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Abstract. Understanding occupant-building interactions helps in per-
sonalized energy and comfort management. However, occupant identifi-
cation using affordable infrastructure, remains unresolved. Our analysis
of existing solutions revealed that for a building to have real-time view of
occupancy state and use it intelligently, there needs to be a smart fusion
of affordable, not-necessarily-smart, yet accurate enough sensors. Such a
sensor fusion should aim for minimalistic user intervention while provid-
ing accurate building occupancy data. We describe an occupant detection
system that accurately monitors the occupants’ count and identities in a
shared office space, which can be scaled up for a building. Incorporating
aspects from data analytics and sensor fusion with intuition, we have
built a Smart-Door using inexpensive sensors to tackle this problem. It
is a scalable, plug-and-play software architecture for flexibly realizing
smart-doors using different sensors to monitor buildings with varied oc-
cupancy profiles. Further, we show various smart-energy applications of
this occupancy information: detecting anomalous device behaviour and
load forecasting of plug-level loads.

Keywords: Smart Door, Smart Building, Energy Saving, User Comfort,
Electrical Energy.

1 Introduction

Designing new “green” buildings and retrofitting existing buildings with green
technologies pose numerous research challenges but essential for society. Two of
the main motivations for this transition towards a smarter and greener electricity
grid have been capping total usage or flattening the peak and reducing the
carbon footprint and costs. This has sparked new interest in developing smarter
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Table 1. Approaches to tracking occupancy using various sensors and their fusion

Sensor Advantages Disadvantages
Occupancy

Information

Passive
Infra Red

Cheap;
Scalable; RT Re-
sponse; No
User Intervention

When users become station-
ary (eg., working on PC) room
occupancy detected as NIL

Presence of oc-
cupants in room

CO2 [3]
Cheap; User inter-
vention is not re-
quired; Scalable

Response is not real-time; Ac-
curacy reduces when there is
proper air circulation

Presence of oc-
cupants in room

Radio
Frequency
Identification

Accurate when
proper measures
taken;Real Time
response; No user
intervention req.

User should carry RFID tag;
Tags must not be kept near
metallic objects; Accuracy de-
pends on speed of walking[5]

Count and iden-
tity

Face
Recognition

[9]

No user Interven-
tion required

Computationally challenging;
Expensive; Accuracy is less
for moving objects; Not eas-
ily scalable; Requires 2 cam-
eras to detect Entry and Exit

Count and iden-
tity

Sound
Detection [10]

Cheap; Real-Time
Response;
Scalable

Not suitable for environments
like labs and libraries

Presence of oc-
cupant in room

PIR+Reed[1] Cheap; Scalable
The sensor fails to detect oc-
cupancy in a multi user envi-
ronment

Presence of oc-
cupant in room

WiFi+Lan+
IM+Calender

+Access
Badge[6]

Cheap;Scalable

Accuracy reduces when users
don’t comply to the rules of
the system, WiFi can’t distin-
guish a person who is right
outside the room, will be de-
tected as inside the room

Count and iden-
tity
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buildings, which can sense instances of undesired energy usage and intelligently
take decisions towards curbing such occurrences. For instance, smart buildings
may use sensors to track occupants and opportunistically disconnect loads in
empty rooms; we use the term “load” to refer to any appliance or device that
draws electricity.

Smart buildings inherently possess knowledge about their energy consumption
at any given instant. Considering that smart meters that record aggregate power
at fine granularity with high accuracies are ubiquitous in modern residential and
commercial environments, it can be assumed that most new buildings will pos-
sess this level of smartness. What can accentuate the smartness, is the ability to
calculate how much energy should optimally be consumed, given the various pa-
rameters (like temperature, relative humidity, etc.) that influence energy usage.
One such parameter is the occupancy state of the building: the electricity de-
mand of a building is driven by its occupants. Having real-time knowledge about
the occupants adds to the building’s intelligence significantly. This information
can be put to use not only for energy savings but also for other important ap-
plications ranging from knowing the health of appliances to priority evacuation
of children and the elderly in times of emergencies.

A review of existing occupancy monitoring systems shows that even the most
accurate of them have certain bottle-necks. For example, with biometric iden-
tification systems, which score well on accuracy, people have to stop at a place
to record their entry. This might be acceptable for a one-time check-in into a
building. However, for room-level occupancy monitoring, the system becomes
inconvenient due to the the fact that occupants need to register their identity
every time they enter/exit the room. Another familiar occupant monitoring sys-
tem is the Active RFID based system. RFID systems are generally used for
access control in buildings, but it also logs the occupant identity which can be
used to monitor occupancy. Active RFID systems, unlike passive RFID systems,
do not require a stop and swipe mechanism. They are also known to have high
accuracies. But in order to obtain high accuracy users need to carry the tag
at all times, they also have to be careful not to keep the tag next to metallic
objects and be wary of the speed with which they walk across the RFID reader.
Moreover, RFID readers are expensive and can’t be deployed in each and ev-
ery doorway of the building. In addition, these systems are deactivated during
evacuation of buildings so that the access control of the building doesn’t hinder
the free flow of occupants. If these systems are disabled during evacuation then
finding who and how many are still inside the building becomes troublesome. In
general, sensors need to be examined against characteristics such as, accuracy,
cost, reliability, interruption/inconvenience caused, computational complexity
and the occupancy data they help infer (how many, who and where). Table 1
summarizes the pros and cons of existing occupancy tracking systems along with
the occupancy questions they answer. Given this, it is clear that for a building
to have a real-time view of occupancy state, and use it intelligently, there needs
to be a smart fusion of cost-effective, not-necessarily-smart, yet accurate-enough
sensors. Such a sensor-fusion system should aim to respect the users’ natural
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behavior by allowing for minimalistic user intervention while providing accurate
occupancy data about the building. [7] talks about a probabilistic approach of
identifying occupants in a home environment, focuses on using height sensors
with the main goal as tracking the occupants. Our work, although has used few
similar sensors, focuses more on the energy saving application of the occupant
data and has been implemented using Machine Learning techniques in a lab en-
vironment where the number of users are much larger than a home environment.
These considerations prompted the work reported in this paper which lead to
the following contributions:

Firstly, we propose and report on the experiences with a set of novel solutions
to the occupancy tracking problem:
– Incorporating aspects from data analytics and sensor fusion, combined with

intuition, we have developed a smart door to tackle the occupancy detection
problem.

– The experience with the building of multiple versions of the smart door lead
to the design and creation of a plug-and-play architecture to flexibly address
the door’s controller’s design and construction.

– We have installed the whole system in our lab’s premises and have gathered
extensive experiential data. We report on the occupancy prediction accu-
racy results, offer a comparative analysis of the operation and usefulness of
different combinations of sensors and draw inferences that will be useful for
researchers and practitioners alike.

It is important to point out that the smart door design along with embellishments
such as a personalized appliance control system can help with matters related
to occupancy, such as “how many are in a given space” and “who is in a given
space”.

Secondly, with occupancy-related data in hand, in conjunction with smart
meter data, we show how some interesting energy-related practical questions
can be answered:
– How can smart meter data be used to detect the occurrence of “unusual”,

“abnormal” or “unexpected” energy usage profiles?
– How can knowing occupant identities help forecast plug-level load better?
– Can knowing “who” help give personalized actionable energy savings advice?

These experiences clearly demonstrate that occupancy matters!

2 The Smart Door

In this section, we describe the Smart Door; a system capable of providing oc-
cupant identities and count, in a room. The smart door achieves occupancy
identification and counting without any user interaction, supports easy sensor
integration and at the same time is cost effective. The design philosophy of smart
door is to enable its user to add sensors easily based on the accuracy required for
the occupant detection/identification; thanks to the plug and play architecture
described in Section 4. The base version of smart door has two LDR-laser pairs
for occupancy counting and detecting direction of movement. The sequence of
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lasers being cut determine if an occupant is entering or exitting a room. Hence
the base version of the Smart Door was capable of only keeping the real-time
occupant count and not the user identification. Further versions have both para-
phernalia and capability to infer identity of the occupants too. The plug and play
architecture helped to experiment with multiple occupant identification sensors
used to measure height, weight and skeletal parameters and are detailed in Sec-
tion 2.1.1, 2.1.2 and 2.1.3 respectively. Their accuracies with various learning
algorithms are also detailed in the section. We believe that the smart door can
be implemented under $100 when manufactured in large quantities, making it a
cheap system for building wide implementation.

2.1 Occupant Identification

We believed that sensing signatures from the human body, when people walked
through the smart door, could be used to uniquely identify people. To achieve
cost effectiveness, only signatures which could be sensed during both entry and
exit, using a single sensor, were considered.

When a person passes through the smart door, his/her signature is obtained
by the controller board, using the sensor. A Raspberry Pi board running Linux
is used as the controller board. A tablet is deployed at the entrance using which
people can manually tag their identity as they enter. The measured signature
along with the tagged identity information is used as training data for a super-
vised learning algorithm. The algorithm, after sufficient training, would then be
able to predict occupants’ identities based on their body signature. The entire
system, when used with a height sensor is designed as shown in Figure 1. Other
versions maintain the same design except for the sensor, which is switched on
depending on what body signature is being sensed.

Fig. 1. Occupant Identification: Height

The learning algorithm used for our implementation was Support Vector Ma-
chines (SVM). The prediction results for each individual signature (height, skele-
tal parameters and weight) and a comparison of SVM with Naive Bayes classifier
is presented in Section 2.3.
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2.1.1 Occupant Identification: Height. Height was chosen as the first sig-
nature that was sensed, since it could be easily sensed and does not vary signif-
icantly over time, in adults.

An ultrasonic sensor is mounted on the smart door, which gives the distance
to any object placed under it. The distance values are recorded between two
subsequent laser obstructions. We take the minimum of all the recorded values,
since the minimum distance from the ultrasonic sensor is when the beam hits
the topmost point of the head of a person and reflects back. From this obtained
minimum distance and the height of the smart door frame, the height of the
person is estimated.

2.1.2 Occupant Identification: Weight. A weight mat can be used to mea-
sure weight even when a person is walking, and moreover only a single sensor
is required for measurement during entry and exit. Although it can be argued
that the weight measured for a moving object will be less when compared to a
static measurement, it is important to note that the goal is to obtain a unique
signature. This goal is still achieved considering that the difference in weight
propagates through the data.

A weight mat was designed by attaching strain gauges underneath a wooden
board - four gauges fixed near the corners of the board. The strain on a strain
gauge produces a change in resistance and a Wheatstone bridge circuit can
be used to measure this. Proper calibration of all four gauges can thus give
the weight of a person standing or walking on the board. This board is placed
between the legs of the walk-through frame of the Smart Door to obtain weights
of people as they enter/exit the room.

2.1.3 Occupant Identification: Skeletal Parameters. Adhering to the
design philosophy of choosing signatures which could be sensed in both directions
using a single sensor, we decided to get data about occupants’ skeletal structures.
The Microsoft Kinect sensor, which uses its depth sensing technique to obtain
these parameters, was used.

As shown in Figure 2 [8], the Kinect can deduce the skeletal structure for
a person by obtaining the positions of about twenty joints of the body, using
its infrared and depth sensors. In order to obtain signatures useful to uniquely
identify humans, skeletal points that don’t change much, across multiple sensing
runs, were to be selected. A subset of points in the torso were identified as being
the most consistent: shoulder width, torso length and hip width were picked as
the signatures.

The Kinect was kept at a height, few feet away from the entrance into the
room, to capture the signatures when people entered and exited the room. As
with the height measurement, the Kinect values were record between subsequent
laser cuts of the smart door.

2.2 Results

The data acquired comprised of around 5000 records - signatures along with the
tagged identity information collected during entry and exit. The data set for all
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Fig. 2. Skeletal structure obtained from Kinect [8]

the five signatures taken individually - height, weight, shoulder width, hip width
and torso length were put through an 10-fold cross validation using an SVM
classifier as well as a Naive Bayes classifier and the accuracy was measured. The
results are shown in Figure 3.

Fig. 3. Prediction Accuracy: (a) Height (b) Skeletal Parameters (c) Weight

Kinect parameters taken individually fared poorly (30%). Height individually
achieved double the accuracy of the Kinect (60%) and weight fared even better
than height with an accuracy around 70%. One worthwhile observation is that
the low-cost height and weight sensors fared better in comparison to the costlier
Kinect sensor (it can, although, be argued that the Kinect sensor can be put to
a variety of other uses like face recognition, voice recognition, etc. but these do
not adhere to our design philosophy of a single sensor sensing for both entry and
exit). It was also observed that for the data set we had, SVM had a clear edge
over Naive Bayes in terms of prediction accuracy.
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3 Sensor Fusion

The results obtained in Section 2 indicate that individual signatures taken from
users were not necessarily unique to the individuals. However, we hypothesized
that multiple such signatures taken from individuals and fused together had the
potential to increase identification accuracy. In this section we show how this
accuracy significantly went up when intelligent sensor fusion was performed.

3.1 Results

The fusion of height data acquired from the ultrasonic sensor and the skeletal
data obtained from the Microsoft Kinect provided much higher accuracy than
they provided individually (Figure 4).

Fig. 4. Prediction Accuracy: Height and Kinect features

When multiple combinations of height and skeletal features are examined, an
interesting trend was noticed: any combination of intuitively correlated features
leads only to a small increase in accuracy. In order to mathematically examine
this hypothesis, Pearson correlation was applied to combinations of two features.
Pearson correlation is used to show how strong the association is between two
variables. It ranges from +1 (indicating direct proportionality between variables)
to -1 (indicating inverse proportionality). A correlation of 0 indicates that the
two variables are independent of each other.The results are shown in Table 2.

Table 2 indicates that the highest correlation is between the hip-width and
the shoulder-width (0.733). Table 3 shows how their combination performs in
terms of occupant identification accuracy.

The result indicates that as a virtue of the high correlation, no additional
information is added to the model for it to improve. In order to test if less
correlation meant higher accuracy, we calculated the correlation between height



Fusing Sensors for Occupancy Sensing in Smart Buildings 81

Table 2. Correlation between features

Feature 1 Feature 2 Pearson Correlation
height weight 0.599
height hip-width -0.008
height shoulder-width 0.034
height torso-length 0.173
weight hip-width 0.066
weight shoulder-width 0.088
weight torso-length 0.385

hip-width shoulder-width 0.733
hip-width torso-length -0.207

shoulder-width torso-length -0.152

Table 3. Prediction Accuracy: hip-width, shoulder-width

Features Accuracy%
hip-width 30.8

shoulder-width 30.9
hip-width, shoulder-width 31.0

and hip-width which are almost uncorrelated (-0.008). As can be seen from
Figure 4 the combination accounts for an accuracy of 64%.

In order to validate our original claim that adding sensors to the occupancy
detection system makes it more intelligent, we tested how weight performs when
combined with height. Figure 5 shows that a fusion of these two human pa-
rameters increases prediction accuracy to 87.1%. What makes this result even
more exciting is the fact that a simple combination of two low-cost and readily-
available sensors produces such high accuracy.

Fig. 5. Prediction Accuracy: Height and Weight

This performed extremely well considering that the two parameters have a
relatively high correlation (0.59). Analyzing this led to multiple plots like the one
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shown in Figure 6. The first plot shows the probabilities with which an individual
is identified among a certain subset of people with similar heights by the smart
door described in Section 2. It becomes evident that it is hard to distinguish
the individual uniquely. However, as shown in the second plot, for the same
subset of people, by using weight as a metric for identification the system can
identify them uniquely. Thus, along with correlation, it becomes important for
the sensors fused to be able to understand the distribution of features among the
occupants. This led to the formulation of a software architecture that seamlessly
incorporates these learnings in order to monitor occupants for a room of any
occupancy profile.

Fig. 6. Distribution of heights and weights for a subset of people

4 The Plug and Play Architecture

While installing various sensors to the smart door, we learnt a few key lessons.
First, the accuracy of the smart door’s prediction improved when an additional
sensor was added, which meant that there needed to be support for adding
multiple sensors to the setup. Second, the task of adding a new sensor can be
very tedious and user-unfriendly. In order to create a system which, from the
users’ perspective, was a plug and play model where they could just plug in a
sensor to the controller and hope to achieve improvement in prediction accuracy,
we developed a scalable software architecture for the smart-door.

The foundation for such a model was based on two key ideas; first, the user
should not have to make any changes in the code on the controller and second,
any added sensor should seamlessly fit into the system and start improving the
learning model and hence increase prediction accuracy.

4.1 Architecture

The Smart-Door has a master node to which all sensors(slave nodes) are wired
directly or connected wirelessly. The master node defines the actions that the
associated sensors must perform by exchanging messages with them. The master
is responsible for detecting entry/exit events, framing meaningful messages for
the slave nodes and reporting failures in the nodes to the administrator. The
master also collects data from all the local nodes and sending it to a common
database.
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A slave node consists of a sensor that is attached to a micro controller board
capable of storing sensed readings and performs local node aggregation. There
are two kinds of slave nodes associated with the master: local nodes, which
receive commands and sends data to master through wired connections and
remote nodes, which performs message and data exchange with the master over
a Wi-Fi network. Figure 7(a) gives a schematic detailing of these connections.

Fig. 7. (a) shows the schematic for sensor connections to controller. (b), (c), (d) il-
lustrate formats of RCRD, RST and SND messages respectively, exchanged between
network sensor and the controller.

A configuration file exists on the master which contains a list of the local and
remote nodes and their locations (IP address in case of remote nodes and pin
numbers in case of local nodes). Whenever a new sensor is added to the system,
the administrator adds a new entry to the configuration file stating the type of
sensor and its location. Thus, no change is made to any code. Internally, the
master reconfigures and automatically incorporates the new sensor into the mix.

4.2 Messaging Protocol

A unique messaging protocol is designed in order for the master to communicate
with the slave nodes. The messaging protocol is different for the local nodes and
remote nodes. The activity diagram for the master and the state diagram for
the slaves are shown in Figures 8 and 9.

4.2.1 Local Node Messaging
– Upon detecting a possible entry/exit event (recorded by emitting sensor 1

(Section 2.1)), the master sets the RCRD pin HIGH on the local nodes. This
causes an interrupt in the nodes, which then starts data sensing.

– A possible entry/exit event may either be successful (recorded by emitting
sensor 2) in which case, the RCRD pin is set LOW and the SND pin is set
HIGH, which is an instruction to the node to calculate an average of recorded
values and send the data to the local node manager via the serial interface.
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Fig. 8. Activity diagram for controller

– If the possible entry is not successful, i.e., it times out, the RCRD pin is set
LOW and a RST pulse is sent which clears the data structures on the local
nodes.

– In case of a successful entry/exit event, the host inserts an entry into the
database table with the unique session id and the timestamp. The data re-
ceived by the local node manager is then updated in the the table.

4.2.2 Remote Node Messaging
– A possible entry/exit event triggers the master to frame a RCRD message

(Figure 7 (b)) which is transmitted to the client ports on all the remote
nodes. This prompts the remote sensors to begin storing sensed data.

– If the entry/exit event is successful, the master frames a SND message (Fig-
ure 7 (c)) which contains details about the common database where the
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Fig. 9. State diagram for local and network sensors

sensor values are stored. The remote node then calculates the average and
updates the entry in the database table.

– In case of a timeout event, a RST message is sent (Figure 7 (d)) which clears
all the sensed data stored in the remote node.

All remote node messages are sent over Wi-Fi, thereby using existing infras-
tructure.

Since most low cost processing boards do not have a real time clock on them, a
unique session id is used for synchronization instead of the conventional times-
tamp synchronization. The time of the event is marked by the host which is
Network Time Protocol synchronized. Thus, exact times of entry/exit events
are recorded with high precision (to the second).

4.3 Database Design

Considering the goal of the smart door is to achieve maximum scalability while
allowing minimal user intervention, another design choice that has been made
is the use of a NoSQL database [12] instead of a traditional relational database
model. With the addition of sensors, we wanted horizontal scalability and high
write operation performance, both of which were achieved very well by the open
source NoSQL database, MongoDB. This made it the database of choice for the
software architecture.

4.4 Cost Considerations

From the results presented, the smart door is able to predict identities of people
at fairly high accuracy and is scalable owing to the plug and play architecture,
enabling fusion of additional sensors with ease. It is interesting to analyze the
deployment cost of such a system including only the most essential sensors which
were identified from the experiments. Such a minimalistic Smart Door comprises
of a height sensor, a weight sensor, two Laser-LDR pairs, an Arduino board, and
two low-cost Android Tablets. From Table 4 we can see that these components
amount to around $150 and this cost can be further cut down upon mass produc-
tion. At this cost, the system can be deployed at all doors in a building without
incurring much. The applications that arise from deploying in such a scale are
appealing and described in the following section.

5 Applications Enabled by Occupancy Information

The fusion of occupancy data and electricity consumption data can enable a
rich set of applications necessary for smart buildings to become smarter and
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Table 4. ComponentCost for Smart Door

Component Cost ($)

Ultrasonic Sensor 3

Weight Sensor 10

2 Laser-LDR Pairs 10

Arduino Board 25

2 Android Tablets 100

greener. In this section we explore some applications which use this fused data,
focusing on cases other than the conventional ones like load forecasting of HVAC
loads [2] [4] and room automation – in order to provide insights into other
important energy saving applications. The applications described here stem from
our experiences with buildings at IIT Bombay.

5.1 Auxiliary Sensing and Actuation for Energy Applications

5.1.1 Smart Meter Setup. The smart meter’s ability to provide high accu-
racy consumption data at fine frequencies makes it an important sensor. We use
three EM6400 smart meters (named LSM-A, LSM-P, and LSM-F respectively)
in order to understand the consumption profile of our lab. Table 5 shows what
appliances’ usage the respective smart meters monitor.

Table 5. SEIL smart meter connection and device profile

LSM-A
Phase 1 AC 1 & AC 4
Phase 2 AC 2
Phase 3 AC 3

LSM-P Phase 1, 2, 3 Computers and Wall Sockets

LSM-F
Phase 1 Light Arrays and Fans
Phase 2, 3 Null

5.1.2 Relay Control. The fans, lights and air conditioners in the lab are
controlled using a relay system. Occupants turn ON/OFF their devices after
logging into a web portal, which sends actuation messages to the relays. The
resulting knowledge of who uses what devices allows for the appliance preferences
of the occupants to be learnt.

5.2 Anomaly Detection

The plot in figure 10 compares the electricity consumption profile of our academic
building on a day in which one of the 185 air conditioners in the building was
malfunctioning, to the day on which the anomalous device was rectified. The
exact details the anomaly are discussed later in this section. When we examine



Fusing Sensors for Occupancy Sensing in Smart Buildings 87

the peak power and total energy consumption, shown in Table 6, on these days,
we notice that on the day of the AC anomaly, the peak was higher by 31 kW
and the energy consumed was higher by almost 222 kWh. Considering that our
electricity usage is charged at $0.10/unit, we could have saved $22.2/ day had the
anomaly been identified earlier. This is admittedly very small compared to the
average electricity bill for the academic building, which is around $13300/month.

Fig. 10. Comparison of an anomalous day to a normal day

Considering the relatively negligible saving, identifying the anomaly might
not seem like an issue worth addressing. However, the seriousness can be realized
when we understand that in a building with a large number of such AC units (185
in our case), with each room fitted with about 3-4 of them, these anomalies go
easily undetected. The primary cause for this is the fact that the non-anomalous
ACs in the room compensate for the lack of cooling by the malfunctioning one.
Now, when we look back at the problem and realize that an excess usage like
this might go unnoticed for months, as it has been in our case before we installed
smart meters, we realize that a single malfunctioning AC accounts for almost
5% ($666) of the monthly electricity bill for the building.

Table 6. Load profile – on an anomalous day (Jul 10) compared to the day it was
rectified (Jul 11)

Date Peak Power (kW) Energy Consumed (kWh)
July 10 204.98 2975.87
July 11 173.93 2753.02

Smart-meters have been put to use, beyond their conventional usage [11] of
monitoring electricity consumption, to detect such anomalous behavioral pat-
terns. If the plot for the anomalous device is examined, we notice periodic spikes
in the power drawn. It has been found that these spikes are due to a commonly
occurring fault in ACs: the compressor overload trip, which is caused by com-
pressor malfunction or non-function. In this section we provide an algorithm
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that successfully detects such an occurrence, using the smart meter data for the
building, and isolates the fault to a small set of devices.

In order to first identify the anomaly in real time, a Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm is run over a 15
minute window of data. DBSCAN is a scalable and almost linear algorithm
which identifies clusters in large spatial data sets using only one input parameter
and gives out information about outliers in the same. As an input, the algorithm
takes the magnitude of all the power values that are observed within the interval
of interest. The output is a cluster of step-ups that are unusual for the profile.
It is assumed that no two devices turn on at the same instant (1 second as per
our smart-meter’s resolution).

input : Power data (per second), Power-surge threshold (T), minimum
neighbor distance (min dis), minimum points for a cluster (min pts)

output: Unusual clusters of power-surges based on magnitude
Calculate power-surges based on consecutive data points;
Filter them based on T, store in list PowerSurge;
Calculate global mean and global std deviation of list PowerSurge;
Run DbScan (min dis,min pts) on list PowerSurge;
for cluster with mean > (global mean+global std deviation) do

Mark the cluster as Unusual;
end

Algorithm 1. Clustering Power-Surges with unusual magnitudes

Once the spikes are identified, the anomaly is isolated to a small set of devices.
The flowchart in Figure 11 succinctly describes the fault localization algorithm.
If a spike is detected by the peak detection algorithm, the spike is evaluated
to find its phase information. This information is passed to a process that uses
the occupancy of the building in the relevant 15-minute interval and the set of
devices that those occupants are known to have used in the past (learnt over a
period of time using the system discussed in Section 4.1.2) to decipher which
given appliances on that phase are active.

In our experience, the output list generally contains only a set of 3-4 devices.
Thus, adding occupancy information leads to quick, almost real-time, identifica-
tion of anomalous devices. This algorithm has been put to use in the academic
building and has helped identify five major anomalies in the two months that it
has run.

5.3 Load Forecasting: Plug-Level Loads

In most offices and academic buildings, most of the loads are at the plug-level.
These loads, like desktop computers, laptops, printers and copiers are considered
to consume significantly lesser energy than HVAC loads. But our experiences in
the lab, which closely parallels an office space, taught us that this was not com-
pletely true. Figure 12 shows the plot of the energy consumed by various devices
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Fig. 11. Algorithm for detecting faulty devices

in this environment. Although the expected behavior of air conditioners con-
suming significantly higher power than the other loads is noticed in the summer
months (April, May, June), during the winter months, the plug-level usage be-
comes comparable to the cooling load, with plug-level consumption being higher
in the month of January. With this trend we expect that for at least half the
year, plug-level energy consumption is of prime importance. It is also worth not-
ing that in developing countries like ours, the majority of office spaces lack air
conditioning in which case their primary usage comes from plug loads.

These findings motivated us to research how the accuracy of predicting plug-
level load is affected by occupancy information.

5.3.1 Methodology. Since we had accurate occupancy and electrical con-
sumption data only for 25 days at the time of experimentation, the time intervals
for learning/prediction was chosen as 15 minutes so as to have more records for
the experiment. The features considered for learning and their representation is
as follows:
– Time of Day - A feature vector representing every 15th minute of the day
– Week End/Week Day - Binary feature representing if its a weekend or week-

day
– Who - A feature vector of size k is maintained for each time interval. k

denotes the total number of unique persons present in the occupancy records.
Each cell indicates the amount of time a person was present in the room, for
that interval, normalized to unity. For example, for the 15 minute interval
of 21:00 -21:15, if Person1 was inside the lab for half the interval time, then
his feature value would be 0.5. Similarly, if Person2 was present for 75% of
the time, his feature value would be 0.75.
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Fig. 12. Month-wise Energy Consumption of Our Lab

– Occupancy Count - Since, a room’s occupancy count can change within a
time interval, average occupancy count of the room is taken as a feature.
This is computed using occupancy count numbers and corresponding time.

In order to forecast the load requirement, we experimented with two well
known models: Support Vector Regression (SVR) and Decision Tree Regression
(DTR). The performance of the model was judged using the CV-RMSE (Coeffi-
cient of Variation of Root Mean Square Error) which measures the difference in
values predicted by the model to the observed values.

5.3.2 Results. Different combinations of the features described in the previ-
ous section were supplied to the forecasting models. The performance is detailed
in Table 7.

Table 7. Plug-level load forecasting results

Interval
Weekday/Weekend

Time of Day
Who

Occupancy
count

DTR
CV(RMSE) %

SVR
CV(RMSE) %

15 ✓ ✓ 21.94 18.40
15 ✓ ✓ 25.08 28.1
15 ✓ 30.36 29.12

One behavior observable from the table is that greater the occupancy informa-
tion (count, identity) the building has, the better it is able to forecast its energy
requirements. The model performs best, with only a 18.4% error, when the iden-
tities of the occupants are available. This indicates that a building which knows
its occupants’ identities performs load forecasting of plug-level loads 36.8% more
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accurately than a building that just uses calendar information to do the same,
thus making it smarter.

6 Conclusions

We have reported on a repertoire of techniques contributing to occupancy detec-
tion and using the detected/inferred information for better energy management.
Our design and implementation choices were driven by the following considera-
tions:
– Cost effectiveness: For example, using occupant signatures which could be

sensed using the same sensor during both entry and exit.
– Minimal User Intervention: The occupants should be allowed to freely walk

in and out of a room and the system should still be able to monitor the
occupancy.

– Resilient to Errors Thereby giving High Accuracy Prediction: Given the na-
ture of office environments, errors like electromagnetic interference were re-
solved and accuracies as high as 87.1% were achieved.

– Extensible Architecture: Allow seamless addition of sensors, in a plug-and-
play fashion, into the mix of existing sensors to improve the functional-
ity/accuracy of the system.

It is clear that a single solution will not fit all occupancy detection scenarios. For
example, since many of the actions triggered following occupancy detection are
themselves prone to further validation, (for examples see Section 5), depending
on the applications at hand, some amount of inaccuracy can be tolerated in
occupancy detection and that can be exploited in trading-off between design
choices. It is in this context that the flexible architecture described in this paper
has a significant role to play.

Incorporating the lessons learnt in sensor fusion from Section 3.1, we are
currently building a sensor-recommender-tool that aids users in selecting the
best set of sensors for their room profile and intended purpose of deployment.
Sensor recommendations are made to the user based on how the features of the
room’s occupants are distributed, existing sensors on the smart door, the desired
accuracy and the required cost.

In our future work we also plan to look at further applications, including some
that are unrelated to energy management, but are related to smarter building
management, such as those that are necessary for emergency management and
disaster recovery.
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