λ− λ1. Therefore, (ζ (λ1) , ζ (λo)] = (λo, λ2] and ζ (λ) > λ.
Let k = minλ∈[λ1,λo] α

∆ (λ|λ), and choose an ε ∈ (0, k). For λ ∈ (λ1, λ
o), define η (λ) as

follows:

[1 − F (λ)] ε = [1 − F (ζ (λ))] η (λ)

=⇒ η (λ) = [1−F (λ)]ε
1−F (ζ(λ)) .

We choose ε small enough such that η (λ) < minλ∈[λo,λ2] 1 − α∗∆ (1|λ) .
Consider the schedule {α̂ (·|λ)}λ∈[0,1], where α̂ (·|λ) = α∗ (·|λ) for all λ /∈ [λ1, λ

o)∪(λo, λ2],
and

for λ ∈ [λ1, λ
o), α̂ (λ|λ) = α∗ (λ|λ) + ε ; α̂ (1|λ) = α∗ (1|λ) − ε

for λ ∈ (λo, λ1], α̂ (λ|λ) = α∗ (λ|λ) − η
(
ζ−1 (λ)

)
; α̂ (1|λ) = α∗ (1|λ) + η

(
ζ−1 (λ)

)
In words, a type λ ∈ [λ1, λ

o) is paired with a type ζ (λ) ∈ (λo, λ2], where ζ is bijective.
{α̂ (·|λ)}λ∈[0,1] is constructed as follows: for each λ ∈ [λ1, λ

o), there is an increase of proba-
bility ε for α∗ (λ|λ) (and a decrease of ε for α̂ (λ|λ)); and for its “paired” type ζ (λ), there is
an increase of probability η (λ) for α∗ (1|ζ (λ)) (and a decrease of η (λ) for α̂ (ζ (λ) |ζ (λ))).

Note that ᾱ∗ (λ|λ) = α∗∆ (1|λ) and ¯̂α (λ|λ) = α̂∆ (1|λ). Therefore,

∫ λ2

λ1

¯̂α (1|λ) [1 − F (λ)] dλ

=
∫ λo

λ1
α̂∆ (1|λ) [1 − F (λ)] dλ+

∫ λ2

λo
α̂∆ (1|λ) [1 − F (λ)] dλ

=
∫ λo

λ1
α̂∆ (1|λ) [1 − F (λ)] dλ+

∫ λo

λ1
α̂∆

(
1|ζ−1 (λ)

)
[1 − F (ζ (λ))] dλ

=
∫ λo

λ1

(
α∗∆ (1|λ) − ε

)
[1 − F (λ)] +

[
α∗∆ (1|ζ (λ)) + η (λ)

]
[1 − F (ζ (λ))] dλ

=
∫ λo

λ1

[
α∗∆ (1|λ) + α∗∆ (1|ζ (λ))

]
[1 − F (λ)] dλ+

∫ λo

λ1
[[1 − F (λ)] ε+ [1 − F (ζ (λ))] η (λ)] [1 − F (λ)] dλ

=
∫ λ2

λ1
α∗∆ (1|λ) [1 − F (λ)] dλ.

C-18



This implies that
∫ λ2

λ1
ψ̄B (α̂ (·|λ) , λ) dλ− ψ̄B (α∗ (·|λ) , λ) dλ =

∫ λ2

λ1

[
S̄ (α̂ (·|λ)) − S̄ (α∗ (·|λ))

]
f (λ) dλ. (57)

Next, similar to above,
∫ λ2

λ1
(1 − λ) f (λ) α̂∆ (1|λ) dλ

=
∫ λo

λ1
(1 − λ) f (λ) α̂∆ (1|λ) + (1 − ζ (λ)) f (ζ (λ)) α̂∆ (1|ζ (λ)) dλ

=
∫ λo

λ1
(1 − λ) f (λ)

[
α̂∆ (1|λ) − ε

]
+
[
(1 − ζ (λ)) f (ζ (λ))

[
α̂∆ (1|ζ (λ)) + η (λ)

]]
dλ

=
∫ λ2

λ1
(1 − λ) f (λ)α∗∆ (1|λ) dλ

+
∫ λo

λ1
(1 − ζ (λ)) f (ζ (λ)) η (λ) − (1 − λ) f (λ) ε dλ (58)

Observe that

(1 − ζ (λ)) f (ζ (λ)) η (λ) = (1 − ζ (λ)) f (ζ (λ))
1 − F (ζ (λ)) [1 − F (λ)] ε

>
(1 − λ) f (λ)

1 − F (λ) [1 − F (λ)] ε = (1 − λ) f (λ) ε,

where the inequality is because of Condition (4). Therefore, the line in (58) is strictly
positive, meaning that

∫ λ2

λ1
(1 − λ) f (λ) α̂∆ (1|λ) dλ >

∫ λ2

λ1
(1 − λ) f (λ)α∗∆ (1|λ) dλ.

This implies that
∫ λ2

λ1

[
S̄ (α̂ (·|λ)) − S̄ (α∗ (·|λ))

]
f (λ) dλ

=
∫ λ2

λ1
(1 − λ)

[
α̂∆ (1|λ) − α∗∆ (1|λ)

]
sHf (λ) dλ > 0.

Therefore, from equation (57),
∫ λ2
λ1
ψ̄B (α̂ (·|λ) , λ) dλ−ψ̄B (α∗ (·|λ) , λ) dλ > 0. By Lemma 12,

{α∗ (·|λ)}λ∈[0,1] cannot be part of a solution to program (P̃stoch), which is a contradiction.

Henceforth, without loss of generality, we can restrict attention to only {α (·|λ)}λ∈[0,1]

with the property that either α∆ (λ|λ) = 1 or α∆ (1|λ) = 1.
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Lemma 15. Under Condition (4), if
{
{α (·|λ)}λ∈[0,1] , Ū

S (0)
}

is a solution to program
(P̃stoch), there must exist x such that α∆ (λ|λ) = 1 for all λ < x and α∆ (1|λ) = 1 for
all λ ≥ x.

Proof. Let {α∗ (·|λ)}λ∈[0,1] be a solution to program (P̃stoch). Suppose, for a contradiction,
that the statement of the lemma does not hold. This implies that there exist λ1 < λ2 <

λ3 < 1 such that α∗∆ (1|λ) = 1 for all λ ∈ [λ1, λ2) but α∗∆ (λ|λ) = 1 for all λ ∈ [λ2, λ3]. For
x ∈ [λ1, λ1 + ε] , define ϕ (x) by

∫ ϕ(x)

x
1 − F (λ) dλ =

∫ λ2

λ1
1 − F (λ) dλ. (59)

Pick ε such that ϕ (λ1 + ε) = λ3. Equation (59) implies that ϕ′ (x) = 1−F (x)
1−F (ϕ(x)) . Let

D (x) :=
∫ ϕ(x)

x
(1 − λ) f (λ) dλ

=⇒ D′ (x) = [1 − ϕ (x)] f (ϕ (x))ϕ′ (x) − (1 − x) f (x)

= [1 − ϕ (x)] f (ϕ (x)) 1 − F (x)
1 − F (ϕ (x)) − (1 − x) f (x)

∝ [1 − ϕ (x)] f (ϕ (x))
1 − F (ϕ (x)) − (1 − x) f (x)

1 − F (x) ≥ 0,

where the inequality is due to Condition (4) and is strict if x > λ1. Thus,

∫ λ3

λ1+ε
(1 − λ) f (λ) dλ = D (λ1 + ε) > D (λ1) =

∫ λ2

λ1
(1 − λ) f (λ) dλ. (60)

Consider the schedule {α̂ (·|λ)}λ∈[0,1] where α̂ (·|λ) = α∗ (·|λ) for all λ /∈ [λ1, λ3], and
α̂∆ (λ|λ) = 1 for all λ ∈ [λ, λ1 + ε), and α̂∆ (1|λ) = 1 for all λ ∈ [λ1 + ε, λ3]. Observe
that

∫ λ3

λ1

[
S̄ (α̂ (·|λ)) − S̄ (α∗ (·|λ))

]
f (λ) dλ

=
[∫ λ3

λ1+ε
(1 − λ) f (λ) dλ−

∫ λ2

λ1
(1 − λ) f (λ) dλ

]
sH > 0,
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where the inequality is from equation (60). Additionally,

∫ λ3

λ1

( ¯̂α (λ) − ᾱ∗ (λ)
)

[1 − F (λ)] f (λ) dλ

=
∫ λ3

λ1+ε
¯̂α∆ (λ) [1 − F (λ)] dλ−

∫ λ2

λ1
ᾱ∗∆ (λ) [1 − F (λ)] dλ.

Thus,
∫ λ3
λ1
ψ̄B (α̂ (·|λ)) − ψ̄B (α∗ (·|λ)) dλ =

∫ λ3
λ1

[
S̄ (α̂ (·|λ)) − S̄ (α∗ (·|λ))

]
f (λ) dλ > 0. By

Lemma 12, {α∗ (·|λ)}λ∈[0,1] cannot be part of a solution to program (P̃stoch), which is a
contradiction.

Finally, Proposition 7 is a corollary of Lemma 15.

D Online Appendix: Additional Results

D.1 On the Constrained Pareto Frontier

This subsection studies the curvature of the Pareto frontier. From Proposition 2, if the
solution is of class A1, the frontier is Ŝ (0) − b, which has a constant slope of −1. If the
solution is of class A2 , the frontier is ψ̂S (λ∗ (b)).

Lemma 16. Suppose that the density f is differentiable over (0, 1). For all b ∈
(
E [v] − cH , b̄

)
,

ψ̂S (λ∗ (b)) is twice differentiable with respect to b, and d2

db2 ψ̂
S (λ∗ (b)) ≤ (≥) 0 if f(λ)(1−λ)

1−F (λ) is
increasing (decreasing) at λ = λ∗ (b).

Observe that f(λ)(1−λ)
1−F (λ) is constant for the uniform distribution. This explains why the

slope of the Pareto frontier of the A2 allocations under the uniform distribution is a constant.

Proof. Let VS (b) = ψ̂S (λ∗ (b)). Twice differentiating VS (b), we have

VS′ (b) = − (cH − cL) [1 − F (λ∗ (b))]λ∗′ (b)

VS′′ (b) ∝f (λ∗ (b))
[
λ∗′ (b)

]2
− [1 − F (λ∗ (b))]λ∗′′ (b)

=⇒ VS′′ (b) ≤ 0 ⇐⇒ f (λ∗ (b))
1 − F (λ∗ (b)) ≤ λ∗′′ (b)

[λ∗′ (b)]2
(61)

Let ψ̂B (x) = Ŝ (x) − ψ̂S (x). Doing total differentiation twice on ψ̂B (λ∗ (b)) = b, we have
λ∗′′ (b)

[λ∗′ (b)]2 = − ψ̂B′′ (λ∗(b))
ψ̂B′ (λ∗(b)) , where
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ψ̂B
′ (λ) = − (1 − λ) sHf (λ) + (cH − cL) [1 − F (λ)]

ψ̂B
′′ (λ) =f (λ) [sH − cH + cL] − (1 − λ) sHf ′ (λ)

Therefore, equation (61) holds if and only if

f (λ∗ (b))
1 − F (λ∗ (b)) ≤ − ψ̂B

′′ (λ∗ (b))
ψ̂B′ (λ∗ (b))

ψ̂B
′ (λ∗ (b)) must be positive; if not, there exists x < λ∗ (b) in which ψ̂B (x) = b, which contra-

dicts the definition of λ∗ (b). When ψ̂B
′ (λ) = − (1 − λ) sHf (λ) + (cH − cL) [1 − F (λ)] ≥ 0,

f(λ)
1−F (λ) ≤ − f(λ)[sH−cH+cL]−(1−λ)sHf

′(λ)
−(1−λ)sHf(λ)+(cH−cL)[1−F (λ)]

⇐⇒ f (λ) [1 − F (λ)] ≤ [1 − F (λ)] (1 − λ) f ′ (λ) + (1 − λ) [f (λ)]2

⇐⇒ 1
1−λ ≤ f ′(λ)

f(λ) + f(λ)
1−F (λ)

⇐⇒ − d
dλ

log (1 − λ) ≤ d
dλ

log f (λ) − d
dλ

log (1 − F (λ))

⇐⇒ d
dλ

log
[
f(λ)(1−λ)

1−F (λ)

]
≥ 0

⇐⇒
[

1−F (λ)
f(λ)(1−λ)

]
× d

dλ

[
f(λ)(1−λ)

1−F (λ)

]
≥ 0

Since f(λ)(1−λ)
1−F (λ) > 0, the last line is equivalent to d

dλ

[
f(λ)(1−λ)

1−F (λ)

]
≥ 0.

D.2 The Monopsonist’s Screening Problem

The mechanism implementing the buyer-optimal SB allocation is also a solution to the
problem of a monopsonist who can offer a menu of trade contracts to screen the seller.
However, although the mechanism that attains the buyer-optimal SB allocation is unique,
the solution to the monopsonist’s problem is not necessarily unique. This is because it is
possible that the monopsonist can obtain the buyer-optimal second best utility (b̄) while
giving the seller a lower expected utility than what she gets under the buyer-optimal SB
allocation.

In this section, we specifically study the monopsonist’s screening problem in our model.
We fully characterize the set of optimal screening mechanisms (which includes the mecha-
nism in Proposition 2 for b = b̄) and show that the quantity schedules of all the optimal
screening mechanisms are still always threshold schedules. Moreover, this property holds
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even if f/ (1 − F ) is not monotonic.
Henceforth, assume that F still admits a density f , but f/ (1 − F ) is not necessarily

increasing. The monopsonist’s problem is

max
q(·),t(·)

∫ 1
0 U

B (λ) f (λ) dλ, s.t. (ICS) and (IRS).

Using a similar argument to Lemma 1, the problem becomes

max
nondecreasing q(·)

∫ 1

0
ψB (q (λ) , λ) dλ. (62)

Lemma 17. If q∗ (·) is a solution to program (62), q∗ (·) must be a threshold schedule.

Proof. Suppose that q∗ (·) is a solution to program (62). It is straightforward to observe that
the properties in Lemma 5 hold. Therefore, we only have to prove that λ2 = 1. Suppose, for a
contradiction, that λ2 < 1. There must then exist λ3 > λ2 such q∗ (λ) = λ for all λ ∈ [λ2, λ3].
Pick some ε > 0 such that ε < max {λ3 − λ2, λ2 − λ1}. For any x ∈ [λ2 − ε, λ2 + ε], define
the schedule q̃x (·) as follows:

q̃x (λ) =


x , if λ ∈ [λ1, x)

λ , if λ ∈ [x,λ3)

q∗ (λ) , if λ /∈ [λ1, λ3)

(63)

Note that q̃x (·) is also a nondecreasing schedule. Next, let ξ (x) :=
∫ 1

0 ψ
B (q̃x (λ) , λ) f (λ) dλ

be the objective value under schedule q̃x (·). Therefore,

ξ (x) =
∫
λ/∈[λ1,λ3)

ψB (q∗ (λ) , λ) f (λ) dλ+ +
∫ λ3

x
λsL︸︷︷︸

ψB(λ,λ)

f (λ) dλ

+
∫ x

λ1

(
xsL + (x− λ) (sH − sL) − (cH − cL) 1 − F (λ)

f (λ)

)
︸ ︷︷ ︸

ψB(x,λ)

f (λ) dλ

The first two derivatives of ξ (x) are

ξ′ (x) = − (cH − cL) [1 − F (x)] + [F (x) − F (λ1)] sH .

ξ′′ (x) =f (x) [(cH − cL) + sH ] > 0.
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Since q̃λ2 (·) is the optimal schedule q∗ (·), x = λ2 must be a local maximizer. However ξ′′ (λ2)
is strictly positive — contradiction. Therefore, λ2 must be 1.

By Lemma 17, we can restrict our search for the optimal quantity schedule to threshold
schedules. Under the threshold-x quantity schedule, the value of the objective function is

ψ̂B (x) :=
∫ x

0
ψB (λ, λ) f (λ) dλ+

∫ 1

x
ψB (1, λ) f (λ) dλ

=
∫ 1

0
λsLf (λ) dλ +

∫ 1

x

[
(1 − λ) sH − (cH − cL) 1 − F (λ)

f (λ)

]
f (λ) dλ. (64)

Let R (λ) := (1−λ)f(λ)
1−F (λ) .

Proposition 8. The monopsonist’s optimal menus of contracts is

(q∗ (λ) , t∗ (λ)) =

(λ, λcL) , ∀λ < λB(
1, C

(
1, λB

))
, ∀λ ≥ λB

,

where λB ∈ arg max
x

ψ̂B (x). The buyer’s equilibrium expected utility is ψ̂B
(
λB
)
.

If λB ̸= 0, 1, then λB must satisfy R
(
λB
)

= cH−cL

sH
.

• If R (λ) is strictly decreasing in λ for all λ ∈ (0, 1), then λB is either 0 or 1.

• If R (λ) is strictly increasing in λ for all λ ∈ (0, 1), then λB is unique, and the optimal
schedule is the pointwise optimal schedule — i.e., q∗ (λ) = arg maxq ψB (q, λ) for all λ.

The first-order condition of maxx ψ̂B (x) is R (λ) = cH−cL

sH
; thus, this is a necessary

condition for an interior optimal threshold. If R (λ) is decreasing, ψ̂B (x) is quasiconvex,
hence leading to a corner solution. In contrast, if R (λ) is increasing, the pointwise optimum
of ψB (·, λ) is nondecreasing, which means that it is the unique optimum.
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