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Abstract— This work presents Quad-SDK, an open source
ROS-based full stack software framework for agile quadrupedal
locomotion. The design of Quad-SDK is focused on the vertical
integration of planning, control, estimation, communication,
and development tools which enable agile quadrupedal loco-
motion in simulation and hardware with minimal user changes
for multiple platforms. Furthermore, the modular software
architecture allows researchers to experiment with their own
implementations of different components while leveraging the
existing framework. Quad-SDK also offers Gazebo simulation
support and a suite of visualization and data-processing tools
for rapid development. This work presents the high-level archi-
tecture of the software, its core features, and demonstrations
of the agile locomotion it enables.

Paper Type – Original Work.

I. INTRODUCTION

The current advances in legged robotics research have
shown promise in using these platforms for real world appli-
cations like environmental monitoring, industrial inspection,
disaster recovery, and material handling [1–3]. Developing
robotic solutions for these specific use cases requires re-
searchers to focus on higher level behaviors instead of low-
level implementation. Such infrastructure is well-established
for simpler platforms, e.g. MoveIt for manipulators [4] or
ROS Navigation for planar mobile robots [5], but they are
not suited to handle the complexity of legged robots.

In the absence of standard tools for a full quadruped
autonomy and control stack, many open-source software
tools have been created to solve various individual layers
of the locomotion problem. For example, tools like Altro
[6], Crocoddyl [7], OSC2 [8], and TOWR [9] are primarily
focused on implementations of constrained optimal control
problems. Other packages like Drake [10] and FROST [11]
are targeted towards design, simulation, and optimization for
multi-body systems but do not provide full stack support.
Robot manufacturers like Unitree, ANYbotics, and Boston
Dynamics provide platform-specific SDKs for external de-
velopment, but these tools are generally closed source and
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Fig. 1: Quad-SDK enables agile autonomy for quadrupedal
systems in unstructured terrain. Left: live data visualization
provided by Quad-SDK exposes the underlying planning
and control states. Right: deployment of Quad-SDK on a
hardware platform.

platform specific. Some packages such as Cheetah-Software
[12], Free Gait [13], and CHAMP [14] offer open-source
hierarchical frameworks for legged robots, but they lack
the desired combination of high-level autonomy, agility, and
support for multiple platforms.

Quad-SDK meets the needs of modern locomotion re-
searchers in two ways. First, it provides autonomous agility
for quadrupeds through advanced algorithms including a
novel global motion planner that can plan long-horizon mo-
tions including aerial phases, as well as an efficient real-time
Nonlinear Model Predictive Controller (NMPC) for execut-
ing agile behaviors. Second, it enables rapid development of
new locomotion algorithms through its modular architecture,
support for multi-robot simulation, and a host of visualization
and data-processing tools. Section II discusses the structure
of the framework and the tools it provides, Section III briefly
demonstrates the system in action, and Section IV discusses
plans for future extensions of the framework.

II. SOFTWARE ARCHITECTURE

Quad-SDK provides a modular hierarchical structure to
both enable system modification and to match the separa-
tion of timescales present within legged locomotion. This
structure is illustrated in Figure 2 and is divided into three
primary sections – Global Planner, Local Planner, and Robot
Driver – each of which are implemented as ROS nodes
which wrap a C++ class. This structure enables asynchronous
communication to accommodate timescale separation and
sensor update rates and allows users to easily extend the
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Fig. 2: The hierarchical structure of Quad-SDK is determined
by the timescales observed in legged locomotion. The Global
Planner (red, 10 Hz) reacts to updates in goal state or terrain
information, the Local Planner (blue, 100 Hz) closes the loop
on the state of the robot body, and Robot Driver (green, 500
Hz) maintains smooth joint-level control and state updates
as well as communication with the robot (gold, platform
dependent frequency).

software by implementing their own classes inside these
nodes or packages that communicate over the same topics.
This extensibility is supported with API documentation,
continuous integration, and unit testing to enable anyone
from researchers to companies to use and contribute to Quad-
SDK under an open source license1. The following subsec-
tions describe the functionality of the primary components
in greater detail as well as the development tools which
accompany the SDK.

A. Global Planner

The top of the stack contains the Global Planner, which
computes collision-free trajectories of the robot body that
guide the system from its current state to the goal state
given a map of the terrain [15]. Unlike standard ROS
Navigation planners, this system explicitly handles dynamics,
constraints, and aerial phases for legged systems as well
as 2.5D terrain information through existing packages [16].
This allows the robot to plan ahead to avoid future failures
and enables greater autonomy than direct user-provided twist
inputs, although Quad-SDK supports twist commands as
well. We primarily interface with the algorithm described in
[15] and refer the reader to that work for implementation

1See https://github.com/robomechanics/quad-sdk.

details. The wrapper for this algorithm subscribes to the
newest desired goal state and terrain data, and generates
new plans at 10 Hz to quickly respond to any changes and
to converge to more optimal solutions. The current soft-
ware loads pregenerated terrain data but future releases will
support perception packages for deployment in unstructured
terrain. The resulting trajectory is then augmented with any
motion primitive information (such as trot or leap) before
being passed to the Local Planner for tracking.

B. Local Planner

The Local Planner determines the contact timing, lo-
cations, and forces to execute the given plan. The Local
Planner is divided into two parts: the Local Body Planner
the Local Footstep Planner. While many promising works
have combined these two systems [9,17], keeping them
separate and iteratively sharing solutions enables specialized
algorithms that can solve the problem much faster.

1) Local Body Planner: The Local Body Planner uses
NMPC to determine the ground reaction forces to best track
the nominal body trajectory, similar to [18]. This NMPC
models the robot as a single rigid body but maintains the
nonlinearity of SE(3) dynamics. The system input is treated
as the ground reaction forces ui, and the hybrid system is
simplified to a switched system with a clock-based contact
schedule. Given the desired body state trajectory xi,re f ,
nominal ground reaction force ui,re f , planned foot position pi,
and initial condition xinit, the solution of discrete-time MPC
can be formulated as the following optimization problem:

min
x,u

N−1

∑
i=0

∥∥xi+1 − xi+1,ref
∥∥

Qi
+
∥∥ui −ui,ref

∥∥
Ri

s.t. x0 = xinit (initial condition)
f (xi,xi+1,ui, pi,dti) = 0 (dynamic model)
xi ∈ X (state bound)
ui ∈ U (control bound)
Ciui ⩽ 0 (friction pyramid)
Diui = 0 (contact selection)

(1)

where i∈ [0, . . .N−1], Qi and Ri are the diagonal quadratic
cost matrix for state and input, dti is the finite element
duration, function f (·) is the implicit dynamics, X and U are
the feasible state and control set, Ci is the friction pyramid
matrix, and Di is the contact selection matrix. The nonlinear
program is constructed by the automatic differentiation from
CasADi [19] and solved with IPOPT [20]. Despite this
nonlinear formulation, we achieve update rates over 100 Hz
for horizons of two or more gait periods with 16 elements per
period through a novel warm starting approach. In particular,
we vary the duration of the first finite element to allow
subsequent knot points to remain stationary in time. This
greatly improves the quality of the warm start and allows
faster solves over longer horizons.

2) Local Footstep Planner: The Local Footstep Planner
uses the most recent local body plan to update predictions of
foot trajectories. It first computes a contact schedule given

https://github.com/robomechanics/quad-sdk


a nominal gait or global plan primitive information. It then
selects discrete foothold positions according to this schedule.
Similar to Raibert’s heuristic [21,22], we use the local plan
to determine nominal foothold positions pnominal based on
dynamic and kinematic heuristics as

pnominal = pcenter + pvel + pcentrifugal (2)

where

pcenter = argmin
p

(
max
i∈st

∥p− pi∥2
2

)
pvel =

√
z0

∥g∥
(vtouchdown, ref − vtouchdown)

pcentrifugal =
z0

g
vtouchdown ×ωref

(3)

Specifically, a minimum enclosing circle problem is formu-
lated for the leg base positions for each stance phase and
solved by the Welzl’s algorithm [23] to compute pcenter ,
which ensures foothold reachability. Offset terms pvel and
pcentrifugal based on velocity and angular velocity [22] track-
ing are added to the nominal foot position to minimize unde-
sired moments caused by ground reaction forces during agile
motion. This nominal foothold is then refined with a local
traversability search similar to [24] to improve robustness
to uncertainty in foot tracking and friction. Finally, these
footholds are interpolated with a cubic Hermite spline based
on desired foot retraction and the terrain heights at liftoff,
touchdown, and swing apex to obtain swing leg trajectories.

C. Robot Driver

The Robot Driver is in charge of interfacing with the
robot to ensure that these plans are executed as accurately
as possible. This is accomplished through a Leg Controller,
which parses the local plan to select the correct joint torques
to apply, and a State Estimator, which gathers all the relevant
sensor streams to construct an estimate of the full state of
the robot. Since the timescales of motor and sensor dynamics
are quite fast (bandwidths typically over 500 Hz), both
systems run in the same thread to reduce latency and improve
communication reliability. This system directly interfaces
with either the simulator or hardware for straightforward sim-
to-real transfer.

1) Leg Controller: Leg Controller converts the trajectories
and controls from the local planner for stance and swing legs
into joint space commands. The local plan is interpolated and
passed through inverse kinematics to generate generalized
coordinate reference positions qref and velocities q̇ref, as
well as GRFs uref for each leg. These are then mapped to
feedforward motor commands in joint (generalized) space
by inverse dynamics. This is performed by solving for the
feedforward stance torques τff,st and swing torques τff,sw with

τff,st =−JT
st uref (4)

Mq̈+h+
[

0 (JT
st uref)

T 0
]T

=
[

0 τT
ff,st τT

ff,sw
]T

(5)
Jst q̈+ J̇st q̇ = 0 (6)

where q is the system states in articulated body generalized
coordinates, M is the inertia matrix, h is the sum of Coriolis
and potential terms, and Jst is the block of the kinematic Ja-
cobian matrix for the stance legs. These terms are combined
with joint space feedback to obtain the control law

τ = τff + τfb (7)
τfb = Kp (qref −q)+Kd (q̇ref − q̇) (8)

τff =
[

τT
ff,st τT

ff,sw
]T

(9)

where Kp and Kd are proportional and derivative gains.
2) State Estimator: The State Estimator is responsible

for parsing sensor streams and maintaining a high-frequency
estimate of the full state of the robot. Currently this class
performs sensor fusion of motion capture, IMU, and encoder
data to generate this estimate. The body position and ori-
entation are obtained directly from motion capture, while
angular velocity and joint information are read from the
IMU and motor encoders. Linear body velocity is computed
with a complementary filter which fuses the differentiated
body position and integrated IMU linear acceleration. Future
releases will support fully onboard algorithms such as an
extended Kalman filter (EKF) similar to [25], which will
enable outdoor deployment.

In simulation, a Gazebo plugin provides ground truth state
and contact information. The body position, velocity, and
orientation as well as joint and foot positions and velocities
are then published as a robot state topic.

D. Development Tools

Quad-SDK comes with a number of tools to enable
rapid development of algorithms and applications for legged
robots. Key components are described below.

1) Simulation: The Gazebo simulation accompanying
Quad-SDK allows users to interface with one or multiple
quadrupeds through teleoperation and point-to-point naviga-
tion within a diverse set of environments.

2) Visualization: Online data visualization of the robots,
terrain, global and local plans, foot trajectories, and ground
reaction forces is provided through RViz [26]. Users may
interact with the visualization interface to select the goal
states for navigation. Real-time display of the data is pro-
vided through a Plotjuggler interface [27].

3) Post-Processing: Quad-SDK comes with a set of tools
to collect and post-process data. Logging scripts enable
recording of data via rosbags for easy playback and debug-
ging. MATLAB scripts are included to produce publication-
ready figures from these logs, as shown in Section III.

III. DEMONSTRATIONS

A. Autonomous Agility

This example shows the ability of Quad-SDK to generate
and track non-trivial navigation plans and to visualize and
process the results, as shown in Fig. 3. A simulated robot is
provided with a terrain map that includes infeasible regions
and a 15 cm step which requires a leap. The Global Planner
takes around 0.05 seconds to find a near-optimal route to the



(a) The Global Planner efficiently solves navigation tasks that
require long-horizon plans and agile behaviors such as leaps.
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(b) The Local Planner yields state trajectories (solid) that closely
track the global plan (dashed) over the unstructured terrain.
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(c) The Robot Driver accurately produces GRFs (solid) that closely
track those requested by the Local Planner (dashed). Data shown
is for the right rear leg while executing the leap.

Fig. 3: Quad-SDK provides the tools to plan and execute
long-horizon agile navigation tasks and visualize the results.

goal state (Fig. 3a), the Local Planner is able to accurately
track it even through the aerial phase (Fig. 3b), and the
Robot Driver is able to accurately produce the desired ground
reaction forces (Fig. 3c). Both the visualizations and data
logs shown in Fig. 3 were generated directly from the
processing scripts that accompany Quad-SDK.

B. Hardware Deployment

This example demonstrates the ability of Quad-SDK
to perform agile behaviors in hardware. Figure 4 shows
snapshots of a leaping motion primitive executed on a
quadrupedal platform. The framework is able to seamlessly
transition from a trot into the leap and back again, while
stabilizing the behavior through a period of underactuation
despite imperfect sensing and control.

Fig. 4: Quad-SDK executing a one body-length running leap
on a hardware platform.

Fig. 5: Quad-SDK supports multi-agent unstructured loco-
motion for multiple quadrupedal platforms, with independent
planning and control stacks for each robot. Left: Ghost
Robotics Spirit 40, right: Unitree Robotics A1.

C. Multi-robot Support

The examples in Fig. 5 demonstrate multi-robot support
for multiple platforms. The robots are able to independently
plan and execute long-horizon trajectories within a shared
environment. Future releases will support multi-robot coor-
dination that allows real-time inter-agent collision avoidance.

IV. CONCLUSION

This work presents a high-level overview of Quad-SDK,
an open source ROS-based full-stack software framework
for agile quadrupedal locomotion. The package provides
an extensible framework for developers to focus on high-
level autonomy while enabling changes to low-level imple-
mentation of planning, control, estimation, and simulation
components. The validity of the stack and its core features
were demonstrated through experiments highlighting agile
autonomy of multiple platforms for single and multi-robot
scenarios. Future releases of the software will include on-
board state estimation and perception-based terrain estima-
tion for outdoor operation, as well as Python bindings and
PyBullet simulation support for developing reinforcement
learning algorithms.

Although this software is released via an open source
license to promote collaboration within the community, we
urge developers to consider the ethical impacts of their work
in such a nascent field. We do not condone the use of
this software in any use-of-force applications, as we believe
quadrupeds – like all robots – should aid humans rather than
harm them. [28]
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