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Abstract— Collisions between rigid bodies are impulsive
events, meaning they create near-instantaneous, finite disconti-
nuities in the velocity state of the dynamic system. If velocity
is assumed to be continuous, that requirement may come into
conflict with the desire for bodies to not interpenetrate, or with
Coulomb friction (creating a condition known as the Painlevé
paradox). This paper presents a contact-implicit framework for
trajectory optimization using direct collocation that combines
an unplanned impulsive contact model with an implicit, high-
order numerical integration scheme. We demonstrate that this
framework can resolve problems that other implicit formu-
lations cannot, namely elastic or partially elastic collisions,
and impacts without collision – the established resolution of
the Painlevé paradox. We then evaluate its applicability to
legged robotics problems and test its ability to discover the
intricate sequence of varied collision types necessary to execute
a skateboarding trick.

I. INTRODUCTION

Contact allows robots to interact with objects and terrain,
making it an essential component of almost any useful task
they might be expected to perform. Robots are often mod-
elled as tree-like systems of rigid bodies, which allows their
dynamics to be described using a finite set of generalized
coordinates and associated ordinary differential equations
(ODEs) [1]. However, contact introduces discontinuities in
the directions of allowable motion, corresponding to unilat-
eral inequality constraints that preclude the use of numerical
methods for simulating ODEs. For the assumption of rigidity
to hold, collisions must be impulsive: relative motion must
cease at the instant of contact, under the action of infinitely-
large forces.

Modelling discontinuity is challenging in the context of
direct trajectory optimization, where the use of constrained
nonlinear programming prohibits the use of conditional state-
ments. Consequently, collisions are often modelled using
continuous-velocity approximations. This allows the velocity
to evolve from its value at the moment of impact to zero
over one timestep, as shown in Fig. 1. If implicit numerical
integration is used, a body is not guaranteed to have its
true final velocity at the moment of impact. This makes
it impossible to model partially elastic collisions reliably,
as the restitution law is applied at the velocity level. These
problems can be avoided by using partly-implicit integration
instead [2], but that sacrifices the accuracy and stability for
which implicit integration is typically favoured.

An option that preserves velocity discontinuity is the
hybrid dynamic model or multi-phase approach [3]. This
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Fig. 1. Comparison between implicit direct collocation with discontinuous
velocity state, and continuous velocity states. In the continuous formulation,
the velocity must transition to zero over a full timestep under the action of
finite forces. This causes the instantaneous impact velocity to be smaller
than its true value, making it impossible to model partially elastic collisions
accurately.

method explicitly designates which contacts will be active
on which timesteps, and then treats the associated unilateral
constraints as bilateral when they are active, e.g. [4, 5].
The problem with these methods is the need to specify the
sequence of contact states upfront, which is not practical
for many problems. An alternative is to use contact-implicit
optimization, where the contact states are included as addi-
tional decision variables either through activation functions
[6], smooth approximations of the bounday behaviour [7],
or complementarity conditions [8, 9]. These methods allow
a wider variety of solutions but, so far, they have either used
less accurate first-order integration or assumed a continuous
velocity state.

This paper presents an implicit collocation formulation
of arbitrary order that overcomes these challenges by im-
plementing complementarity-based contact activation with a
discontinuous velocity state, combining the advantages of
hybrid and contact-implicit models. This is the first implicit
scheme that allows for inelastic, elastic, or partially elastic
collisions to occur without a predetermined contact sequence,
extending our prior work in [10]. Section II establishes
context by expanding on the motivation for allowing velocity
discontinuities, the mathematical background, and the basic
direct collocation formulation. We then explain the contact
model: frictionless impacts are described in Section III, and
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Fig. 2. Two-link pendulum resting on a conveyor belt. The Painlevé paradox
will occur if the coefficient of friction between the belt and pendulum is
sufficiently large.

Coulomb friction is added in Section IV. The remainder
of the paper evaluates its performance with respect to the
trajectory optimization of complicated locomotion and object
manipulation problems.

II. BACKGROUND

A. Impacts Without Collisions

Continuous-velocity approximations of contact are accept-
able in many situations, but there are some problems where
the presence of Coulomb friction makes it impossible to find
a solution.

For example, consider the problem of a two-link pendulum
resting on a conveyor belt, as illustrated in Fig. 2. When
the belt moves backwards relative to the pendulum, friction
(rt) is related to the normal force (rn) by rt = µrn. If its
coefficient of friction (µ) is sufficiently large, the torque on
the lower link produced by friction will be larger than the
torque produced by the normal force, creating an angular
acceleration that directs the end of the link down into the
conveyor belt. Of course, it is not possible for the link to
move in this direction, so the problem appears to have no
solution. This apparent conflict between the interpenetration
constraint and Coulomb friction is called the Painlevé para-
dox, and has been an important topic of discussion and driver
of theoretical development in rigid-body dynamics since its
description near the turn of the 20th Century [11]. Its history,
consequences and the ongoing questions it raises are well-
documented in a review by Champneys and Várkonyi [12].
Besides the inconsistent case described, the paradox might
also result in an indeterminate case, where multiple solutions
are possible [12].

Stewart [13] points to the assumption of finite reaction
forces (and, by implication, the assumption of a time-
continuous velocity state) as a key flaw leading to incon-
sistency: “In particular, it rules out the possibility that the
horizontal component of the velocity (vt) could be brought
to zero instantaneously by impulsive contact force”. If vt is
immediately brought to zero, it is no longer required that

rt = ±µrn, so a solution becomes possible. This demands
that contact models allow not only impulsive forces during
collisions, but impacts without collision (IWCs) – instanta-
neous jumps in the tangential velocity occurring without a
change in the contact state. Experiments by Zhao et al. [14]
using an apparatus similar to the pendulum and conveyor
belt problem in Fig. 2 indicate that IWCs are not just a
convenient patch for a bug in the mathematics, but rather a
representation of a real physical phenomenon, as tangential
shocks were observed when the apparatus was arranged in
paradoxical configurations.

It may be tempting to dismiss the paradoxes as niche cases
happening only at unrealistically high coefficients of friction,
but with unfortunate contact geometry or mass distribution
of the bodies involved, they can come about under more
typical conditions [15]. For instance, analysis of two widely-
used passive dynamic walking models suggests that they
are far from unlikely in legged locomotion [16]. A further
contribution of the model we describe in this paper is that
it is the first higher-order collocation scheme to allow IWC
resolution of frictional paradoxes.

B. Mathematical Background

The discontinuous nature of rigid-body systems with
contact constraints can be conceptualized by changing the
equations of motion from ODEs of the form

ẋi(t) = Fi(t,x(t),u(t)) (1)

where t is time, xi is a state variable, x is the state vector
and u is the input vector, to measure differential inclusions
(MDIs). The MDI is a generalization that allows the right-
hand side of the differential equation to be a combination of
continuous and impulsive parts:

ẋi(t) = Fi(t,x(t),u(t)) +
∑
j∈N

ηjδ(t− tj) (2)

Here, δ(t−tj) is a unit impulse occurring at the instant tj and
ηj is the magnitude. Although δ(t) is often referred to as the
Dirac δ-function, it is not really a function of time at all, but
a measure – a function that acts on a set, and may be thought
of as something closer to a distribution. The important
assumptions we are making about this solution are that
there are countably many discontinuities, and that ẋi(t) has
bounded variation over the trajectory (the difference between
the left and right values of ẋi(t) at each discontinuity can
be assigned a finite value, ηj).

MDIs are the cornerstone of the mathematical framework
developed by Moreau to handle a class of unilaterally-
constrained mechanical problems he termed sweeping pro-
cesses [17–19]. The immediate ancestors of our model are
time-stepping methods based on Moreau’s theory [2, 20, 21].
For further reference on these ideas, see [2] for a concise
and accessible introduction, [15] for a broader review of
numerical simulation methods, and [22] or [23] for a more
comprehensive text.



C. The Direct Collocation Problem

The goal of trajectory optimization is to find the dynamic
trajectory of a system over a time interval that minimizes
some cost function. Direct collocation transcribes the tra-
jectory optimization problem to a constrained nonlinear
programming problem (CNLP) [3]. The specialized mathe-
matical knowledge required to solve these CNLPs may once
have been an inextricable challenge, but algebraic modeling
languages provide an accessible way for non-specialists to
transcribe these problems and pass them to general-purpose
solvers. The examples in this paper were written using the
Python optimization toolbox, Pyomo [24, 25], and solved
using the open-source Interior Point Optimization algorithm
(IPOPT) [26] equipped with the Harwell linear solver ma97
[27].

For a general rigid-body mechanical system subject to im-
plicit contact constraints, the decision variables will include
the state variables (that is, the positions and velocities of
the generalized coordinates), their derivatives, the actuator
forces, and the reaction forces at the contact points. The
typical constraints required to describe the problem include
the equations of motion (EOM) that model the system’s
dynamics, numerical integration constraints relating the state
and derivative variables from one time interval to the next,
the contact model, and task constraints specifying the activity
being simulated.

We discretize the trajectory into N timesteps (referred to
as finite elements) each consisting of P collocation points.
The numerical integration method we use is a P th-order
implicit Runge-Kutta scheme where the collocation points
are located within the element according to the roots of a
Legendre-Gauss polynomial [28]. Unless otherwise speci-
fied, we use P = 4 in all examples described subsequently.
The value of each xi at the pth point of the nth element is
linked to the other points within that element by

xi[n, p] = xi[n, 0] + h[n]

P∑
j=1

Ωp,j q̇[n, j] (3)

The coefficients Ωp,j are derived from integrals of La-
grange interpolating polynomials [28]. The duration of the
element is given by a variable timestep h[n] with maxi-
mum duration hm and minimum duration 0.1hm to allow
more flexibility in when the contact state can change. The
timesteps may be constrained to add up to a desired total
duration T . The Legendre-Gauss collocation points do not
include the boundaries, so two additional mesh points, de-
noted by [n, 0] and [n, P + 1], must be defined for each
element. The final value is calculated using the Gaussian
quadrature rule

xi[n, P + 1] = xi[n, 0] +
1

2
h[n]

P∑
j=1

wj q̇[n, j] (4)

with weights wj derived from the Legendre polynomial.
If the variable’s trajectory is assumed to be continuous,

xi[n, 0] = xi[n−1, P+1]. We apply this continuity constraint

to the position vector q, but modify it for the velocity q̇ to
allow it to jump by some finite value ηi[n]:

xi[n, 0] = xi[n− 1, P ] + ηi[n], xi ∈ q̇ (5)

The resulting integration scheme is similar to a previous
adaptation of arbitrary-order orthogonal collocation to hybrid
dynamic problems [5].

The instantaneous velocity change is brought about by
an impulsive contact reaction, dr. In our transcription, the
velocity jump and contact impulse are represented by the
acceleration, q̈, and reaction, r, variables at [n, 0]. They are
related by the impulsive equations of motion:

M(q[n, 0])q̈[n,0] = Jc
T (q[n, 0])r[n, 0] (6)

where M is the inertial matrix, and Jc is the contact
Jacobian.

III. FRICTIONLESS CONTACT

We use complementarity to control the activation of the
contact reactions r[n, p]. We will use the notation A ⊥ B to
denote a complementarity constraint between two variables
A and B. It means that they satisfy the following conditions:

A ≥ 0, B ≥ 0, AB = 0 (7)

In practise, the constraint becomes much easier to solve
if the equality constraint is replaced with

AB ≤ ε (8)

where ε is a penalty variable that can brought within an ac-
ceptable tolerance by reducing its upper bound incrementally
over multiple solve attempts, or by minimizing it as a term
in the cost function [29]. In our subsequent experiments, we
use the cost function approach, and consider solution to be
feasible if ε ≤ 1e− 4 at all points.

We assume that a well-defined tangent plane exists be-
tween the bodies involved in each contact, so r can be
decomposed into a normal component rn and tangential
components rt. The tangential components will be zero in
the frictionless case. We will assign the coordinate y to
the distance between bodies in the normal direction, and
use coordinates x and z to describe the tangent plane. The
fundamental complementarity relationship that determines
the contact state is between rn and y.

The role of the impulsive reaction component is to produce
a jump in the normal velocity ẏ that satisfies ẏ+ = −eẏ−,
where e is the coefficient of restitution. We cannot comple-
ment rn[n, 0] ⊥ ẏ[n, 0]− eẏ[n− 1, P + 1] directly, however,
as the right-hand side of this expression will not always be
positive when the contact is inactive. We therefore implement
the contact complementarity at the initial mesh point using
positive auxiliary variables a+ and a− as follows:

a+[n]− a−[n] = ẏ[n, 0] + eẏ[n− 1, P + 1] (9a)
rn[n, 0] ⊥ y[n, 0] + a+[n] + a−[n] (9b)

a+[n] ≥ 0 a−[n] ≥ 0 (9c)
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Fig. 3. Trajectories of inelastic and partially elastic (e = 0.5) collisions
between a point mass and the ground. The normal impulse drn is depicted
at p = 0. A continuous velocity model is included for comparison on the
inelastic case, showing the change in velocity spread out over an entire finite
element.

The role of the finite reaction component is to prevent
interpenetration when bodies are in contact for longer than
an infinitesimal instant. It is not sufficient to complement
rn[n, p] ⊥ y[n, p], as this would also allow non-impulsive
collisions that do not obey the specified coefficient of resti-
tution. Preventing these is effectively the same as preventing
collisions from happening in the middle of finite elements,
which is also necessary to ensure an accurate spline ap-
proximation of the dynamics. We do this by complementing
the normal force with the distance at all points in the finite
element:

rn[n, p] ⊥
P+1∑
i=0

y[n, i] (10)

If the velocity is assumed to be continuous, only the above
constraint controls contact activation. It is not possible
to satisfy this constraint perfectly during the continuous
approximation of touchdown, as y[n, 0] must be greater
than zero to prevent interpenetration. In our previous work
with continuous high-order formulations [10], we effectively
applied the constraint at the velocity level by complementing
rn with the sum of y over the next finite element instead,
but that approach is less accurate, as it does not minimize
the distance between bodies when rn begins to act.

A. Example: Falling Point Mass

To demonstrate impact, we simulated a one-dimensional
point mass experiencing (A) an inelastic collision (e = 0)
and (B) a partially elastic collision (e = 0.5) with the
ground. N = 20 and hm = 0.02, and the initial height
y[1, 0] = 0.1m. The only objective was minimizing the
complementarity penalties described in (8). The inelastic
collision was also simulated using the equivalent continuous-
velocity formulation, to illustrate the differences between the
two approaches. The partially elastic case is inadmissible for

the continuous formulation, which is a key advantage of the
proposed approach.

Fig. 3 shows the resulting position, velocity and ground re-
action force trajectories. The models behave as expected: the
velocity in the impulsive problem jumps upon contact with
the ground in accordance with the coefficient of restitution.
A normal impulse occurs at the moment of impact, following
which the normal force prevents the mass from falling
through the ground in the inelastic case. The continuous
approximation of touchdown takes place over a single finite
element, with the mass not quite grounded when the normal
force begins to decelerate it.

IV. CONTACT WITH COULOMB FRICTION

Using Coulomb’s law, the set of possible friction forces in
a two-dimensional contact plane forms a disc with a radius
of µ around the contact point. We refer to the combination of
this disc with the set of possible normal forces as the friction
cone. The reaction force acting at a stationary contact can
fall anywhere in the interior of the cone, while the force at
a sliding contact must lie on the boundary of the cone in the
opposite direction to the relative tangential velocity, vt.

It is possible to simulate reaction forces falling anywhere
on the friction cone [30, 31], but these techniques involve
a nonlinear transformation of vt and rt into a polar rep-
resentation of the contact plane. A more computationally-
efficient option is to convert this to a linear complementarity
problem by working with a polyhedral approximation of the
friction cone, where the disc of possible tangential forces
is replaced by a polygon [8, 10, 20]. This polygon is the
convex hull of k evenly-spaced direction vectors of length
µ. For planar problems, k = 2. The minimum number of
vectors for a spatial problem is usually k = 4, giving a
set of direction vectors that coincides with the positive and
negative directions of the x and z axes describing the contact
plane. We can write the friction force as

rt = µrnd
kαk (11)

using a set of k unit vectors, dk. The vector αk consists of
k activation variables, each having a value between zero and
one.

Unless the direction of vt falls precisely between two of
the direction vectors, only one element of αk should be
nonzero at any point where sliding occurs. If vt = 0, αk

must take on the values required to oppose the net tangential
force acting on the bodies. To manage these activation
variables, we introduce an auxiliary variable γ ≥ 0 and
relate it to each activation variable αk

i ,∀i = 1, 2...k with
the complementarity constraint:

αk
i [n, p] ⊥ γ[n, p]− dk

i vt
T [n, p] (12)

The requirement that γ−dk
i vt

T ≥ 0 means that γ will equal
the magnitude of the largest projection of vt onto one of the
unit vectors in dk – that is, the magnitude of the projection
of vt onto the unit vector that best matches its direction. The
right-hand side of (12) can only be zero for the constraint



corresponding to this nearest direction vector, so only the
associated activation variable can have a nonzero value.

To ensure that its value will be one if |vt| ≥ 0 (and hence,
if γ ≥ 0), we complement

P+1∑
p=0

γ[n, p] ⊥ 1−
k∑

i=1

αk
i (13)

We sum γ over all points to prevent changes between sticking
and sliding states from happening mid-element.

A. Example: Tangential Impact

Because the proposed formulation enables impulsive re-
action forces to act at the boundaries of any finite ele-
ments where contact is active, it permits the resolution of
the Painlevé paradox through a tangential impact without
collision (IWC). To demonstrate this, we simulated a para-
doxical situation in a planar system based on the two-link
manipulator and conveyor belt apparatus that Zhao et al. used
to investigate IWCs experimentally.

The model is shown in Fig. 2. We assigned the links
unit mass and a length of 0.5 metres, and assumed uniform
mass distribution. Collisions were assumed to be perfectly
inelastic. The height of the top link was selected such that
the end of the double pendulum rests on the conveyor belt
at initial angles of θ1[1, 0] = 0 and θ2[1, 0] = 0.25π rad.
The initial velocity was fixed to zero. The belt was initially
stationary, but its velocity was abruptly stepped up to vb =
0.5 m/s (that is, -0.5 m/s relative to the pendulum) at point
[6,0]. We selected a very high coefficient of friction, µ = 2,
so Painlevé’s paradox would be induced at this instant. The
timing parameters were N = 10, hm = 0.02s and T ≥ 0.1s.
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Fig. 4. Solution to the pendulum and conveyor belt problem shown in
Figure 2, demonstrating resolution of the Painlevé paradox via tangential
impact at the start of the sixth finite element.

The results of the optimization are displayed in Fig. 4.
While the contact state never changes, an impulse occurs that
instantly increases the tangential velocity of the pendulum’s
end to match the velocity of the belt. The end of the link
therefore remains stationary relative to the belt throughout, so
the magnitude of the friction force is allowed to be < µrn,
and a downward acceleration is not created at the contact
point. This is precisely the resolution of the Painlevé paradox
via IWC described before [14].

V. APPLICATION I: INELASTIC CONTACTS

The impulsive formulation has a clear benefit in trajectory
optimization problems involving partially elastic contact and
IWC, as shown above, but we are also interested whether
it has any advantage over the continuous formulation when
perfectly-inelastic contact is assumed, as is typical in legged
locomotion tasks. It is possible that the ability to resolve
frictional paradoxes could allow it to explore the solution
space more effectively, and discover solutions that would
be infeasible for other formulations, but this could be
outweighed by an increased computational load similar to
adding another collocation point to each element.

To evaluate its effect on solver performance and solution
quality, we compare continuous and impulsive versions of
the fourth-order Legendre-Gauss scheme (LG4I and LG4C,
respectively) over two trajectory optimization tasks. For
benchmarking purposes, we also compare the solving times
to the established first-order (FO) contact-implicit method
described in [8] – the most direct predecessor to our ap-
proach. This method was assigned 4N timesteps to give
a similar problem size. More recent contact-implicit opti-
mization schemes often reduce the computational load by
modeling the robot as a quasistatic system [32], but we
exclude these methods from this comparison because this is
not a feasible approach for our intended application, as the
quasistatic assumption becomes highly inaccurate for high-
speed manoeuvres [33].
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Fig. 5. Models of planar biped and spatial monopod used in performance
comparison tests.

The models for each test are illustrated in Fig. 5. Both
models effectively have nine degrees of freedom (DOF):
although the monopod is modelled using 10 generalized
coordinates to produce more tractable equations of motion
[33], the leg is constrained so it cannot yaw relative to the
body. Each model includes frictional contacts at the feet,
and frictionless contacts acting as hard stops at the upper
and lower limits of all joints. We ran each experiment with
two coefficients of friction: µ = 0.6, and µ = 1.6 – a high
value that is more likely to produce Painlevé paradoxes.
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A. Planar Bipedal Stopping Problem

To simulate a stopping maneuver, the initial condition
for the biped was sampled from the midstance phase of a
sprinting trajectory, and the final condition at [N,P + 1]
required grounded feet, no forward translational or rotational
velocity (that is, ẋ ≤ 0 and θ̇b ≥ 0), and all other velocities
to have magnitudes within five percent of their initial values.
We minimized the stopping distance by creating a variable
upper bound x[n, p] ≤ xm at all [n,p], and then minimizing
xm. We allocated N = 25 finite elements of maximum
duration 0.1 s to the task.

B. Spatial Monopedal Turning Problem

The monopod was required to start at rest in an upright po-
sition, and travel 2.5 m in the x direction without exceeding
z ≤ 0, followed by 2.5 m in the z direction. The final state
was not specified beyond the requirements that x = z = 2.5
m, and that the yaw of the body (ψb) be displaced 90 degrees
from its starting point. We minimized the sum of the squared
actuator forces and torques over all joints and collocation
points. This task was assigned N = 25 finite elements of
maximum duration 0.1 s.

C. Optimization Procedure

We solve the trajectory optimization problems in two
stages: first, we minimize the complementarity penalties to
obtain a feasible trajectory, then we bound the penalties
below a suitable threshold (here, 1e − 4) and minimize the
desired objective using the feasible trajectory as a starting
point. For the feasibility stage, we seeded the position and
reaction force variables with random values ≤ 0.1. We gave
the same random seed to all models in each test, and repeated
this 100 times for each friction coefficient.

D. Results

The LG4I formulation produced solutions slightly slower
than the LG4C formulation did in both biped tests, and
substantially slower in both monopod tests, as shown in
Fig. 6. This suggests that the complementarity constraints
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are the primary contributor to the computation time, as
the increase in their number between the LG4C and LG4I
formulations is much larger for the 3D problem.

Both LG4 configurations typically took around twice as
long as the FO benchmark to solve in the biped tests,
but the difference was much smaller for the 3D monopod
tests, with the LG4C method even performing slightly better
in the lower friction case. They are, however, much more
accurate, as shown by the plot of the mean local error in
Fig. 7. This error metric measures how well the polynomial
approximation of the problem satisfies the EOM between
collocation points. It is calculated from the difference be-
tween the derivative spline, and the derivative calculated
by substituting the state and input splines into the EOM,
integrated over each finite element. The error for each state
variable was scaled by the largest magnitude of the variable
on each element, and the mean value for the trajectory was
then aggregated over all finite elements and state variables.
Both LG4 approaches were dramatically more accurate than
FO, with the impulsive formulation showing slightly better
accuracy than the continuous formulation.

Fig. 8 compares the costs obtained, normalized to the
lowest value achieved by either model in each case. (We



Fig. 9. (Left) Planar model of skateboard and bipedal rider. (Right)
Simplified system using two point masses instead of a full-body rider model.

exclude the FO solutions from the cost comparison, as they
cannot be meaningfully compared to the fourth-order results
due to the differences in accuracy.) The median costs were
near-identical in all tests, but the spread of the LG4I results
tended to be wider. While its median results were usually
slightly better, it also generated the worst solution in most
tests. This suggests that it might be able to identify superior
strategies that are infeasible for the continuous version, but
also that the slightly more cumbersome formulation could be
more prone to getting trapped in bad local minima.

Overall, there does not appear to be a clear advantage to
using the impulsive configuration for problems with exclu-
sively inelastic collisions. While the accuracy was slightly
improved over the continuous formulations, the computation
time and consistency were worse.

VI. APPLICATION II: MIXED CONTACTS

In theory, the advantage of contact-implicit trajectory
optimization for motion planning is that it allows the model
to discover the best possible contact sequence to perform a
task, or identify a feasible sequence if one is unknown. In
practise, these problems are difficult to solve and prone to
falling into local minima, especially on whole-body system
models with many degrees of freedom. To evaluate the ability
of our formulation to discover solutions to complicated,
contact-heavy motion problems, we selected a skateboarding
trick called an Ollie as a test case.

Although the achievement of sick air is not currently
regarded as an important priority in robotics research, the
Ollie is interesting as an example of a challenging object
manipulation problem requiring an intricate sequence of di-
verse contact interactions to complete successfully. We have
used the Ollie to explore trajectory optimization with varied
contacts before [34], but required a combination of hybrid
and complementarity-based contact schemes to generate the
motion. The impact model presented in this paper allows a
fully contact-implicit formulation of the problem.

The objective of the Ollie is to get all four wheels of the
skateboard off the ground. The rider stamps on the tail of
the board while jumping up, so it bounces off the ground

and propels the board into the air. Once airborne, the feet
manipulate the board to execute further aerial tricks, or just
position it for a safe landing.

Our model of a skateboard and humanoid rider is shown
in Fig. 9. We also attempted the test using the simplified
model on the right of this figure, which isolates the contact
problem by replacing the rider with a pair of point masses
actuated by external forces. Three different types of contact
are present in the system:

1) Partially elastic (e = 0.6), frictionless contact between
the tail of the skateboard and the ground.

2) Inelastic, high-friction (µ = 1.6) contact between the
feet and skateboard. The position of the contact point
with respect to the board is variable, so the feet can
connect anywhere along the deck.

3) Inelastic, frictionless contact between the wheels of the
skateboard and the ground. (The wheels are modelled
as simple contact points offset below the deck, as they
are only required to support the board in this example.)

We used P = 2 and N = 40 with hm = 0.02 for
this example to allow more opportunities for contact state
changes than an equivalently-sized problem with P = 4
would. The initial and final conditions have the humanoid
standing upright on the board with both wheels grounded,
and the system initially at rest. An additional air condition
requires both wheels to be more than 0.2 m above the ground
at point [n, p] = [20, 0].

We tried four seeding approaches to initialize the problem:
1) null seed: the default initial vector.
2) perturbed null seed: the position and contact variables

are assigned small, random values.
3) perturbed null seed with hint: same as previous, but

the height of the board tail is fixed to zero at the point
[10, 0].

4) perturbed solution: a previous successful result, per-
turbed by small random values.

Both models reliably generated the trick when given a hint
specifying the initial tail contact, or a perturbed solution as
a seed (strategies 3 and 4). The average solving time for the
successful attempts on the full-body model was around 43
minutes. Unfortunately, neither model produced a feasible
solution from the null seed, or from 20 randomized null
seeds. This highlights a key challenge of contact-implicit
trajectory optimization: in many cases, the desired result
lies within a small basin of attraction that is exceedingly
difficult to discover without some pre-existing knowledge of
the contact sequence.

Although seeding with perturbed solutions is not a prac-
tical method, as it requires the problem to be solved at least
once before, the success of this approach shows that the
solution is admissible and that motion discovery is possible,
given a seed of sufficient quality. Problem initialization is
an important aspect of trajectory optimization, so further
research is needed to determine precisely what “sufficient
quality” means in this context, and how these seeds can
be obtained for truly unknown contact sequences. One



approach involves reducing the whole-body model to its
centroidal dynamics [35], and we have also had promising
preliminary results initializing legged locomotion problems
from procedurally-generated smooth-random gaits we termed
silly walks [36]. As models become more complicated and
detailed, the most effective role for contact-implicit optimiza-
tion in motion planning is likely to be the refinement of
coarse motions generated by a high-level global planner [37],
rather than primary motion discovery.

VII. CONCLUSION

This paper introduces a contact formulation for direct
collocation that combines the advantages of hybrid-dynamic
and contact-implicit approaches. By accommodating finite
discontinuities in the velocity state, it can capture behaviour
that continuous-velocity formulations cannot, such as par-
tially elastic collisions and tangential “impacts without colli-
sion” – the established resolution of the frictional paradoxes
identified by Painlevé. However, the more computationally
cumbersome formulation leads to longer solve times for 3D
or especially contact-heavy problems, and so the approach
is currently best suited to problems that require elasticity
or impacts without collisions. Further work on problem
initialization is required to support the discovery of the
varied and complicated contact sequences this formulation
theoretically allows.
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