
Increasing Reliability of Legged Robots in the Presence of

Uncertainty

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Mechanical Engineering

Nathan J. Kong

B.S., Mechanical Engineering, University of Minnesota

Carnegie Mellon University

Pittsburgh, PA

August 2022

©Nathan J Kong, 2022

All Rights Reserved

Acknowledgements

I would like to acknowledge the funding that has made this research possible from the U.S. Army

Research Office under grant #W911NF-19-1-0080. Some of this work was done in collaboration

with #IIS-1704256 and #ECCS-1924723 from the National Science Foundation. The views and

conclusions contained in this document are those of the authors and should not be interpreted as

representing the official policies, either expressed or implied, of the Army Research Office, National

Science Foundation, or the U.S. Government. The U.S. Government is authorized to reproduce and

distribute reprints for Government purposes notwithstanding any copyright notation herein. Thank

you to XPeng Robotics and Xingye Da in particular for inviting me to work on parts of my thesis

with them as well as helping me run my experiments.

I would like to thank my advisor, the chair of this committee, Aaron Johnson, for encouraging me

to explore my different ideas and guiding me throughout each of them, and the rest of my committee

members, Mark Bedillion, Zachary Manchester, and Michael Posa, for their help throughout this

process. In addition, I would like to thank my coauthors Joe Payne, James Zhu, George Council,

Chuanzheng Li, and Sam Burden. Thank you to everyone from the Robomechanics lab for all

their helpful discussions and making my PhD an enjoyable experience. I am thankful to my

undergraduate advisor, Timothy Kowalewski, and Trevor Stephens for introducing me to robotics

and teaching me how to conduct research early in my career.

Thank you to my family and friends for supporting me. Especially, thank you to my soon to be

wife, Cynthia, for always being my number one fan and encouraging me along the way – without

her, this thesis would probably not exist.

Abstract

Legged robots have the potential to traverse a wide variety of environments, but are currently too

unreliable to use in mission critical settings. A major factor that hinders the reliability of legged

robots is the hybrid dynamics that arises when their legs make varying contact with the environment.

The discontinuities introduced by hybrid dynamics interfere with traditional tracking, planning, and

state estimation strategies. This thesis presents several novel ideas and tools in overcoming these

difficulties: creating robust trajectories through optimally convergent planning, a tutorial on the

saltation matrix (the update to the sensitivity equation for hybrid transitions), Kalman filtering on

hybrid systems, iterative Linear Quadratic Regulator for hybrid systems, and a model predictive

controller which can continuously update the current plan given new information.

Optimally convergent planning creates trajectories that are robust to state uncertainty in under-

sensed and underactuated systems. Convergent planning utilizes ideas from contraction analysis

and minimizes divergence to find trajectories that naturally shrink state uncertainty. This optimiza-

tion framework is validated for an undersensed hill navigation problem as well as an underactuated

rotary cart pole incline.

The saltation matrix tutorial provides the necessary information to get started implementing

smooth tools for hybrid systems with event-triggered transitions. The tutorial contains a survey of

where the saltation matrix is commonly used, as well as expanded proofs for deriving the saltation

matrix. We also show an example saltation matrix calculation for a simple rigid body system and

show that vital information is lost when not using the saltation matrix, and we calculate the saltation

matrix for a generalized rigid body system with unilateral constraints.

The Kalman filter is a widely used optimal state estimation algorithm. We extended the Kalman

filter to hybrid systems by creating the “Salted Kalman Filter” which allows hybrid transitions

to occur during the a priori and a posteriori updates and by using linearizations about a hybrid

transition in order to propagate uncertainty belief. The Salted Kalman Filter is compared against

a version of the algorithm but with a naive method of linearization about hybrid transitions. The

Salted Kalman Filter is also validated by comparing it against a hybrid particle filter benchmark.

i

Iterative Linear Quadratic Regulator (iLQR) is a trajectory optimization algorithm that uses

locally linear models of the dynamics and uses a quadratic cost function. We extended iterative

Linear Quadratic Regulator to hybrid systems with the following additions: allowing for hybrid

transitions on the forward pass, handling mode mismatches with extensions on reference trajectories,

and using the linearization about a hybrid transition on the backward pass. We validate the hybrid

iterative Linear Quadratic Regulator on a variety of hybrid systems and show that the algorithm

can optimally choose contact timing and placements.

We utilize hybrid iLQR as a Model Predictive Controller (MPC) in order to replan in realtime.

By replanning in real-time, the robot will be more robust to unplanned, large disturbances because

the controller can generate a new plan instead of rigidly tracking a reference trajectory. We validated

the MPC on a quadruped robot both in simulation and on the real robot by applying disturbances

to the robot, and we also compared the MPC against an MPC that uses simplified robot dynamics.

Overall, this thesis makes legged robots more reliable by creating a robust global plan and

by reactively replanning in real time to deal with local disturbances such as contact timing errors

or unplanned slips. Robustness to the global plan can be achieved through planning convergent

trajectories. To alleviate the complexity of hybrid transitions, we heavily utilize linearizations

to enable reactive replanning and fast state estimation through hybrid iLQR MPC and the Salted

Kalman Filter.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Overview . 4

2 Contraction analysis Convergent Planning 7
2.1 Abstract . 7
2.2 Introduction . 8

2.2.1 Related Work . 10
2.3 Methods . 11

2.3.1 Contraction Analysis and Divergence Metrics 11
2.3.2 Hill Climbing Problem . 13
2.3.3 Power Controller . 13
2.3.4 Trajectory Optimization Framework . 16
2.3.5 RRT methods . 19
2.3.6 Simulation . 20

2.4 Experiments . 21
2.4.1 Experiment Methods . 22
2.4.2 Results . 23

2.5 Conclusion . 26
2.6 Optimally Convergent Swing Up for Rotary Cart Pole 28

2.6.1 Rotary Cart Pole System Definition . 28
2.6.2 Trajectory Optimization . 30
2.6.3 Controller design . 30
2.6.4 Hardware Experiments . 31
2.6.5 Simulating Perturbations Experiment . 31
2.6.6 Trajectory Optimization Results . 31
2.6.7 Hardware Results . 32
2.6.8 Perturbation Results . 34
2.6.9 Conclusion . 36

3 Saltation Matrices: The Essential Tool for Linearizing Hybrid Systems 37
3.1 Abstract . 37
3.2 Introduction . 38
3.3 Survey of saltation matrix applications . 41
3.4 What is the saltation matrix and how do you use it 44

iii

3.4.1 Saltation matrix definition . 44
3.4.2 Saltation matrix derivation . 48
3.4.3 Linear forms for the saltation matrix . 52
3.4.4 Quadratic forms for the saltation matrix 54

3.5 Example: Calculating the saltation matrix for a ball dropping on a slanted surface . 56
3.5.1 Dynamics definition . 56
3.5.2 Saltation matrix calculation . 58
3.5.3 Saltation matrix analysis . 60

3.6 Saltation matrices for generalized rigid body systems with unilateral constraints . . 63
3.6.1 Dynamics derivation . 63
3.6.2 Apex . 66
3.6.3 Liftoff . 67
3.6.4 Plastic impact . 68
3.6.5 Elastic impact . 70
3.6.6 Stick-slip friction . 71
3.6.7 Slip-stick friction . 73

3.7 Conclusion . 74
3.8 Appendicies . 75

3.8.1 Saltation matrix chain rule derivation . 75
3.8.2 Early impact saltation derivation . 77
3.8.3 Covariance update through a hybrid event 79
3.8.4 Riccati update through hybrid events . 81
3.8.5 Covariance Propagation Validation . 83

4 The Salted Kalman Filter: Kalman Filtering on Hybrid Dynamical System 91
4.1 Abstract . 91
4.2 Introduction . 92
4.3 Related Work . 94

4.3.1 Hybrid System Estimators . 94
4.3.2 Non-smooth systems and the saltation matrix 95

4.4 Problem Formulation . 96
4.5 Kalman filtering for hybrid systems . 97

4.5.1 Hybrid transition during a priori update 99
4.5.2 Hybrid transition during a posteriori update 100
4.5.3 Extended Kalman Filter . 101
4.5.4 Summary and psuedocode . 102

4.6 Experiments . 102
4.6.1 Experimental Design . 103
4.6.2 Hybrid System Definitions . 104

4.7 Results . 107
4.7.1 Constant Flow . 107
4.7.2 ASLIP . 110

4.8 Conclusion . 111

iv

5 iLQR for piecewise-smooth hybrid dynamical systems 115
5.1 Abstract . 115
5.2 Introduction . 116
5.3 Derivation/implementation . 118

5.3.1 Smooth iLQR background . 119
5.3.2 Hybrid system modifications to the forward pass 122
5.3.3 Hybrid system modifications to the backwards pass 123
5.3.4 Hybrid extensions for mode mismatches 125
5.3.5 Algorithm . 125

5.4 Hybrid System Examples and Experiments . 126
5.4.1 Bouncing ball elastic impact . 127
5.4.2 Ball dropping on a spring-damper . 128
5.4.3 Ball drop on a curved surface with plastic impacts 129
5.4.4 Perching quadcopter . 130

5.5 Results . 131
5.5.1 Bouncing Ball with Elastic Impacts . 132
5.5.2 Ball dropping on a spring-damper . 132
5.5.3 Ball drop on a curved surface with plastic impacts 133
5.5.4 Perching quadcopter . 134

5.6 Discussion . 134

6 Hybrid iLQR MPC 136
6.1 Abstract . 136
6.2 Introduction . 137
6.3 Hybrid systems background . 139

6.3.1 Hybrid Simulators . 139
6.4 HiLQR MPC Implementation . 140

6.4.1 Hybrid Cost Update . 140
6.4.2 Rollout and Forward Pass . 141
6.4.3 Backward Pass . 142
6.4.4 General Robot Implementation . 143

6.5 Experiments . 144
6.5.1 Bouncing Ball . 145
6.5.2 Simulated Robot Controller Comparison 146
6.5.3 Physical Robot Controller Comparison 146

6.6 Results . 147
6.6.1 Bouncing ball HiLQR MPC . 147
6.6.2 Simulated Robot Controller Comparison 149
6.6.3 Physical Robot Controller Comparison 151

6.7 Discussion . 153

7 Conclusion 156
7.1 Possible Future directions for convergent planning 157
7.2 Possible Future directions for state estimation . 158
7.3 Future directions for Hybrid iLQR . 158

v

References . 159

vi

List of Figures

2.1 Divergent and convergent trajectory hill navigation example 8
2.2 Optimally convergent trajectories for hill navigation results 21
2.3 Rotary cart pole diagram . 28
2.4 Minimal energy trajectory for a rotary cart pole swing up 32
2.5 Smooth minimal energy trajectory for a rotary cart pole swing up 33
2.6 Smooth minimal energy and optimally convergent trajectory for a rotary cart pole

swing up . 33
2.7 Hardware example swing up for a smooth minimal energy trajectory 33
2.8 Hardware example swing up for a smooth optimally convergent trajectory 34
2.9 Perturbed trajectories on a minimal energy rotary cart pole swing up 35
2.10 Perturbed trajectories on an optimally convergent rotary cart pole swing up 35

3.1 Example drop on a slanted surface with initial covariance 39
3.2 Example 2 mode hybrid system . 44
3.3 Linearized hybrid system . 48
3.4 Flowing 2 particles through a constant flow hybrid system 51
3.5 Flowing a distribution of particles through a constant flow hybrid system 55
3.6 Eigenvector analysis of impact into sliding . 61
3.7 Eigenvector analysis of impact into sticking . 62
3.8 Rigid body hybrid modes . 66
3.9 Flowing a particle distribution through a simple two constant dynamics hybrid system 84
3.10 Flowing a particle distribution through a bouncing ball hybrid system 86
3.11 Flowing a particle distribution through a pendulum hitting a spring damper hybrid

system . 87
3.12 Pendulum hitting a spring damper hybrid system diagram 88
3.13 Asymmetric Spring Loaded Inverted Pendulum (ASLIP) diagram 89

4.1 Flowing a particle distribution through a simple two constant dynamics hybrid system 92
4.2 Asymmetric Spring Loaded Inverted Pendulum (ASLIP) diagram showing the

aerial phase hybrid mode on the left and the stance phase hybrid mode on the right
and their corresponding configuration variables. 106

4.3 Salted Kalman filter compared against a particle filter and a naive method for a
simple hybrid system . 108

4.4 Runtime versus mean squared error comparison 109
4.5 Salted Kalman filter compared against a particle filter and a naive method for an

Asymmetric Spring Loaded Inverted Pendulum (ASLIP) hybrid system 114

vii

5.1 Quadcopter flying into a curved wall hybrid iLQR solve 117
5.2 Comparison between using the saltation matrix versus the Jacobian of the reset

map for iLQR on a bouncing ball hybrid system 131
5.3 Comparison between using the saltation matrix versus the Jacobian of the reset

map for iLQR on a bouncing ball on a spring-damper ground hybrid system 133
5.4 Comparison between using the saltation matrix versus the Jacobian of the reset

map for iLQR on a ball drop on a curved surface with plastic impact hybrid system 133

6.1 Quadruped backflip stabilization using HiLQR MPC 137
6.2 HiLQR MPC Linesearch while stabilizing a large perturbation 142
6.3 Hierarchy of controllers for HiLQR MPC . 144
6.4 Comparing HiLQR MPC using and not using event-driven hybrid cost update for

stabilizing a large perturbation . 148
6.5 Medium perturbation comparison between HiLQR MPC and Convex MPC 149
6.6 Large perturbation comparison between HiLQR MPC and Convex MPC 150
6.7 Hildebrand diagram for the nominal walking gait 151
6.8 Hildebrand diagram for a single solve of HiLQR MPC rejecting the large perturbation152
6.9 Large lateral perturbation recovery using HiLQR MPC 153
6.10 Motor blocking experiment comparing HiLQR MPC and iQP on hardware 154

viii

List of Tables

2.1 Optimally convergent trajectory Monte Carlo comparison 23
2.2 Comparing uncertainty area reduction between different convergent methods 25
2.3 Rotary cart pole system parameters . 29

3.1 Comparison between using the Jacobian of the reset map and saltation matrix for
mapping covariances through hybrid transitions 90

4.1 Size of covariance effect on estimation error . 110

5.1 Comparison between using the saltation matrix versus the Jacobian of the reset
map for iLQR on a bouncing ball hybrid system 128

6.1 Lateral perturbation success rates for a medium perturbation 150
6.2 Motor blocking perturbation results over 5 trials. 153

ix

Chapter 1

Introduction

1.1 Motivation

Robots are on the verge of being widely utilized in society for tasks such as home assistance,

environmental monitoring, and exploration. Currently, robots are used mainly in well-controlled

settings like factories and warehouses but are not widely used in “real world” tasks. Planning and

control for real world robotic systems is difficult because they are often plagued with uncertainty

in state and modeling parameters. These issues are further exacerbated when robots make varying

contacts with their surroundings (such as in the case of robotic manipulation or legged locomotion)

due to the complexities that arise from the discontinuous nature of impact. This is because small

bumps can lead to drastically different outcomes, like falling, whereas for smoother systems, small

disturbances lead to small differences in outcomes.

Legs offer more adaptability to a given environment, which is important given the unpredictabil-

ity of the terrain. However, in mission critical scenarios, wheels or tracks are often used instead

of legs because they are much more reliable; e.g. rovers are fitted with wheels even though legs

could possibly broaden the searchable area on Mars. In order to increase the reliability of legged

robots, they must be able to plan robust global trajectories and be able to efficiently reason about

the hybrid dynamics (systems where the dynamics make discontinuous jumps, Def. 1) that occur

1

when making contact. By reasoning about these hybrid events, robots can effectively plan, control,

and estimate around these contacts so that small perturbations do not lead to failure.

When planning trajectories, it is important to consider not only the amount of energy being

used, but also how robust the trajectory is to uncertainty [Kong and Johnson, 2019]. This is

especially important for systems that are underactuated and undersensed because uncertainty may

not be able to be collapsed through closed-loop control alone. Planning for contact systems, in

particular, is made more difficult by the drastic differences in dynamics between two configurations

that are close to each other. For example, when a robot’s foot is slightly off the ground, the

robot cannot apply any forces, while when the foot is slightly lower and touches the ground, the

robot can apply the maximum amount of force that the actuators can provide. This discontinuity

disrupts standard planning algorithms because they generally depend on solutions that are close

to each other, yielding close outputs. A popular optimization strategy is to use contact implicit

trajectory optimization [Posa et al., 2014; Mordatch et al., 2012] where each state and input along

a trajectory can be in a different contact mode as long as the distance between the rigid bodies

are zero when contact forces are being applied (complementarity constraints). However, because

these constraints are so discontinuous, it is very difficult for these methods to find solutions quickly

and reliably. Because of these pitfalls, optimization methods which use these complementarity

constraints alongside the full nonlinear dynamics are not suitable for real time use on systems with

mechanical time scales. However, they can be used to create a library of offline behaviors, but the

behaviors might not always be adaptable to real scenarios due to uncertainty [Bjelonic et al., 2022].

Also, the trajectories produced by standard trajectory optimization methods tend to be brittle and

difficult to track. Tracking issues are further exacerbated for hybrid trajectories.

A common strategy to track trajectories is to use a high gain feedback controller. High gain

feedback works well for fully controllable smooth systems because any nonlinearities can be

canceled out, but does not always work for underactuated systems especially in the case of legged

systems. Tracking using high gain feedback is not reliable for legged systems and hybrid systems

in general because perturbations can lead to different contact modes from the reference, which can

2

lead to both jumps in error signals and differing control authority [Mason et al., 2016]. In the case

of legged systems, mismatches in the contact mode can lead to a leg attempting to apply downward

force when the leg is not in contact with the ground, which can cause the robot to slip or fall.

This issue of differing hybrid modes is a common issue in tracking for hybrid systems [Biemond

et al., 2012], [Pagilla and Yu, 2004], and [Forni et al., 2013]. For contact systems, the issue of

mismatching errors when the contact mode is different from the reference has been studied in

[Saccon et al., 2014], where they propose to define a new local error signal that projects the

reference back to the current mode. For legged robots, another common strategy is to ignore these

mismatches and treat the environment as disturbances to the controller [Xie et al., 2018]. However,

these two methods are fairly local and if contact timing or foot placement is perturbed far enough,

these methods may become unreliable. Control near contact is sometimes simplified by lowering

the magnitude of the input and gains near impact times [Yang and Posa, 2021b]. Another strategy

is to move dynamically until close to an object and then move quasistatically while interacting with

the object in order to reduce the uncertainty and remove the dynamics [Gibo et al., 2009]. However,

these strategies will not work well for a legged system trying to maximize the amount of energy

that can be put into the system when executing dynamic behaviors.

In order to successfully track legged behaviors through large contact timing mismatches, tra-

jectories need to be replanned/modified online in order to incorporate these mismatches in contact

timing. Also, the planned trajectories for underactuated or undersensed systems need to not just

optimize the cost of transport but also consider the effect of the dynamics on uncertainty.

A popular framework for continuous online re-planning is called Model Predictive Control

(MPC), where a new trajectory is created each control loop cycle in order to bring the current state

of the robot closer to the reference. Often, a simpler model is used because the full-order dynamics

are highly nonlinear due to the hybrid dynamics and are too slow to solve with standard methods, as

shown in [Di Carlo et al., 2018] and [Lee et al., 2020]. For example, [Di Carlo et al., 2018] represents

a quadruped model with a floating robot body with no legs, and the inputs are forces applied at the

hips. However, one issue with simplified dynamics is that important information can be lost with

3

simplification, which can limit the explorable space of the robot. For full order dynamic planning,

smooth iterative Linear Quadratic Regulator (iLQR) – a trajectory optimization algorithm which

uses locally linear models of the dynamics and uses a quadratic cost function – has been used in the

past for MPC but does not directly extend to legged systems because of the discontinuities that arise

from hybrid dynamics. However, even though there are discontinuities, these hybrid transitions

can still be linearized about, and therefore can provide the necessary variational information to

algorithms like iLQR.

Linearizations about hybrid events are also useful for state estimation algorithms, because some

methods already use linearizations in the smooth case to update covariances. This is especially

important for state estimation algorithms like the Kalman filter (a standard fast state estimation

algorithm for smooth systems), which requires the knowledge of the covariance at each timestep

and the discontinuities introduced by contact severely disrupt the filter’s performance. Methods like

a hybrid particle filter [Koutsoukos et al., 2002; Koval et al., 2015b] (which keeps a nonparametric

belief about the distribution and not just the covariance) are able to estimate the state well through

hybrid transitions, but are extremely inefficient and cannot be run in real time. Having a real time,

accurate estimate of the robot’s state is crucial for reliably controlling them. Without an accurate

state estimate at each control loop, the system will not be able to track well and could ultimately be

unstable.

In this work, we show that by linearizing about hybrid events and reasoning about uncertainty,

we can make planning and estimation for legged robots more efficient, which will in turn enable

reactive replanning online. Being able to reactively replan trajectories online makes legged robots

more robust to uncertainty and ultimately more reliable in mission critical scenarios.

1.2 Overview

Chapter 2 shows that, by taking advantage of the underlying dynamics of the system, we can produce

trajectories that minimize the effect that state uncertainty has on undersensed and underactuated

4

systems. In this work, we create a trajectory optimization framework that minimizes divergence

metrics, as well as regularizes smoothness and length of trajectories, which results in more robust

trajectories to state uncertainty when compared with non-optimal planning methods such as RRT

and its optimal variant RRT* for an undersensed hill navigation system [Kong and Johnson, 2019].

In Section 2.6, we apply the same idea to an underactuated swing-up behavior of a rotary cart pole.

We show that perturbations applied along a convergent swing-up trajectory has less of an effect on

the swing-up behavior than minimizing just for energy usage. We include physical experiments to

validate the feasibility of the trajectories.

To address the complexity that hybrid dynamics adds to planning, control, and state estimation,

this work uses the linearization about a piecewise smooth hybrid event called a “saltation” matrix

(Def. 2) to unlock algorithms such as iLQR and Kalman filtering for these hybrid systems. In

Chapter. 3, we give a tutorial on deriving the saltation matrix, showing how to use it, and analyzing

saltation matrices for rigid body systems with unilateral constraints [Kong et al., 2022b].

In Chapter 4, we extend Kalman filtering to hybrid systems for fast state estimation [Kong et al.,

2021b]. We validate the Kalman filter with a hybrid particle filter for a simple constant flow system

and a asymmetric spring loaded inverted pendulum. We also compare using a naive method (using

the Jacobian of the reset map) instead of the saltation matrix, and show that the estimation error

significantly increases when the saltation matrix is not used.

We also investigate the dual problem of planning and control for hybrid systems, where instead

of propagating covariance, we are now update the approximation of the value function through

hybrid transitions. This is especially useful for LQR and iLQR, where the approximation of the

value function is utilized to compute optimal gains. In Chapter 5, we demonstrate a hybrid iLQR

algorithm which 1) updates the forward pass to allow for hybrid transitions 2) uses reference

extensions when tracking with mode mismatches and 3) updates the backwards pass using the

saltation matrix when the forward pass makes a hybrid transition [Kong et al., 2021a].

Hybrid iLQR can efficiently plan nonlinear hybrid dynamics and vary contact time due to

the iterative nature of the algorithm. However, one drawback of Hybrid iLQR is that it is more

5

prone to local minima because it is a shooting method. This issue can be partially mitigated by

using Hybrid iLQR as a model predictive controller where we can seed the solver with a reference

behavior when tracking it. By using Hybrid iLQR in a receding horizon fashion, we can create

stabilizing behaviors for large perturbations by replanning trajectories including the foot step timing

and location to handle them. In Chapter 6, we extend Hybrid iLQR to model predictive control

by applying hybrid fixes similar to those in Chapter 5 to the tracking problem and using several

software packages for efficient rigid body computations [Kong et al., 2022a]. We compare against

a popular method that utilizes a fixed gait sequence, heavy linearizations, and simplifications to the

robot dynamics model and find that using the full nonlinear dynamics and allowing for changes in

the contact sequence leads to more robust behaviors.

Finally, we conclude in Chapter 7 where we discuss overall insights gained from this thesis and

discuss future extensions for the completed work.

6

Chapter 2

Contraction analysis Convergent Planning

The content of this chapter appeared previously in [Kong and Johnson, 2019].

2.1 Abstract

This paper investigates optimization-based planning methods for generating trajectories which

are robust to state uncertainty in undersensed and underactuated systems. Specifically, these

methods are applied to an undersensed robotic hill climbing system. In previous work, divergence

metrics based on contraction analysis were used to quantify robustness of a trajectory to state

uncertainty in conjunction with a kinodynamic RRT planner to guide the planner towards more

convergent directions. Resulting trajectories were sub-optimal or needed to be smoothed prior

to implementation. This work proposes an optimization framework to plan optimally robust and

smooth trajectories which can also be readily implemented on the robotic hill climbing problem.

A new hill climbing controller is also presented which can guarantee for the first time the strongest

result of contraction analysis, global asymptotic convergence, where possible. Trajectories created

using the new trajectory optimization framework and hill controller are shown to be smoother

and more robust than previous methods as well as an asymptotically optimal versions of previous

methods.

7

Figure 2.1: Diverging (left) versus converging (right) trajectories. The nominal trajectory is shown
in (blue), and 4 points of state uncertainty (black) are simulated forwards (magenta).

2.2 Introduction

Consider a mobile robot on hilly terrain that has precise heading control and an accurate map. The

robot is tasked to traverse from its current state to a goal region, as in [Johnson et al., 2011; Ilhan

et al., 2018]. However, the robot may not be well localized, and has only a rough understanding of

where it is currently located on the hill, e.g. in GPS-denied settings. If a robot path planner only

considers the shortest path to the goal region, the resulting trajectory may diverge due to continuous

growth of uncertainty, as in the left side of Fig. 2.1. However, in some regions the shortest path

will lead to convergent behaviors, as in the right side of Fig. 2.1, where the uncertainty shrinks

over time.

In many robotic applications, state uncertainty growth is dealt with by using closed-loop

feedback. A controller can be used to sense and reduce errors in the state. However, robotic systems

are often undersensed or underactuated and cannot close the loop on certain state uncertainties. In

these cases they must rely on planning robust behaviors through leveraging the underlying geometry

8

of their dynamics. This issue is especially prevalent for the hill climbing robot example in [Johnson

et al., 2011] and planning for robust manipulator pushing motions [Koval et al., 2015a], but arises

in many more general settings.

Contraction analysis [Lohmiller and Slotine, 1998] considers robustness to state uncertainty

through geometric analysis, and provides a proof for global asymptotic convergence for dynamical

systems with a vector field with a strictly negative Jacobian, a contraction region. This states that

if all the eigenvalues of the Jacobian are strictly negative in a region, all trajectories converge to

a single trajectory and the resulting behavior is robust to state uncertainty because there is global

asymptotic convergence.

To plan for robust trajectories, convergent planning [Johnson et al., 2016b] utilizes a kinody-

namic rapidly-exploring random tree (RRT) [LaValle and Kuffner Jr, 2001] which is biased towards

behaviors that are on average convergent. Average convergence is defined in [Johnson et al., 2016b]

to be trajectories where the average eigenvalue of the vector field’s Jacobian to be negative instead

of the maximum eigenvalue being negative in the case of strict contraction. This corresponds to

contraction down to a set of zero volume, instead of a single point [Lohmiller and Slotine, 1998]. In

[Johnson et al., 2016b] these trajectories are created for both robotic hill climbing and manipulator

pushing motions. Another RRT method which may be modified to include directions of divergence

to reduce state uncertainty is the Vector Field RRT (VF-RRT) [Ko et al., 2013] algorithm which

uses the vector field of the system to minimize upstream cost. However, since these trajectories

are created through an RRT, they are not optimal. Asymptotically near optimal trajectories are

created in [Liu et al., 2019] by modifying the average divergence metric used in [Johnson et al.,

2016b] to have optimality guarantees, and more optimal RRT methods include multiple restarts

RRT (C-MRRT) and stable sparse RRT (C-SSRT) [Li et al., 2016].

One issue with trajectories produced by RRT is that they are often not smooth. In [Liu et al.,

2019] it is noted that the near optimal trajectories produced by C-MRRT and C-SRRT can be post-

processed to feasibly work on a robot, because optimal and smooth RRT methods such as RRT*

[Karaman and Frazzoli, 2010] are not suitable in these contexts. This is because a steering function

9

may not always be available for kinodynamic planning, which is required for RRT* to rewire the

tree to improve solution quality [Liu et al., 2019]. However, if the near optimal trajectories are

post-processed, they will no longer be optimal and may no longer satisfy contraction constraints.

In this paper, RRT* is implemented and compared against previous methods because there exists a

steering function for this specific problem. Although these trajectories are asymptotically optimal

and more directly usable than RRT methods, optimality is only guaranteed as time approaches

infinity.

This paper presents a new trajectory optimization (T-OPT) framework based on [Hargraves

and Paris, 1987] that can produce optimally convergent and smooth trajectories which can readily

be implemented on a robot and converge to an optimal solution in finite time. The framework

uses analytical calculations of divergence and also includes options to create trajectories which

guarantee asymptotic convergence or average convergence. In addition to independently creating

optimal trajectories which can satisfy constraints, the proposed T-OPT framework can post-process

trajectories generated using RRT methods while maintaining optimality and specified constraints.

In the context of the hill climbing example, both [Johnson et al., 2016b] and [Liu et al., 2019] do

not consider the case of strict contraction, and only considers an estimate of average convergence.

In fact, the hill climbing controller used can never guarantee strict convergence and at best only

guarantee average convergence to a set of zero volume. To resolve this issue, a new hill climbing

controller that varies speed as a function of local hill steepness is proposed in this paper. This

change allows the guarantee of strict convergence, and ultimately increases the robustness of the

controller to state uncertainty.

2.2.1 Related Work

This work focuses on planning trajectories where state uncertainty is expected. One popular method

of planning under state uncertainty is to formulate the planning problem as a partially observable

Markov decision process (POMDP) [Kaelbling et al., 1998]. However, POMDP solvers do not

perform well when the action space is continuous and do not scale well in higher dimensions.

10

Probabilistic conformant planning is another method to plan for state uncertainty. The goal

of the planner is to maximize the likelihood of success given an expectation of state uncertainty

[Lozano-Perez et al., 1984; Hyafil and Bacchus, 2003]. Although conformant planning is useful

to plan robust trajectories in some contexts, it requires an accurate model of state uncertainty and

doesn’t utilize sensor feedback to increase robustness. The methods proposed here do not require a

model of the state uncertainty, and instead try to continually reduce whatever uncertainty there is.

The hill climbing problem used in this paper is also used in [Johnson et al., 2016b; Liu et al.,

2019; Johnson et al., 2011; Ilhan et al., 2018], where a robot is tasked to navigate from a start

position to a goal region using the gradient of the hill as feedback. The hill gradient controller in

these examples were inspired by [Arkin, 1992]. This paper analyzes contraction properties of this

controller and proposes modifications to create a contraction region, satisfying the strongest results

from contraction analysis [Lohmiller and Slotine, 1998].

2.3 Methods

2.3.1 Contraction Analysis and Divergence Metrics

Converging behaviors of a dynamical system can be analyzed through contraction analysis [Lohmiller

and Slotine, 1998]. Consider a dynamical system with state 𝑥 ∈ X ⊆ R𝑛, control input 𝑢 ∈ U ⊆ R𝑚,

and a continuously differentiable vector field 𝑓 (𝑥, 𝑢, 𝑡) such that 𝑓 : X ×U × R→ 𝑇X. Define 𝐹

as the symmetric part of the Jacobian of 𝑓 [Lohmiller and Slotine, 1998, Definition 1],

𝐹(𝑥, 𝑢, 𝑡) =
1
2

(
𝜕 𝑓 (𝑥, 𝑢, 𝑡)

𝜕𝑥
+
𝜕 𝑓 (𝑥, 𝑢, 𝑡)

𝜕𝑥

𝑇
)

(2.1)

Now consider two neighboring trajectories in the vector field 𝑓 . Define 𝛿𝑥 to be the virtual

displacement between the neighboring trajectories, and the squared distance to be 𝛿𝑥𝑇𝛿𝑥. The rate

of change of 𝛿𝑥𝑇𝛿𝑥 is bounded by the max eigenvalue 𝜆𝑚𝑎𝑥(𝑥, 𝑢, 𝑡) of the symmetric part of the

11

Jacobian 𝐹,
𝛿

𝛿𝑡
(𝛿𝑥𝑇𝛿𝑥) ≤ 2𝜆𝑚𝑎𝑥(𝑥, 𝑢, 𝑡)𝛿𝑥𝑇𝛿𝑥 (2.2)

This implies that the magnitude of the virtual displacement 𝛿𝑥 can also be bounded by the max

eigenvalue 𝜆𝑚𝑎𝑥(𝑥, 𝑢, 𝑡) [Lohmiller and Slotine, 1998, Eqn. 3],

∥𝛿𝑥∥≤ ∥𝛿𝑥0∥𝑒
∫ 𝑡

0 𝜆𝑚𝑎𝑥(𝑥,𝑢,𝑡)𝑑𝑡 (2.3)

If 𝜆𝑚𝑎𝑥 is uniformly negative definite (∃𝛽 > 0,∀𝑡 ≥ 0, 𝜆𝑚𝑎𝑥(𝑥, 𝑢, 𝑡) ≤ −𝛽 < 0), then any infinitesi-

mal length ∥𝛿𝑥∥ converges exponentially to zero [Lohmiller and Slotine, 1998, Thm. 1]. Similarly,

consider a differential volume 𝛿𝑉 around the trajectory, and the evolution of 𝛿𝑉 is defined as

[Lohmiller and Slotine, 1998, Sec. 3.9],

∥𝛿𝑉 ∥= ∥𝛿𝑉(𝑡0)∥𝑒
∫ 𝑡

0 div 𝑓 (𝑥,𝑢,𝑡)𝑑𝑡 (2.4)

As a relaxation to the maximum eigenvalue 𝜆𝑚𝑎𝑥 being uniformly negative definite, [Lohmiller and

Slotine, 1998] considers the case where the average eigenvalue 𝜆𝑎𝑣𝑔 is uniformly negative definite.

Since the divergence of 𝑓 is just the sum of the eigenvalues in 𝐹 [Lohmiller and Slotine, 1998],

then if the average eigenvalue 𝜆𝑎𝑣𝑔 is uniformly negative definite then so is the divergence of 𝑓 .

This implies that the magnitude of a differential volume 𝛿𝑉 converges exponentially to zero if 𝜆𝑎𝑣𝑔

is uniformly negative definite.

These results motivated the creation of two divergence metrics in [Johnson et al., 2016b]: the

maximal divergence metric 𝐷𝑚 := 𝜆𝑚𝑎𝑥 and the average divergence metric 𝐷𝑎 := 𝜆𝑎𝑣𝑔. If 𝐷𝑚 is

uniformly negative definite for an entire trajectory, then all neighboring trajectories converge to a

single trajectory [Lohmiller and Slotine, 1998, Thm. 1]. If 𝐷𝑎 is uniformly negative definite for

an entire trajectory, then on average all neighboring trajectories converge to a set of zero volume

[Lohmiller and Slotine, 1998, Sec. 3.9].

12

2.3.2 Hill Climbing Problem

The well established hill climbing problem [Johnson et al., 2011; Ilhan et al., 2018; Johnson et al.,

2016b; Liu et al., 2019] considers a mobile robot navigating hilly terrain as shown in Fig. 2.1. Since

contraction analysis [Lohmiller and Slotine, 1998] requires a smooth system, the hill is modeled as

a smooth height function, ℎ(𝑥, 𝑦).

The hill gradient controller from [Johnson et al., 2016b] follows a constant speed 𝛼 while

choosing any arbitrary angle 𝜃 relative to the hill gradient ∇ℎ,

𝑓 (𝑥, 𝑦, 𝜃) = 𝛼𝑅(𝜃)
∇ℎ(𝑥, 𝑦)
∥∇ℎ(𝑥, 𝑦)∥ , (2.5)

where 𝑅(𝜃) is a rotation matrix. In [Johnson et al., 2016b], it is stated that one eigenvalue of the

vector field Jacobian is zero. Therefore, the maximum divergence is equal to the average divergence,

𝐷𝑚 = 𝐷𝑎, or equal to 0, 𝐷𝑚 = 0. However, this is not entirely correct. While it is true that there is

always some direction that is neither converging or diverging, it is possible that one eigenvalue is

positive and one eigenvalue is negative. The controller can never have eigenvalues with the same

sign, and thus the main conclusion that the controller can never have a negative max eigenvalue is

still valid.

Lemma 1. Given a vector field 𝑓 defined by (2.5) and obtaining 𝐹 through (2.1), the maximum

eigenvalue of 𝐹, 𝜆𝑚𝑎𝑥 , is non-negative, 𝜆𝑚𝑎𝑥 ≥ 0.

The proof is included in Lemma 2.

2.3.3 Power Controller

Define a new controller where the gradient is scaled by its norm to the 𝑝𝑡ℎ-power,

𝑓 (𝑥, 𝑦, 𝜃, 𝑝) = 𝛼𝑅(𝜃)
∇ℎ
∥∇ℎ∥𝑝 , 𝑝 ∈ R (2.6)

13

This new controller changes speed with the local steepness of the hill, and following it there can

exist a negative maximum eigenvalue for certain choices of 𝑝 with respect to the local curvature of

the hill.

Lemma 2. Given a vector field 𝑓 defined by (2.6) and obtaining 𝐹 through (2.1), there exists a

heading 𝜃 such that the maximum eigenvalue of 𝐹 is negative, 𝜆𝑚𝑎𝑥 < 0, if one of the following

condition is true: 𝑝 < 1 for regions with positive hill curvature or 𝑝 > 1 for regions with negative

hill curvature.

Proof. Define 𝐺 to be the un-rotated part of the controller in (2.6),

𝐺 =
∇ℎ
∥∇ℎ∥𝑝 =

𝐺𝑥

𝐺𝑦

 (2.7)

Set 𝜃 to be piecewise constant, and thus there is no gradient of theta with respect to the states (𝑥, 𝑦).

Furthermore, because the speed scaling term 𝛼 does not affect the analysis, it is set to be unity.

Therefore, the symmetric part of the Jacobian 𝐹 of the vector field 𝑓 is,

𝐹 =

𝑎 𝑐

𝑐 𝑏

 :=
1
2

(𝐷 𝑓 + 𝐷𝑇𝑓)

𝑎 =
𝜕𝐺𝑥

𝜕𝑥
cos 𝜃 −

𝜕𝐺𝑦

𝜕𝑥
sin 𝜃, 𝑏 =

𝜕𝐺𝑦

𝜕𝑦
cos 𝜃 +

𝜕𝐺𝑥

𝜕𝑦
sin 𝜃

𝑐 =
1
2

(
(
𝜕𝐺𝑥

𝜕𝑦
+
𝜕𝐺𝑦

𝜕𝑥
) cos 𝜃 + (

𝜕𝐺𝑥

𝜕𝑥
−
𝜕𝐺𝑦

𝜕𝑦
) sin 𝜃

) (2.8)

The characteristic equation of 𝐹 is given by

𝜆1,2 =
𝑎 + 𝑏 ±

√
𝑎2 − 2 𝑎 𝑏 + 𝑏2 + 4 𝑐2

2
(2.9)

By (2.9), the maximum eigenvalue of 𝐹 is defined as,

𝜆𝑚𝑎𝑥 =
𝑒 cos 𝜃+𝑔 sin 𝜃+𝑑

2
(2.10)

14

where 𝑑, 𝑒 and 𝑔 are defined as,

𝑑 =

√√√
𝜕𝐺𝑥

𝜕𝑥

2
+
𝜕𝐺𝑦

𝜕𝑦

2
+

[
𝜕𝐺𝑦

𝜕𝑥

2
+2
𝜕𝐺𝑦

𝜕𝑥

𝜕𝐺𝑥

𝜕𝑦
+
𝜕𝐺𝑥

𝜕𝑦

2
]
-2
𝜕𝐺𝑥

𝜕𝑥

𝜕𝐺𝑦

𝜕𝑦
(2.11)

𝑒 =
𝜕𝐺𝑥

𝜕𝑥
+
𝜕𝐺𝑦

𝜕𝑦
, 𝑔 =

𝜕𝐺𝑥

𝜕𝑦
−
𝜕𝐺𝑦

𝜕𝑥
(2.12)

Then solve for 𝜃 when the maximum eigenvalue is zero and define 𝜙 = tan−1 (𝑔
𝑒

)
,

0 = tan−1
(𝑔
𝑒

)
± cos−1

(
− 𝑑√︁

𝑒2 + 𝑔2

)
(2.13)

In (2.13), the ± term describes the range of diverging directions, and the first component 𝜙 is

in the direction of max(𝜆𝑚𝑎𝑥). A negative maximum eigenvalue exists when the term in the inverse

cosine is within the open set from −1 to 1 and so,

𝑑2 − (𝑒2 + 𝑔2) < 0 (2.14)

By substituting values of 𝑑, 𝑒, and 𝑔 and plugging in the derivatives of 𝐺 (2.7) for the power

controller (2.6) into the constraint (2.14), the existence of a negative 𝜆𝑚𝑎𝑥 can be evaluated using

constraint, (
𝜕2ℎ

𝜕𝑥2
𝜕2ℎ

𝜕𝑦2 −
𝜕2ℎ

𝜕𝑥𝜕𝑦

2)
(𝑝 − 1) < 0 (2.15)

The original controller (2.5) has a 𝑝 value of 1, and never satisfies (2.15). Therefore, there does

not exist a 𝜃 which results in a negative 𝜆𝑚𝑎𝑥 for any position (𝑥, 𝑦) on any hill ℎ(𝑥, 𝑦) with 𝑝 = 1.

The Gaussian curvature for a hill function ℎ(𝑥, 𝑦) is,

𝐾 =
𝜕2ℎ
𝜕𝑥2

𝜕2ℎ
𝜕𝑦2 − 𝜕2ℎ

𝜕𝑥𝜕𝑦

2(
1 + 𝜕ℎ

𝜕𝑥

2 + 𝜕ℎ
𝜕𝑦

2
)2 (2.16)

The numerator in (2.16) determines the sign of the Gaussian curvature at a point (𝑥, 𝑦) on a hill.

15

By using the constraint in (2.15), it is clear that there exists a negative 𝜆𝑚𝑎𝑥 for regions in positive

curvature with a 𝑝 value less than 1, and for regions of negative curvature with a 𝑝 value greater

than 1, that is,
(sign(𝐾) > 0 ∧ 𝑝 < 1) → ∃ 𝜃 s.t 𝜆𝑚𝑎𝑥 < 0

(sign(𝐾) < 0 ∧ 𝑝 > 1) → ∃ 𝜃 s.t 𝜆𝑚𝑎𝑥 < 0
(2.17)

□

2.3.4 Trajectory Optimization Framework

This section presents a method of automatically finding optimally convergent and smooth trajecto-

ries through trajectory optimization (T-OPT) using direct collocation [Hargraves and Paris, 1987].

The resulting trajectories approximate a smooth trajectory with 𝑁 piecewise-smooth trajectories.

The trajectory optimization framework uses a cost function which seeks to maximize convergence

and smoothness of a trajectory. The first order dynamics of the mobile robot are enforced through

linear collocation constraints. The trajectory’s start and end positions are bounded to match the

problems specifications. Nonlinear constraints are used to enforce uniformly negative definite

divergence metrics 𝐷𝑚 < 0 or 𝐷𝑎 < 0.

The trajectories consist of 𝑁 waypoints and 5 decision variables per waypoint 𝑖: the position

(𝑥(𝑖), 𝑦(𝑖)), velocity (¤𝑥(𝑖), ¤𝑦(𝑖)), and controller power 𝑝(𝑖). The heading angle 𝜃(𝑖) and forward speed

are encoded as a velocity vector (¤𝑥, ¤𝑦) to avoid using nonlinear constraints for collocation. The

velocity is calculated in a global frame and converted to a hill-relative angle 𝜃 as a post processing

step. In this paper MathWorks MATLAB’s nonlinear programming solver fmincon [MATLAB]

is used with the sequential quadratic programming (SQP) algorithm. The trajectory optimization

framework is initialized with a straight line trajectory from the starting point to the center of the

goal region.

16

Cost Function The cost is defined as,

𝐽(𝑥, 𝑦, ¤𝑥, ¤𝑦, 𝑝) =
1

𝑁 − 1

𝑁−1∑︁
𝑖=1

(
𝐽

(𝑖)
𝐷𝑎

+ 𝐽(𝑖)
𝐷𝑚

+ 𝐽(𝑖)
𝑎𝑐𝑐𝑒𝑙

+ 𝐽(𝑖)
𝑝𝑎𝑡ℎ

)
(2.18)

where
𝐽

(𝑖)
𝐷𝑎

= 𝜎𝐷𝑎(𝑥(𝑖), 𝑦(𝑖), ¤𝑥(𝑖), ¤𝑦(𝑖), 𝑝(𝑖))

𝐽
(𝑖)
𝐷𝑚

= 𝜐max(𝐷𝑚(𝑥(𝑖), 𝑦(𝑖), ¤𝑥(𝑖), ¤𝑦(𝑖), 𝑝(𝑖)),−𝜖)

𝐽
(𝑖)
𝑎𝑐𝑐𝑒𝑙

= 𝛾[(¤𝑥(𝑖+1) − ¤𝑥(𝑖))2 + (¤𝑦(𝑖+1) − ¤𝑦(𝑖))2]

𝐽
(𝑖)
𝑝𝑎𝑡ℎ

= 𝜌[(¤𝑥(𝑖))2 + (¤𝑦(𝑖))2]

(2.19)

The cost function is designed to minimize average divergence 𝐽𝐷𝑎
, encourage negative maximum

eigenvalues 𝐽𝐷𝑚
, smooth the trajectory by adding cost to big changes in velocity 𝐽𝑎𝑐𝑐𝑒𝑙 , and to

minimize path length 𝐽𝑝𝑎𝑡ℎ, based on some user desired weighting (𝜎, 𝜐, 𝛾, 𝜌, 𝜖). The sum is

evaluated up to 𝑁 −1, because the cost associated to the 𝑁th waypoint does not affect the trajectory.

Linear Constraints and Bounds Linear equality constraints are used to ensure first order

dynamics.

𝑥(𝑖+1) − 𝑥(𝑖) − ¤𝑥(𝑖)𝑑𝑡 = 0

𝑦(𝑖+1) − 𝑦(𝑖) − ¤𝑦(𝑖)𝑑𝑡 = 0
(2.20)

In addition, upper and lower bounds are defined to be:

𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ≤ 𝑥(0) ≤ 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ≤ 𝑦(0) ≤ 𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑥𝑒𝑛𝑑 − 𝜂 ≤ 𝑥(𝑛) ≤ 𝑥𝑒𝑛𝑑 + 𝜂

𝑦𝑒𝑛𝑑 − 𝜂 ≤ 𝑥(𝑛) ≤ 𝑦𝑒𝑛𝑑 + 𝜂

𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥

𝑦𝑚𝑖𝑛 ≤ 𝑦 ≤ 𝑦𝑚𝑎𝑥

𝑝𝑚𝑖𝑛 ≤ 𝑝 ≤ 𝑝𝑚𝑎𝑥

(2.21)

17

Initial and ending positions are bounded instead of using linear equality constraints to help the

solver find solutions. The initial position is bounded to be the exact desired starting position,

and the end position is bounded to be within a square with side length 2𝜂 around the desired end

location. All positions are bounded to be within the limits of the defined map. Bounds on the

power variable 𝑝 are placed to ensure stable and realistic values.

Nonlinear constraints Nonlinear constraints are used to enforce the strict convergence results

of [Lohmiller and Slotine, 1998, Thm. 1] and [Lohmiller and Slotine, 1998, Sec. 3.9]. The three

different methods considered are:

1. Applying [Lohmiller and Slotine, 1998, Thm. 1] to ensure strict convergence at each waypoint:

𝐷
(𝑖)
𝑚 < 0 ∀ 1 ≤ 𝑖 ≤ 𝑁 − 1 (2.22)

2. Applying [Lohmiller and Slotine, 1998, Sec 3.9] to ensure average convergence at each

waypoint:

𝐷
(𝑖)
𝑎 < 0 ∀ 1 ≤ 𝑖 ≤ 𝑁 − 1 (2.23)

3. No nonlinear constraints (unconstrained)

Trajectories where 𝐷𝑚 are uniformly negative definite are resilient to uncertainty in all directions

at all times and are guaranteed to exponentially converge to the nominal trajectory. In the case that

𝐷𝑎 is uniformly negative definite, the trajectories are on average robust to uncertainties, but may

suffer from uncertainty in the direction of maximum divergence. Lastly, the unconstrained case

is considered because there will more often be a feasible solution and the average divergence is

minimized by the cost function, while in the constrained cases, feasible solution may often not exist

due to the harshness of the constraints. The analytical solutions of 𝐷𝑚 and 𝐷𝑎 were calculated

using the eigenvalues from (2.9) as well as their associated gradients with respect to the states. Due

to the strictness and complexity of satisfying these constraints, the gradient played a crucial role

in finding solutions and naively calling eig [MATLAB] did not find any feasible solutions for the

18

(𝐷𝑚 < 0) constrained case.

2.3.5 RRT methods

The proposed trajectory optimization (T-OPT) methods are compared against the rapidly-exploring

random tree (RRT) methods as shown in [Johnson et al., 2016b]. Specifically, biased RRT (B-

RRT) and contraction region RRT (CR-RRT) are implemented. The T-OPT methods were also

compared against asymptotic optimal variants of the RRT methods by utilizing (RRT*) [Karaman

and Frazzoli, 2010]. Since both B-RRT and CR-RRT are extensions of Kinodynamic RRT (KD-

RRT) [LaValle and Kuffner Jr, 2001], an RRT* version of each method was developed: B-RRT*

and CR-RRT*.

Kinodynamic RRT (KD-RRT) KD-RRT for the hill climbing problem follows the same

collocation constraints (2.20) and bounds on start position and goal position set (2.21) as for

trajectory optimization. The planner builds a tree which starts at the desired starting position. At

each iteration the planner samples a random position and finds the nearest neighbor in the RRT

using the Euclidean distance metric. Random directions and powers 𝑝 are sampled to generate

a set of candidate actions. Each action is evaluated by finding the end point of a trajectory that

follows that direction for a fixed distance. An action 𝑎 is selected and a new node is added to the

RRT based on which action reaches closest to the sampled point, using the same Euclidian distance

metric. This is repeated until a node is within the goal position set (2.21).

Biased RRT (B-RRT) B-RRT attempts to minimize divergence by scaling the Euclidean

distance metric used for action selection by 𝑒𝑏𝐷𝑖 , where 𝑏 ∈ R is a bias term and 𝐷𝑖 is the specified

divergence metric to minimize. In our implementation, average divergence 𝐷𝑎 is used.

Contraction Region RRT (CR-RRT) CR-RRT applies the same constraint as (2.22) at the

action selection step to ensure a trajectory that meets the contraction region requirements at every

step. However, in [Johnson et al., 2016b] there can never exist a true contraction region because a

19

constant velocity controller was used (as proven in Lemma 2). Here, both 𝐷𝑚 (2.22) and 𝐷𝑎 (2.23)

are used.

Biased RRT* (B-RRT*) and Contraction Region RRT* (CR-RRT*) RRT* follows the same

algorithm as KD-RRT except that the goal was randomly sampled 5% of the time and before adding

the node to the RRT, there is a rewiring step which optimizes which node in the tree should connect

to the candidate node. Nodes that are within a distance of 𝑟 away from the candidate node are

considered for rewiring. Branches are grown from all neighboring nodes to the candidate node, and

the entire path length for each branch is calculated. The power variable 𝑝 for each branch is chosen

from the set {0, 1, 2} to minimize the cost of the branch. The branch that leads to the minimum path

length from the candidate node to the beginning node is added to the tree. Once a node is within

the goal position set (2.21), the algorithm is iterated 𝑘 more times to continue rewiring. B-RRT*

uses the same biased distance metric as B-RRT in the rewiring step and CR-RRT* can apply either

constraint (2.22) or (2.23) during the rewire step.

2.3.6 Simulation

To evaluate convergence of the generated trajectories (from either the trajectory optimization or RRT

methods), a circle of 40 points of uncertainty with radius 𝑟 = 𝜂 (half the side length of the desired

goal region) was added to the trajectories’ starting positions and simulated forwards by integrating

the power controller’s (2.6) dynamics using MathWorks MATLAB’s ode45 [MATLAB]. To ensure

heading and velocity were nominally constant between each waypoint, heading angles 𝜃 and velocity

scaling variable 𝛼 were calculated in between each waypoint. The starting area of the circle and

radius of the circle is compared against the convex hull of the particles at the end of the trajectory

and the particle furthest from the nominal trajectories end position. Define two metrics of path

convergence to be the ratio between the end particle area and the starting circle area 𝐸𝑎 and the ratio

between the maximum end particle and the starting circle radius 𝐸𝑚 [Johnson et al., 2016b]. The

area ratio 𝐸𝑎 corresponds to average divergence 𝐷𝑎 and the maximum distance ratio corresponds

20

Figure 2.2: Topographic map of a hill showing elevation lines and hill gradient (blue arrows). Left:
Simulating forward a circle of uncertainty (black) around the nominal trajectory (red). An optimal
trajectory (red solid) converged to a line (black solid) with an area ratio of 𝐸𝑎 = 0.02 and an max
of distance ratio 𝐸𝑚 = 0.88 and a straight line method (red dashed) diverged to an end distribution
(black dashed) with 𝐸𝑎 = 11.32 and 𝐸𝑚 = 11.66. Top Right: T-OPT (blue line) trajectory, 5 B-RRT
(red line) trajectories, and the goal region (black square). Bottom Right: Hill power controller’s
(2.6) power value 𝑝 at each waypoint for T-OPT (blue) and the 5 B-RRT (red).

to the maximum divergence 𝐷𝑚. An example output of the simulation for a trajectory optimized

using the unconstrained trajectory optimization method is shown in Fig. 2.2.

2.4 Experiments

This section demonstrates the effectiveness of the proposed trajectory optimization framework and

the new power controller (2.6) for a mobile robot traversing hilly terrain. The hill function is chosen

to be consistent with [Johnson et al., 2016b; Liu et al., 2019],

ℎ(𝑥, 𝑦) := 3𝑦 + sin (𝑥 + 𝑥𝑦) s.t. (𝑥, 𝑦) ∈ [−2, 2] × [0, 2.5] (2.24)

This hill contains a range of curvature content. Therefore, sampling random starting and ending

positions evaluates the efficacy of each planner and controller on a collection of diverse landscapes.

21

2.4.1 Experiment Methods

To evaluate the convergence and smoothness of the trajectories generated using T-OPT, B-RRT, CR-

RRT, B-RRT*, and CR-RRT*, 200 random start and end points were used to calculate an average

area ratio 𝐸𝑎, max distance ratio 𝐸𝑚, and acceleration cost 𝐽𝑎𝑐𝑐𝑒𝑙 . Eleven different trajectory

planning methods with different algorithms, power controller bounds, constraints on divergence

metrics (2.22)-(2.23), and cost functions were tested:

1. (T-OPT), 𝑝 = 1, unconstrained, minimize path length

2. (T-OPT), 𝑝 ∈ [0, 2], unconstrained, minimize cost function (2.19)

3. (B-RRT), 𝑝 ∈ [0, 2], unconstrained, bias 𝑏 = 1.5 action size 𝑎 = 0.025

4. (B-RRT*), 𝑝 ∈ [0, 2], bias 𝑏 = 1.5 action size 𝑎 = 0.005 rewire size 𝑟 = 0.025

5. (T-OPT), 𝑝 ∈ [0, 2], 𝐷𝑚 < 0, minimize cost function (2.19)

6. (CR-RRT), 𝑝 ∈ [0, 2], 𝐷𝑚 < 0, 𝑏 = 1.5, 𝑎 = 0.025

7. (CR-RRT*), 𝑝 ∈ [0, 2], 𝐷𝑚 < 0, 𝑏 = 1.5, 𝑎 = 0.005, 𝑟 = 0.025

8. (T-OPT), 𝑝 ∈ [0, 2], 𝐷𝑎 < 0, minimize cost function (2.19)

9. (T-OPT), 𝑝 = 1, 𝐷𝑎 < 0, minimize cost function (2.19)

10. (CR-RRT), 𝑝 ∈ [0, 2], 𝐷𝑎 < 0, 𝑏 = 1.5, 𝑎 = 0.025

11. (CR-RRT*), 𝑝 ∈ [0, 2], 𝐷𝑎 < 0, 𝑏 = 1.5, 𝑎 = 0.005, 𝑟 = 0.025

The constants in the cost function (2.19) were heuristically tuned to be 𝜎 = 30, 𝜐 = 2, 𝛾 = 105,

𝜌 = 104, and 𝜖 = 1. In the upper and lower bounds, the square goal region’s side length 𝜂 = 0.05

was set to be half of the acceptable goal region in [Johnson et al., 2016b]. Powers were bounded to

allow a change of ±1 from the nominal 𝑝 = 1 since higher powers lead to instability, 𝑝𝑚𝑖𝑛 = 0 and

𝑝𝑚𝑎𝑥 = 2.

22

Table 2.1: Results for trajectory optimization (T-OPT), biased RRT (B-RRT), and contraction
region RRT (CR-RRT) path planning methods over 200 random trials where the power of the
controller was either 𝑝 = 1 or in the closed set 𝑝 ∈ [0, 2]. Results include success rate (S), log
area ratio (𝐸𝑎), log distance ratio (𝐸𝑚), acceleration cost (𝐽𝑎𝑐𝑐𝑒𝑙), and planning time (T) in seconds.
Mean ± one standard deviation are listed.

2.4.2 Results

The success rate S, average log area ratio 𝐸𝑎, average log max distance ratio 𝐸𝑚, and planning time

for each tested method is shown in Table 2.1. As expected, planning for the shortest path led to

an average positive log area ratio 𝐸𝑎, and using converging planning methods led to negative log

area ratio 𝐸𝑎 averages. A paired difference test is used for mean comparisons. All comparisons

discussed are significant (𝑝 < 0.05) unless noted.

Unconstrained Problems Method 2 (unconstrained T-OPT) on average created trajectories

with lower log area ratios 𝐸𝑎 than method 3 (unconstrained B-RRT) and method 4 (unconstrained

B-RRT*) as shown in Table 2.2. However, methods 3 and 4 had a lower mean log area ratio 𝐸𝑎

than method 2 when using paired differences. This resulted from the few divergent paths created

from method 2 dominating the comparisons. Divergent paths occurred because in some rare cases,

T-OPT picked an early divergent step in a trajectory to gain access to more convergent steps later

23

in the trajectory. B-RRT and B-RRT* are not affected by this issue because it they are inherently

greedy search algorithms, and are biased towards the most convergent direction at each waypoint.

To avoid this issue for T-OPT, a saturation limit can be placed on the average divergence cost 𝐽𝐷𝑎

or the 𝐷𝑎 < 0 constraint can be applied. Method 2 was able to find a feasible solution for all 200

random trials while methods 3 and 4 could not. Methods 3 and 4 also had a lower mean log 𝐸𝑚

than method 2, likely because RRT inherently randomizes the direction of max divergence, while

the optimal solution tends to keep the worst direction aligned in a similar direction. Because this

hill is smooth, and the hill gradient does not rapidly change, resulting T-OPT solutions tend to

grow uncertainty in the same direction. Method 4 is smoother than method 3 when comparing

acceleration cost 𝐽𝑎𝑐𝑐𝑒𝑙 which in turn likely made method 4 have a greater mean log 𝐸𝑚 than method

3.

Constrained Maximum Convergence For this hill climbing problem, these are the first results

where trajectories can be produced with a contraction region. Method 6 (CR-RRT, 𝐷𝑚 < 0) found

15 feasible solutions while method 5 (T-OPT, 𝐷𝑚 < 0) only found 9 and method 7 (CR-RRT*,

𝐷𝑚 < 0) found 2. However, all but one trajectory has a negative log maximum distance ratio 𝐸𝑚

for method 5 and all trajectories for method 7 have a negative log maximum distance ratio 𝐸𝑚,

while 3 of the 15 trajectories produced by method 6 have a positive log maximum distance ratio 𝐸𝑚.

The resulting positive log maximum distance ratio 𝐸𝑚 is due to the action size 𝑎 being too large

in comparison to the geometry of the hill. Since planning time grew exponentially with increasing

tree size, the action size could not be further reduced. In the single case that method 4 had a positive

log distance ratio 𝐸𝑚, the maximum action size was also large (𝑎 = 0.4518 on average).

Constrained Average Convergence In the case of constraining the average divergence to be

negative (𝐷𝑎 < 0), method 8 (T-OPT, 𝑝 ∈ [0, 2], 𝐷𝑚 < 0) was able to find 9 % more feasible

solutions than method 9 (T-OPT, 𝑝 = 1, 𝐷𝑚 < 0), 9.5 % more feasible solutions than method 11

(CR-RRT*, 𝐷𝑚 < 0), and 0.5 % fewer feasible solutions than method 10 (CR-RRT, 𝐷𝑚 < 0).

Method 8 has a lower mean log area ratio 𝐸𝑎 than methods 9, 10, and 11. However, methods 8

24

Table 2.2: Comparing the percentage of trials that the end area ratio 𝐸𝑎 is smaller using the method
on the vertical axis compared to the method on the horizontal axis.

and 11 took about 7 times longer to compute than methods 9 and 10, and like the unconstrained

problems, the RRT methods have a lower maximum distance ratio 𝐸𝑚, Table 2.1.

Log Area Ratio 𝐸𝑎 Direct comparisons For a more fair comparison between methods, direct

trial comparisons for log area ratio 𝐸𝑎 are made between the unconstrained and the average

divergence constrained (𝐷𝑎 < 0) methods as shown in Table 2.2. Only runs where both methods

had a feasible solution were compared. Because constraining (𝐷𝑚 < 0) led to few solutions, the

strict convergence case was not directly compared against the other methods. For all problems,

method 8 (T-OPT, 𝑝 ∈ [0, 2], 𝐷𝑎 < 0) has on average a lower log area ratio 𝐸𝑎 for each direct

comparison. In second place, method 2 (T-OPT, 𝑝 ∈ [0, 2], unconstrained) has a lower log area

ratio 𝐸𝑎 for the majority of problems except when compared to method 8. Method 9 (T-OPT, 𝑝 = 1,

𝐷𝑎 < 0) is worse than all other T-OPT cases, but is slightly better than or equal to the RRT and

RRT* cases methods (3,4,10,11). When directly comparing the power controller (2.6), method 8,

versus the constant speed controller (2.5), method 9, the power controller is more convergent 90.1%

of the time.

Trajectory Smoothness Trajectories generated by trajectory optimization were smoother than

both RRT* and RRT methods in both position choices and power choices. An example run

shown in the top side of Fig. 2.2 compares trajectories generated using T-OPT and B-RRT. The

bottom side of Fig. 2.2 shows that the powers chosen by T-OPT are smoother and more consistent

25

than the powers chosen by the B-RRT runs. The acceleration cost 𝐽𝑎𝑐𝑐𝑒𝑙 was imposed to the

trajectory optimization framework to reduce sudden changes in linear and rotational velocity.

When comparing the acceleration cost over the 200 trials between the unconstrained (methods 2, 3,

and 4), and constrained (𝐷𝑎 < 0, methods 8, 9, 10, and 11), T-OPT had a smaller mean acceleration

cost 𝐽𝑎𝑐𝑐𝑒𝑙 than B-RRT and B-RRT*. There were not enough successful trials for the (𝐷𝑚 < 0)

constrained cases to draw meaningful conclusions on smoothness.

2.5 Conclusion

Planning trajectories which are robust to uncertainty is critical for creating reliable robotic systems.

Typically, uncertainty is reduced by using closed-loop feedback which can sense and reduce errors.

However, in situations like the hill climbing problem, the robot is under-sensed and cannot reduce

error by using closed-loop feedback. Instead it must rely on reducing error by leveraging the

geometry of the underlying vector field.

Prior work [Johnson et al., 2016b; Liu et al., 2019] to create robust trajectories using convergent

rapidly-exploring random trees. However, the resulting trajectories are not smooth and at best could

only enforce average convergence. The work in this paper creates a new convergent optimization

framework which generates optimally smooth and convergent trajectories.

This work also introduces a new hill navigation controller (2.6) which enables the possibility

for strictly convergent trajectories while a constant speed controller (2.5) can only produce average

convergent trajectories. The new power controller was also more convergent 90% of the time

and found 9% more feasible solutions than the constant speed controller when solving for average

convergent trajectories using T-OPT. Although a low number of trials emitted a feasible solution

when applying the strict convergence constraint, the work in this paper is the first example of

finding contraction regions for this hill climbing problem. The low number of solutions is due to

the specifics of the problem and how strict this requirement is. Problems that more readily admit

such solutions would see higher success rate.

26

Trajectories generated through the trajectory optimization framework on average are more

convergent and smoother than the ones produced using RRT and RRT* methods. However, RRT

and RRT* methods produced trajectories with smaller max distance ratios 𝐸𝑚 than the T-OPT

methods when not constraining maximum divergence to be negative. We believe the randomness

when picking heading directions from RRT methods help shrink the maximum distance ratio,

because the maximum divergence direction is rapidly changing at each waypoint, while the optimal

solution keeps the direction of maximum divergence aligned in a similar direction throughout

the trajectory. However, solutions produced by RRT methods would need to first be smoothed

out before implementation, and may lose the benefits of randomized alignment. Post-processing

these trajectories may lead to less optimal solutions or violation of the convergence constraints.

These 2 drawbacks are apparent in the RRT* trajectories. The trajectories produced by RRT*

are smoother than the ones produced by RRT, but in the process, it is likely that the trajectories

aligned the maximum divergence direction in one direction more and worsened the max distance

ratio 𝐸𝑚. In the constrained RRT* cases, RRT* could not exploit creating jagged paths to satisfy

the constraints, and ultimately emitted few or poor convergence trajectories. On the other hand,

trajectories generated from T-OPT can readily be implemented on a robot with simple unicycle

dynamics while guaranteeing optimality and constraints on divergence.

In general, optimizing for convergence is a useful tool for tasks where robots are undersensed or

underactuated. The presented trajectory optimization framework and convergent controller analysis

can also be expanded to more dynamic path planning problems. The framework will directly

translate to other 2 dimensional state space problems. Modifications to eigenvalue analytical

calculations must be made for higher dimensions because they are trivial in the 2D case. In the

future, we plan to analyze the uncertainty growth in non-smooth systems such as hybrid dynamical

systems [Burden et al., 2018a], and to utilize a similar optimization framework to plan robust

walking behaviors for legged robots.

27

Figure 2.3: Rotary Cart Pole Coordinates [Quanser Inc.]

2.6 Optimally Convergent Swing Up for Rotary Cart Pole

2.6.1 Rotary Cart Pole System Definition

The rotary cart pole coordinates are defined in Fig. 2.3. Where the rotary cart angle is 𝜃 and the

pole angle is defined to be 𝛼. The states are defined to be 𝑥 = [𝜃, 𝛼, ¤𝜃, ¤𝛼]𝑇 . The system parameters

of the rotary cart pole are listed in Table 2.3.

The equations of motion for the rotary cart pole system are derived using Lagrangian dynamics.

(
𝑚𝑝𝐿

2
𝑟 +

1
4
𝑚𝑝𝐿

2
𝑝 −

1
4
𝑚𝑝𝐿

2
𝑝 cos(𝛼)2 + 𝐽𝑟

)
¥𝜃 · · ·

−
(
1
2
𝑚𝑝𝐿𝑝𝐿𝑟 cos(𝛼)

)
¥𝛼 +

(
1
2
𝑚𝑝𝐿

2
𝑝 sin(𝛼) cos(𝛼)

)
¤𝜃 ¤𝛼 · · ·

+
(
1
2
𝑚𝑝𝐿𝑝𝐿𝑟 sin(𝛼)

)
¤𝛼2 = 𝜏 − 𝐷𝑟 ¤𝜃 (2.25)

28

DC Motor
𝑅𝑚 Terminal resistance 8.4Ω
𝑘𝑡 Torque constant 0.042𝑁.𝑚/𝐴
𝑘𝑚 Motor back-emf constant 0.042𝑉/(𝑟𝑎𝑑/𝑠)
𝐽𝑚 Rotor inertia 4.0 × 10−6𝑘𝑔.𝑚2

𝐿𝑚 Rotor inductance 1.16𝑚𝐻
𝑚ℎ Load hub mass 0.0106𝑘𝑔
𝑟ℎ Load hub mass 0.0111𝑚
𝐽ℎ Load hub inertia 0.6 × 10−6𝑘𝑔.𝑚2

Load Disk
𝑚𝑑 Mass of disk load 0.053𝑘𝑔
𝑟𝑑 Radius of disk load 0.0248𝑚

Table 2.3: Rotary Cart Pole system parameters [Quanser Inc.]

and

1
2
𝑚𝑝𝐿𝑝𝐿𝑟 cos(𝛼) ¥𝜃 +

(
𝐽𝑝 +

1
4
𝑚𝑝𝐿

2
𝑝

)
¥𝛼 − 1

4
𝑚𝑝𝐿

2
𝑝 cos(𝛼) sin(𝛼) ¤𝜃2 +

1
2
𝑚𝑝𝐿𝑝𝑔 sin(𝛼) = −𝐷 𝑝 ¤𝛼.

(2.26)

By solving for accelerations (¥𝜃, ¥𝛼) the dynamics are defined to be

𝑓 (𝑥, 𝜏, 𝑡) =
[
¤𝜃 ¤𝛼 ¥𝜃 ¥𝛼

]𝑇
(2.27)

The maximum divergence metric for the system 𝐷𝑚 is too large to display, but is positive semi

definite (positive definite in non singular configurations). Therefore, this system cannot produce a

contraction region:

𝐷𝑚 ≥ 0 (2.28)

However, like the hill navigation example, we can minimize the average divergence to reduce the

effects of perturbation on a closed loop controller.

29

2.6.2 Trajectory Optimization

The trajectory optimization for the rotary cart pole swing up is the same as the hill navigation

example as shown in Sec. 2.3.4, with the modifications of removing the cost on maximum

divergence and terms related to the power controller.

The trajectories consist of 𝑁 waypoints and 5 decision variables per waypoint 𝑖: the position

(𝜃(𝑖), 𝛼(𝑖)), velocity (¤𝜃(𝑖), ¤𝛼(𝑖)), and input torque 𝜏(𝑖). In this paper MathWorks MATLAB’s nonlinear

programming solver fmincon [MATLAB] is used with the sequential quadratic programming

(SQP) algorithm. The trajectory optimization framework is initialized with zeros for the minimal

energy trajectory. The minimal energy trajectory is used to seed the creation of a smooth minimal

energy trajectory. Lastly, the smooth minimal energy trajectory is used to initialize the optimally

convergent trajectory.

2.6.3 Controller design

Since a contraction region 𝐷𝑚 < 0 cannot be produced, we must design a controller to stabilize

the trajectory. In this work, Linear Time Varying Linear Quadratic Regulator (LTVLQR) is used

to stabilize the trajectory. The feedback-stabilizing controller is numerically calculated by solving

the differential equation:

− ¤𝑠(𝑡) = 𝑄 − 𝑠(𝑡)𝐵(𝑡)𝑅−1𝐵(𝑡)𝑇 𝑠(𝑡) + 𝑠𝐴(𝑡) + 𝐴(𝑡)𝑇 𝑠 (2.29)

and setting the scheduled gain 𝐾(𝑡) to

𝐾(𝑡) = 𝑅−1𝐵𝑇 𝑠(𝑡) (2.30)

The linear time varying matrices 𝐴(𝑡) and 𝐵(𝑡) are defined by linearizing the vector field (2.27).

By using ode45 [MATLAB], the ODE for 𝑠(𝑡) is solved backwards in time for the duration of

the trajectory where the end condition is set to be 𝑠(𝑇) = 𝑄 𝑓 . By combining the feedforward (open

30

loop) torques and closed loop control, the resulting input torque is defined to be:

𝑢(𝑡) = 𝑢𝑜𝑝𝑒𝑛(𝑡) + 𝐾(𝑡)(𝑥𝑑𝑒𝑠 − 𝑥𝑎𝑐𝑡𝑢𝑎𝑙) (2.31)

2.6.4 Hardware Experiments

To validate the feasibility of the resulting trajectories, they were evaluated on hardware. The weight

on each state was heuristically tuned in 𝑄 until the trajectory could successfully be tracked. As

expected, in both cases, the penalty for pole angle deviation was the largest. Once the pole is in the

vertical position, the controller was switched to infinite time horizon LQR.

2.6.5 Simulating Perturbations Experiment

Perturbations were used to evaluate robustness of trajectories. The goal was to perturb the trajectory

in the direction that would cause the most divergence. Since the linearizations are highly dependent

on pole angle 𝛼, perturbations were applied directly to 𝛼. In this test, perturbations were applied at

every time step of the trajectory as shown in Figs. 2.9 and 2.10, and the perturbed trajectory with a

LTVLQR controller was simulated forward using ode45. To keep comparisons consistent, 𝑄, 𝑄 𝑓 ,

and 𝑅 were set to be the same for both trajectories and an actuator limit of 0.1 Nm was set to better

reflect the real system. Success was defined to be if the simulated trajectory was able to converge

back to the nominal and end with the vertical pole position. Robustness was quantified by dividing

the number of successful trials by the total.

2.6.6 Trajectory Optimization Results

Producing optimal trajectories that could be ran on the real system heavily depended on several

factors.

1. Providing the gradient of the cost function and nonlinear constraints.

2. Adding penalty to change in torque

31

Figure 2.4: Minimal energy trajectory

3. Initialzing the optimization with previous feasible solutions

Without providing the gradient information, the solver often did not converge. When minimizing for

energy, the optimizer produced trajectories with high frequency inputs that would not be trackable

due to the bandwidth of the actuator as shown in Fig. 2.4. Adding penalty to change in torque

drastically improved quality of the trajectory by reducing the frequency of the input signal as shown

in Fig. 2.5.

Lastly, introducing additional terms to the cost function added complexity. When only opti-

mizing for energy, the optimization would solve successfully converge to an optimal solution when

seeded with just zeros, but adding any additional terms would cause the optimizer not to converge.

The minimal energy was first solved for by seeding with zeros Fig. 2.4 and was used to initialize the

optimization for optimizing for smoothness and minimal energy trajectory Fig. 2.5. The smooth

and minimal energy trajectory was then seeded to create the optimally convergent trajectory as

shown in Fig. 2.6 by adding the divergence term to the cost.

2.6.7 Hardware Results

The smooth minimal energy trajectory as shown in Fig. 2.5 and the optimally convergent trajectory

as shown in Fig. 2.6 were both tested on the real hardware as shown in Figs. 2.7 and 2.8.

32

Figure 2.5: Optimally smooth and minimal energy trajectory.

Figure 2.6: Optimally convergent trajectory

Figure 2.7: Tracking the smooth minimal energy trajectory on the real system with pole angle
plotted in the background

33

Figure 2.8: Tracking the optimally convergent trajectory on the real system with pole angle plotted
in the background

However, due to unmodeled nonlinearities introduced through the encoder cabling (acted as a

nonlinear spring), both trajectories on average only succeeded half of the time. It was necessary

to reset the cables initial condition to a favorable location before each trial. This cable also caused

issues with other swing up behaviors such as energy shaping.

2.6.8 Perturbation Results

Both trajectories had negative average divergence as shown in Figs. 2.5 and 2.6: this was attributed

to damping in the system, since damping naturally leads to convergence. As expected, both trajec-

tories were less convergent during the final swing up and were expected to fail when perturbations

were added to the final swing up.

In this test, perturbations with magnitude 1 were applied along the trajectory. When adding

perturbations to the final swing up, both trajectories started to diverge. However, the minimal

energy trajectory also failed on the second to last swing. This is evident in Figs. 2.9 and 2.10

where the trajectories diverged in the minimal energy case both on the second to last swing and the

last swing while in the case of optimally convergent only diverged on the last swing. These results

suggests that planning to minimize average divergence led to avoiding areas in the state space that

are hard to recover from.

34

Figure 2.9: Flowing ±1 radian perturbations with LTVLQR on the smooth minimal energy trajec-
tory

Figure 2.10: Flowing±1 radian perturbations with LTVLQR on the optimally convergent trajectory

35

2.6.9 Conclusion

In this work, optimizing for average divergence rather than just minimum energy directly improved

the success rate for a swing up behavior on a rotary cart pole system. In this underactuated scenario,

optimizing for average divergence seemed to be enough to improve the robustness of the trajectory.

36

Chapter 3

Saltation Matrices: The Essential Tool for

Linearizing Hybrid Systems

3.1 Abstract

Contact is ubiquitous in robotic systems that interact with the world and it introduces complexity

due to the hybrid nature of contact. For example, a robot’s leg swinging in the air is able to

exert very little control effort compared to when it is on the ground. When the leg hits the

ground, the penetrating velocity instantaneously collapses to zero. These changes in dynamics and

discontinuities (or jumps) in state make standard smooth tools for planning, estimation, and control

difficult for hybrid systems. Many strategies seek to smooth these discontinuous events by utilizing

significant control effort to cancel them out so that standard strategies can be applied once they are

nullified – like slowing down before impact to ensure the discontinuity is small. This strategy may

be acceptable for robotic systems which are fully actuated, but many tough and interesting problems

are not fully actuated (legged robots, dexterous manipulation, etc) and require making use of the

natural dynamics of the system. This means that we must allow for jumps in our methods. One of

the key tools for accounting for these jumps is called the saltation matrix. In this paper, we present

an intuitive derivation of the saltation matrix and what it captures, where the saltation matrix has

37

been used in the past, how to use it for linear and quadratic forms, and how to compute it for rigid

body systems with unilateral constraints.

3.2 Introduction

Many interesting problems in engineering can be modeled as hybrid dynamical systems, meaning

that they involve both continuous and discrete states [Back et al., 1993; Lygeros et al., 2003; Goebel

et al., 2009]. These systems can be hybrid due to physical contact, such as robotics manipulation

or legged locomotion [Johnson et al., 2016a], or they can be triggered by control – reacting to

sensor feedback or switching control modes. Meanwhile, most of the tools we have for planning,

control, state estimation, and learning assume continuous (if not smooth) systems. A common

strategy to apply tools that were made for smooth systems to hybrid systems is to minimize the

effect of discontinuities [Yang and Posa, 2021a; Council et al., 2014], e.g. by slowing down to

near zero velocity at the time of an impact event [Raibert et al., 1989] or controllers that work

aroudn the discontinuity. However, these strategies do not make use of the underlying dynamics

of the system and only seek to remove them. This strategy may work out for fully actuated

systems, but generally hybrid systems of interest are underactuated and cannot always cancel out

the discontinuous dynamics.

Rather than trying to assume continuous dynamics, we should instead develop new tools that

account for the effects of discrete events. Often, discrete events are called “jumps” or “resets” and

they map the state from one continuous domain to another. The key to developing new tools is to

both model what happens at the moment of reset, but also account for what happens to neighboring

trajectories (variations) that reset at different times. One might analyze the evolution of variations

through linearization by taking the Jacobian of the reset map. However, this only captures part

of the story. It is just as important to also capture the variation that arises from changes in reset

timing. For example, if the hybrid modes have different dynamics at the boundary, then flowing

trajectories a different amount of time in each mode will result in changes in the variation. The

38

𝑞2
𝑞1

𝑔

𝜃

Figure 3.1: Example drop on a slanted surface with initial covariance. Using the saltation matrix
(Ξ), we correctly estimate the end distribution’s covariance where covariance in the direction of
the constraint is eliminated. Using the incorrect update, only the Jacobian of the reset map (𝐷𝑥𝑅)
leads to retaining belief in the direction of the constraint.

saltation matrix, also known as ..., which captures the total variation caused by both impact timing

and reset dynamics, is the key tool to understanding what happens near a hybrid event up to first

order.

An illustrative example of how the saltation matrix can help us analyze a common hybrid

system, rigid bodies with contact, is shown Fig. 3.1. Here we drop a distribution of balls (centered

about a nominal drop) on a slanted surface. When the balls make contact with the surface, a plastic

impact law is applied which resets the system into a sliding mode on the surface by zeroing out the

velocity into the surface. For this system, we expect the distribution to start out in the full 2D space

and to end up constrained to the 1D surface after all particles have made impact. However, since

the reset map only changes the velocity of the ball, its Jacobian will not capture how variations in

position are mapped. The saltation matrix does capture this information, and accurately predicts

the resulting covariance by accounting for the difference in timing. We show in this tutorial that a

similar trend is found in the generalized case for rigid body contact systems where the configuration

variation needs to also be considered.

The saltation matrix originally appeared in [Aizerman and Gantmakher, 1958, Eq. 3.5] which

39

used it to analyze the stability of periodic motions. Other major works include [Filippov, 1988,

Pg. 118 Eq. 6], [Ivanov, 1998], and [Leine and Nijmeijer, 2004]. The word “saltation” directly

translates to “leap” from Latin – which closely matches to the “jump” name for the hybrid events.

Saltation is also used describe how sand particles “jump” along the ground when blown by wind

in the desert [Owen, 1964].

Recently, there has been an increasing use of saltation matrices for a wide variety of applications

from robotics to computational neuroscience as discussed in Sec. 3.3. The saltation matrix provides

necessary information about event driven hybrid systems for stability analysis and creating efficient

algorithms. It is crucial for anyone dealing with these types of systems to know about the saltation

matrix. In this paper, we present:

• (Sec. 3.3) A survey of where the saltation matrix is being used in a variety of application

areas.

• (Sec. 3.4) The definition of the saltation matrix (Sec. 3.4.1), its derivation (Sec. 3.4.2), and

a tutorial on how it appears in linear (Sec. 3.4.3) and quadratic forms (Sec. 3.4.4).

• (Sec. 3.5) An example showing the saltation matrix calculation for a simple contact system.

• (Sec. 3.6) The derivation of the saltation matrix for a common class of hybrid systems: rigid

body dynamics with contact and friction.

We not only provide a survey and tutorial for the saltation matrix, but also a chain rule derivation of

it (App. 3.8.1), a derivation of using it for propagating covariances through hybrid systems (App.

3.8.3), and a derivation of using it for updating the Riccati equation for hybrid systems (App. 3.8.4).

All of which has not been found anywhere. Different components of the rigid body dynamics with

contact and friction (Sec. 3.6) have been scattered across different texts. In this work, we collect

and unify saltation matrices contact and friction into one general model.

40

3.3 Survey of saltation matrix applications

The saltation matrix has been a valuable tool for analysis and control for a wide variety of fields

from general bifurcations theory [Leine and van Campen, 1999; Leine and Van Campen, 2002,

2006; Di Bernardo et al., 2008; Kowalczyk and Glendinning, 2011], power circuits [Hiskens and

Pai, 2000; Maity et al., 2007; Giaouris et al., 2008; Okafor et al., 2010a; Ivanov, 2000; Mallik et al.,

2020; Bizzarri et al., 2013a, 2011b; Chakrabarty and Kar, 2012; Giaouris et al., 2011; Biggio et al.,

2013], rigid body systems [Jiang et al., 2017; Chawla et al., 2022; Banerjee et al., 2009; Revzen

and Kvalheim, 2015; Bizzarri et al., 2016; Suda and Banerjee, 2016], to hybrid neuron models

[Nobukawa et al., 2015, 2017; Park et al., 2018; Bizzarri et al., 2013b; Coombes et al., 2018; Lai

et al., 2018]. Often, the saltation matrix is used to assess the stability of hybrid dynamical systems.

In general, the stability of periodic systems has been extensively analyzed using the saltation

matrix [Aizerman and Gantmakher, 1958; Leine and Nijmeijer, 2004; Ivanov, 1998]. The most

popular method for analyzing stability of periodic hybrid systems is to analyze the fundamental

matrix solution (as shown in Sec. 3.4.3) which is called the monodromy matrix [Asahara and

Kousaka, 2018; Muñoz et al., 2019; Mandal et al., 2017; Giaouris et al., 2009; Bizzarri et al., 2014;

Bernardo et al., 2008; Elbkosh et al., 2008a; Okafor et al., 2010b; Abusorrah et al., 2017; Daho

et al., 2008; Chakrabarty and Kar, 2020; Morel et al., 2011; Mandal, 2013; Elbkosh et al., 2008b;

Mandal and Banerjee, 2014; Imrayed, 2012; Wu and Pickert, 2014; El Aroudi et al., 2018; Chen

et al., 2019; Bizzarri et al., 2012; Jiang et al., 2017; Gkizas, 2018; Wu et al., 2018; Giaouris et al.,

2006; Kuznyetsov, 2021; Nicks et al., 2018; El Aroudi et al., 2020; Bizzarri et al., 2011a; Lopez

et al., 2004; Maity and Sahu, 2015; Morel et al., 2022; Fečkan and Pospíšil, 2010; El Aroudi et al.,

2017; Chawla et al., 2022; Giaouris et al., 2013; Mandal et al., 2013; Muñoz et al., 2021; Daho,

2012; Banerjee et al., 2011; El Aroudi et al., 2015; Dieci and Elia, 2021; Banerjee et al., 2009;

Ageno and Sinopoli, 2005; Cortés et al., 2013]. The monodromy matrix is heavily used in the

circuits field specifically for determining local stability of converters (due to their switching nature)

and determining if bifurcations will occur [Muñoz et al., 2019; Giaouris et al., 2009; Bizzarri et al.,

2014; Bernardo et al., 2008; Elbkosh et al., 2008a; Okafor et al., 2010b; Abusorrah et al., 2017;

41

Daho et al., 2008; Chakrabarty and Kar, 2020; Morel et al., 2011; Mandal, 2013; Elbkosh et al.,

2008b; Mandal and Banerjee, 2014; Imrayed, 2012; Wu and Pickert, 2014; El Aroudi et al., 2018;

Chen et al., 2019; Bizzarri et al., 2012; Jiang et al., 2017; Gkizas, 2018; Wu et al., 2018; Giaouris

et al., 2006; Kuznyetsov, 2021; Nicks et al., 2018; El Aroudi et al., 2020; Bizzarri et al., 2011a;

Lopez et al., 2004; Maity and Sahu, 2015; Morel et al., 2022; Fečkan and Pospíšil, 2010; El Aroudi

et al., 2017; Chawla et al., 2022; Giaouris et al., 2013; Mandal et al., 2013; Muñoz et al., 2021;

Daho, 2012; Banerjee et al., 2011; El Aroudi et al., 2015; Dieci and Elia, 2021; Banerjee et al.,

2009; Ageno and Sinopoli, 2005; Cortés et al., 2013]. See [El Aroudi et al., 2015] for an in depth

review for analyzing the stability of switching mode power converters. For more information on

bifurcations in periodic systems, see [Müller, 1995; Bockman, 1991] where they discuss Lyapunov

exponents (the rate of separation of infinitesimally close trajectories) for hybrid systems.

In [Zhu et al., 2022], the saltation matrix components of the monodromy matrix are used to

analyze known robotic stabilizing phenomena such as Raibert stepping controller, paddle juggling,

and swing leg retraction. The saltation matrix formulation reveals “shape” parameters, which are

terms in the saltation matrix that are independent from the system’s dynamics, but have an effect

on the stability of the system. We show that these shape parameters can be optimized to generate

stable open loop trajectories for complex hybrid systems that undergo periodic orbits.

A more restrictive but stronger form of stability analysis can be done by anlyzing the convergence

of neighboring trajectories through hybrid events [Burden et al., 2018b] – where global asymptotic

convergence is guaranteed if we are able to show that both the continuous-time flow and the saltation

matrix are infinitesimally contractive.

In addition to stability analysis, saltation matrices are also useful for generating controllers. In

optimal control, value functions are propagated along a trajectory to generate feedback controllers.

For linear time-varying LQR, sensitivity information about a trajectory is used to schedule optimal

gains along that trajectory. To implement optimal trajectory tracking for a hybrid system, [Saccon

et al., 2014] utilized the saltation matrix to update the sensitivity equation (as shown in Sec. 3.4.4).

Due to the sudden jump from the reset map, the optimal controller will also have a jump in the gain

42

schedule, as first noted in [Schwerin et al., 1996]. Other work further expanding and improving on

[Saccon et al., 2014] include [Rijnen et al., 2015, 2017a,b, 2019]. A key concept from these works

is “reference spreading” or “reference extension” which creates a new references by extending the

pre-transition state through the guard and the post-transition state backwards in time. If there is a

mode mismatch, the correct reference extension is selected to track.

Using similar value function approximations and reference spreading, [Kong et al., 2021a]

proposed a contact implicit trajectory optimization method by extending these ideas to iterative

LQR (iLQR). This approach is able to generate both the nominal state trajectory and the feedback

controller without having to specify the mode sequence in advance, as in [Von Stryk, 1999; Kelly,

2017; Schultz and Mombaur, 2009; Posa et al., 2016], or depend on complementarity constraints

that are difficult to solve, as in [Posa et al., 2014; Mordatch et al., 2012]. Recently, this hybrid

iLQR has also been used as an online Model Predictive Controller (MPC) [Kong et al., 2022a].

State estimation also uses sensitivity information in an analogous way, where the saltation

matrix can be used to propagate covariance through a hybrid transition (Sec. 3.4.4). The first

paper to do this is [Biggio et al., 2014], which considers covariance propagation for power-spectral

density calculation in circuits. We utilize this covariance propagation law to extend Kalman

filtering to hybrid dynamical systems [Kong et al., 2021c]. We have also investigated covariance

propagation with noisy guards and uncertainty in the reset map [Payne et al., 2022a]. Using

covariance propagation is powerful for state estimation because it efficiently maintains the belief

of a distribution through hybrid events. In [Kong et al., 2021c], this “Salted Kalman Filter” runs

with comparable accuracy to a hybrid particle filter [Koutsoukos et al., 2002] at a fraction of the

computation time. The main drawbacks are that it uses a Gaussian approximation, that the entire

distribution is propagated instantaneously, and that it is not capable of keeping track of a split

distribution that exists near a hybrid transition (whereas non-parametric filters like the particle filter

can maintain a non-Gaussian and split distribution).

43

Figure 3.2: An example 2 mode hybrid system where the domains are shown in black circlesD, the
dynamics are shown with gray arrows 𝐹, the guard for the current domain is shown in red dashed
𝑔, and the reset from the current mode to the next mode is shown in blue 𝑅.

3.4 What is the saltation matrix and how do you use it

In this section, we define the saltation matrix and the broad class of hybrid systems where saltation

matrices exist (Sec. 3.4.1), derive the expression of the saltation matrix using a geometric approach

(Sec. 3.4.2), show how they are used in linear forms (Sec. 3.4.3), and how they are used in quadratic

forms (Sec. 3.4.4).

3.4.1 Saltation matrix definition

In order to carefully define the saltation matrix, we must first choose a hybrid system definition

from the many versions that exist, e.g. [Back et al., 1993; Lygeros et al., 2003; Goebel et al., 2009;

Johnson et al., 2016a]. Here we closely follow [Kong et al., 2021a].

Definition 1. A 𝐶𝑟 hybrid dynamical system, for continuity class 𝑟 ∈ N>0 ∪ {∞, 𝜔}, is a tuple

H := (J , 𝛤,D, F ,G,R) where the parts are defined as:

1. J := {𝐼, 𝐽, ..., 𝐾} ⊂ N is the finite set of discrete modes.

44

2. 𝛤 ⊂ J × J is the set of discrete transitions forming a directed graph structure over J .

3. D := ⨿𝐼∈J 𝐷 𝐼 is the collection of domains, where 𝐷 𝐼 is a 𝐶𝑟 manifold and the state 𝑥 ∈ 𝐷 𝐼

while in mode 𝐼.

4. F := ⨿𝐼∈J𝐹𝐼 is a collection of 𝐶𝑟 time-varying vector fields, 𝐹𝐼 : R × 𝐷 𝐼 → T𝐷 𝐼 .

5. G := ⨿(𝐼,𝐽)∈𝛤 𝐺(𝐼,𝐽)(𝑡) is the collection of guards, where 𝐺(𝐼,𝐽)(𝑡) ⊂ 𝐷 𝐼 for each (𝐼, 𝐽) ∈ 𝛤

is defined as a regular sublevel set of a 𝐶𝑟 function, i.e. 𝐺(𝐼,𝐽)(𝑡) = {𝑥 ∈ 𝐷 𝐼 |𝑔(𝐼,𝐽)(𝑡, 𝑥) ≤ 0}

and 𝐷𝑥𝑔(𝐼,𝐽)(𝑡, 𝑥) ̸= 0 ∀ 𝑔(𝐼,𝐽)(𝑡, 𝑥) = 0.

6. R : R×G → D is a𝐶𝑟 map called the reset that restricts as 𝑅(𝐼,𝐽) := R|𝐺(𝐼,𝐽)(𝑡): 𝐺(𝐼,𝐽)(𝑡)→ 𝐷𝐽

for each (𝐼, 𝐽) ∈ 𝛤.

Note that we assume that the control input 𝑢(𝑡, 𝑥) is folded into the dynamics F .

Fig. 3.2 shows an example hybrid system where a hybrid execution may consist of a starting

point 𝑥(0) in D𝐼 flowing with dynamics 𝐹𝐼 and reaching the guard condition 𝑔(𝑡, 𝑥) = 0, applying

the reset map 𝑅(𝑡, 𝑥) resetting into D𝐽 and then flowing with the new dynamics 𝐹𝐽 .

Here, we would like to understand how perturbations about a nominal trajectory evolve over

time. For smooth systems, the perturbations about a nominal trajectory can be approximated to

first order using the derivatives of the dynamics 𝐹(𝑡, 𝑥) with respect to state.

𝛿 ¤𝑥 = 𝐷𝑥𝐹(𝑡, 𝑥)𝛿𝑥 (3.1)

The analogous operation can be done for hybrid systems with time triggered reset maps. In this case,

the sensitivity can be found by taking the Jacobian of the reset map, 𝛿𝑥+ = 𝐷𝑥𝑅(𝑡, 𝑥)𝛿𝑥−. However,

this method doesn’t account for discontinuities that are introduced from state triggered reset maps,

when we must consider the change in dynamics between hybrid modes. To account for these

discontinuities, the saltation matrix captures how perturbations map through hybrid transitions to

first order. The saltation matrix, e.g. [Filippov, 1988, Pg. 118 Eq. 6], [Leine and Nijmeijer, 2004],

[Aizerman and Gantmakher, 1958, Eq. 3.5], and [Burden et al., 2018b, Prop. 2]

45

Definition 2. The saltation matrix for reset 𝑅(𝐼,𝐽) is the first order approximation of the variational

update at hybrid transitions from mode 𝐼 to 𝐽, defined as

Ξ(𝐼,𝐽) := 𝐷𝑥𝑅
− +

(
𝐹+
𝐽
− 𝐷𝑥𝑅

− ·𝐹−
𝐼
− 𝐷𝑡𝑅

−) ·𝐷𝑥𝑔
−

𝐷𝑡𝑔
− + 𝐷𝑥𝑔

− ·𝐹−
𝐼

(3.2)

The saltation matrix is an 𝑛𝐽 × 𝑛𝐼 matrix, where 𝑛𝐼 is the dimension of the states in domain 𝐷 𝐼 and

𝑛𝐽 is the dimension of the states in domain 𝐷𝐽 . Note that · in (3.2) represents matrix multiplication,

and in particular results in an outer-product between the terms in the parentheses and 𝐷𝑥𝑔
− to get

a rank-1 correction to the Jacobian of the reset map. The following evaluations are made for the

terms in the saltation matrix

𝐹−𝐼 = 𝐹𝐼(𝑡−, 𝑥(𝑡−)) (3.3)

𝐹+
𝐽 = 𝐹𝐽(𝑡+, 𝑥(𝑡+)) (3.4)

𝑥(𝑡+) = 𝑅(𝐼,𝐽)(𝑡−, 𝑥(𝑡−)) (3.5)

𝐷𝑥𝑅
− = 𝐷𝑥𝑅(𝐼,𝐽)(𝑡−, 𝑥(𝑡−)) (3.6)

𝐷𝑡𝑅
− = 𝐷𝑡𝑅(𝐼,𝐽)(𝑡−, 𝑥(𝑡−)) (3.7)

𝐷𝑥𝑔
− = 𝐷𝑥𝑔(𝐼,𝐽)(𝑡−, 𝑥(𝑡−)) (3.8)

𝐷𝑡𝑔
− = 𝐷𝑡𝑔(𝐼,𝐽)(𝑡−, 𝑥(𝑡−)) (3.9)

where 𝑥 impacts the guard 𝐺(𝐼,𝐽)(𝑡) at time 𝑡 = 𝑡− = 𝑡+, where 𝑡− is the pre-impact time, 𝑡+ is the

post-impact time, and 𝑥(𝑡±) is the limiting value of the signal 𝑥 from the left (−) or right (+). Note

that by 𝐷𝑡 in (3.7) and (3.9) we are referring to the derivative with respect to the first coordinate

(and not the time dependence of 𝑥, which is captured by other terms).

The saltation matrix maps perturbations to first order from pre-transition 𝛿𝑥(𝑡−) to post-

transition 𝛿𝑥(𝑡+) as

𝛿𝑥(𝑡+) = Ξ(𝐼,𝐽)𝛿𝑥(𝑡−) + h.o.t. (3.10)

46

where h.o.t. represents higher order terms.

The saltation matrix in (3.2) returns a good first order approximation when the following

assumptions are true, as listed in [Burden et al., 2018b]

1. Guards and resets are differentiable

2. Trajectories cannot undergo an infinite number of resets in finite time (no Zeno)

3. Trajectories must be transverse to the guard at an event

𝑑

𝑑𝑡
𝑔(𝐼,𝐽)(𝑡, 𝑥(𝑡)) = 𝐷𝑡𝑔

− + 𝐷𝑥𝑔
−𝐹−𝐼 < 0 (3.11)

The saltation matrix relies on differentiating the guards and resets so they must be differentiable.

Transversality ensures that neighboring trajectories impact the same guard as the nominal if the

impact point does not lie in any other guard. Transversality also ensures the denominator in (3.2)

does not approach zero.

The saltation matrix maps perturbations before and after the reset, but in what case does the

mapping become an identity transformation? Knowing when the saltation matrix is identity is

important because we can simplify the computation and analysis for these events.

The most common reason for a saltation matrix to become identity is if both of these conditions

are true:

1. the reset map is an identity transformation, 𝑅 = 𝐼𝑛×𝑛, where 𝑛 is the dimension of the state 𝑥

in both 𝐷 𝐼 and 𝐷𝐽

2. the dynamics in both modes are the same before and after impact, 𝐹−
𝐼

= 𝐹+
𝐽

𝑅 = 𝐼𝑛×𝑛

𝐹−
𝐼

= 𝐹+
𝐽

 =⇒ Ξ = 𝐼𝑛×𝑛 (3.12)

47

𝑎) ®𝑣 = 𝐹−𝐼 𝛿𝑡 + 𝛿𝑥(𝑡−)
𝑏) 0 = 𝐷𝑥𝑔

−®𝑣
𝑐) 𝛿𝑥(𝑡+) = 𝐷𝑥𝑅

−®𝑣 − 𝐹+
𝐽 𝛿𝑡

Figure 3.3: Linearizations made about the nominal trajectory shown in black where a perturbation
is shown in yellow and the perturbed trajectory is shown in blue. At 𝑎) describes ®𝑣 = 𝐹−

𝐼
𝛿𝑡 + 𝛿𝑥(𝑡−).

At 𝑏) we get the guard condition 0 = 𝐷𝑥𝑔
−(𝛿𝑥(𝑡−) + 𝐹−

𝐼
𝛿𝑡). At 𝑐) we get 𝛿𝑥(̃𝑡+) = 𝐷𝑥𝑅

−®𝑣 − 𝐹+
𝐽
𝛿𝑡.

Here 𝛿𝑡 is positive (late transition)

If the reset map is an identity transformation, then 𝐷𝑥𝑅 is also identity and 𝐷𝑡𝑅 is zero. Using

these conditions to simplify the expression in (3.2)

Ξ(𝐼,𝐽) := 𝐼𝑛×𝑛 +
(
𝐹+
𝐽
− 𝐼𝑛×𝑛 ·𝐹−𝐼 − 0𝑛×𝑛

)
·𝐷𝑥𝑔

−

𝐷𝑡𝑔
− + 𝐷𝑥𝑔

− ·𝐹−
𝐼

= 𝐼𝑛×𝑛 (3.13)

3.4.2 Saltation matrix derivation

Here we derive the expression for the saltation matrix (3.2), following the geometric derivation

from [Leine and Nijmeijer, 2004]. In this work, we add reset maps into the derivation. There

are many alternate ways to derive (3.2): a derivation using the chain rule is included in Appendix

3.8.1, and a derivation using a double limit can be found in [Burden et al., 2018b]. For simplicity

of expression, here we assume a time invariant hybrid system, where the 𝐷𝑡 terms drop out, but the

full expression can be similarly derived by linearizing the time varying terms as well (as done in

Appendix 3.8.1).

Suppose the nominal trajectory of interest is 𝑥 as shown in Fig. 3.3. The trajectory starts in

48

mode 𝐼 and goes through a hybrid transition to mode 𝐽 at time 𝑡. The saltation matrix is a first-order

approximation, and as such we take the flow as a constant in each mode, evaluated at time 𝑡± as in

(3.3) and (3.4) such that

𝑥(𝑡 + 𝛿𝑡) = 𝑥(𝑡−) + 𝐹−𝐼 𝛿𝑡 in mode 𝐼 (3.14)

𝑥(𝑡 + 𝛿𝑡) = 𝑥(𝑡+) + 𝐹+
𝐽 𝛿𝑡 in mode 𝐽 (3.15)

We also linearize the reset and guard at 𝑡− as in (3.6) and (3.8), such that

(3.16)�̄�(𝑡 + 𝛿𝑡, 𝑥 + 𝛿𝑥) = 𝑅(𝐼,𝐽)(𝑡−, 𝑥(𝑡−)) + 𝐷𝑥𝑅
−𝛿𝑥 + 𝐷𝑡𝑅

−𝛿𝑡

(3.17)�̄�(𝑡 + 𝛿𝑡, 𝑥 + 𝛿𝑥) = 𝑔(𝐼,𝐽)(𝑡−, 𝑥(𝑡−)) + 𝐷𝑥𝑔
−𝛿𝑥 + 𝐷𝑡𝑔

−𝛿𝑡

where �̄� and �̄� are the linear maps.

Trajectories that are perturbed 𝛿𝑥 away are labeled as �̃�. Perturbations can lead to changing the

impact time 𝛿𝑡 = �̃� − 𝑡 where 𝑡 is the original impact time and �̃� is the perturbed impact time. If

(𝛿𝑡 > 0) then the solution stays longer in the previous hybrid mode and if (𝛿𝑡 < 0) then the solution

transitions early. For simplicity of notation, in this section we assume the perturbed trajectory

reaches the guard surface later, but all of the analysis works equally well for earlier transitions, and

the same expression (3.2) results, as shown in Appendix 3.8.2.

The perturbation at the pre-impact time of the nominal trajectory 𝑡− and the post-impact time

of the perturbed trajectory �̃�+ are

𝛿𝑥(𝑡−) = �̃�(𝑡−) − 𝑥(𝑡−) (3.18)

𝛿𝑥(̃𝑡+) = �̃�(̃𝑡+) − 𝑥(̃𝑡+) (3.19)

where �̃�(𝑡−) is the perturbed trajectory following the previous mode dynamics until time 𝑡−. We

would like to write (3.19) in terms of the nominal trajectory at time of impact 𝑥(𝑡−) and just after

impact 𝑥(𝑡+). Using (3.18) and (3.14), we can write �̃�(̃𝑡−) in terms of the flow before impact 𝐹−
𝐼
𝛿𝑡

49

and the perturbation before impact 𝛿𝑥(𝑡−)

�̃�(̃𝑡−) = 𝑥(𝑡−) + 𝛿𝑥(𝑡−) + 𝐹−𝐼 𝛿𝑡 (3.20)

Note that the summation of 𝛿𝑥(𝑡−) + 𝐹−
𝐼
𝛿𝑡 is labeled as ®𝑣 in Fig. 3.3. By using the linearized

reset map (3.16) and the perturbation expressed in terms of the nominal trajectory (3.20), we can

evaluate the reset at �̃�(̃𝑡−) in terms of the nominal state 𝑥(𝑡−), the initial perturbation 𝛿𝑥(𝑡−), and

the different in impact time 𝛿𝑡

�̃�(̃𝑡+) = 𝑅(𝑡−, 𝑥(𝑡−)) + 𝐷𝑥𝑅
− (
𝛿𝑥(𝑡−) + 𝐹−𝐼 𝛿𝑡

)
+ 𝐷𝑡𝑅

−𝛿𝑡 (3.21)

To get the final term in (3.19), we can use the constant flow after the reset (3.14) to obtain 𝑥(̃𝑡+)

𝑥(̃𝑡+) = 𝑅(𝑡−, 𝑥(𝑡−)) + 𝐹+
𝐽 𝛿𝑡 (3.22)

By combining (3.19), (3.21), and (3.22) we can now write 𝛿𝑥(̃𝑡+) as a linear function of 𝛿𝑥(𝑡−) and

𝛿𝑡

𝛿𝑥(̃𝑡+) = 𝑅(𝑡−, 𝑥(𝑡−)) + 𝐷𝑥𝑅
− (
𝛿𝑥(𝑡−) + 𝐹−𝐼 𝛿𝑡

)
(3.23)

+ 𝐷𝑡𝑅
−𝛿𝑡 −

(
𝑅(𝑡−, 𝑥(𝑡−)) + 𝐹+

𝐽 𝛿𝑡
)

= 𝐷𝑥𝑅
−𝛿𝑥(𝑡−) +

(
𝐷𝑥𝑅

−𝐹−𝐼 + 𝐷𝑡𝑅
− − 𝐹+

𝐽

)
𝛿𝑡 (3.24)

This step is highlighted by the vector addition in Fig. 3.3 Eq. c.

Next, we solve for 𝛿𝑡 as a function of 𝛿𝑥(𝑡−). We can use the linear property of the guard

(3.17) and the perturbation expressed in terms of the nominal trajectory (3.20) to rewrite the guard

evaluated at �̃�(̃𝑡−) as a function of the nominal (and noting that 𝑔(𝑡−, 𝑥(𝑡−)) = 0)

0 = 𝑔(𝑡−, 𝑥(𝑡−)) + 𝐷𝑥𝑔
−(𝛿𝑥(𝑡−) + 𝐹𝐼𝛿𝑡) + 𝐷𝑡𝑔

−𝛿𝑡 (3.25)

50

Figure 3.4: Constant flow hybrid system with identity reset map. The Jacobian of the reset map
𝐷𝑥𝑅 predicts no variational changes whereas using the saltation matrix Ξ predicts the correct
variational changes.

= 𝐷𝑥𝑔
−𝛿𝑥(𝑡−) + (𝐷𝑥𝑔

−𝐹−𝐼 + 𝐷𝑡𝑔
−)𝛿𝑡 (3.26)

This expansion shows up in Fig. 3.3 as Eq. b. Now we write 𝛿𝑡 as a function of 𝛿𝑥(𝑡−)

𝛿𝑡 = − 𝐷𝑥𝑔
−

𝐷𝑥𝑔
−𝐹−

𝐼
+ 𝐷𝑡𝑔

− 𝛿𝑥(𝑡−) (3.27)

Plugging this 𝛿𝑡 into (3.24) and solving for 𝛿𝑥(̃𝑡+) in terms of 𝛿𝑥(𝑡−)

𝛿𝑥(̃𝑡+) = 𝐷𝑥𝑅
−𝛿𝑥(𝑡−) +

(
𝐹+
𝐽
− 𝐷𝑥𝑅

−𝐹−
𝐼
− 𝐷𝑡𝑅

−) 𝐷𝑥𝑔
−

𝐷𝑥𝑔
−𝐹−

𝐼
+ 𝐷𝑡𝑔

− 𝛿𝑥(𝑡−)

= Ξ(𝐼,𝐽)𝛿𝑥(𝑡−) (3.28)

where Ξ is the saltation matrix, as in (3.10).

51

3.4.3 Linear forms for the saltation matrix

Understanding how trajectories behave near a trajectory of interests is crucial for many algorithms

which rely on linearizations. The sensitivity equation describes how these perturbations evolve

over time. For a hybrid system, the time evolution simply applies the standard smooth sensitivity

equation (3.1) for the smooth dynamics and the saltation matrix when a hybrid transition occurs

(3.10). For a transition from mode 𝐼 to mode 𝐽 at time 𝑡− we get

𝛿 ¤𝑥(𝑡) = 𝐴𝐼𝛿𝑥(𝑡) 𝑠.𝑡. 𝑡 ≤ 𝑡− (3.29)

𝛿𝑥(𝑡+) = Ξ(𝐼,𝐽)𝛿𝑥(𝑡−) 𝑠.𝑡. 𝑡 = 𝑡− (3.30)

𝛿 ¤𝑥(𝑡) = 𝐴𝐽𝛿𝑥(𝑡) 𝑠.𝑡. 𝑡 ≥ 𝑡+ (3.31)

where we denote by 𝐴𝐼 := 𝐷𝑥𝐹𝐼(𝑡, 𝑥) the Jacobian of the dynamics with respect to state. An

example is shown in Fig. 3.4, where the sensitivity is only updated by the saltation matrix because

the flows are constant in both modes. We see that if only the Jacobian of the reset is used, we get the

incorrect prediction. Note that sensitivity of hybrid systems are extensively analyzed in [Hiskens

and Pai, 2000] and [Saccon et al., 2014].

Many algorithms consider finite, discrete timesteps. This makes the analysis slightly different,

since the hybrid transition will most likely not occur exactly at the boundary of a discrete timestep.

In this case, we apply what we call a “sandwich” method, where we apply 3 (or more) smaller

discrete updates during a timestep which has a hybrid transition. Consider a time interval, from 𝑡𝑘

to 𝑡𝑘 + Δ over which a single reset occurs at time 𝑡𝑘 + Δ1. The system spends Δ1 in the first mode

and Δ2 = Δ − Δ1 in the second mode. Let 𝐴𝐼,Δ be the Jacobian of the dynamics discretized to time

duration Δ. Then a discrete approximation of the forward dynamics is,

𝛿𝑥(𝑡𝑘+1) = 𝐴𝐽,Δ2Ξ(𝐼,𝐽)𝐴𝐼,Δ1𝛿𝑥(𝑡𝑘) (3.32)

which holds to first order. This result comes from the fundamental matrix solution [Leine and

52

Nijmeijer, 2004, Eq. 7.22].

Extending this idea, consider a periodic orbit of period Δ, such that 𝑥(𝑡) = 𝑥(𝑡 + Δ). In this

case, the fundamental matrix solution is called the monodromy matrix. If the orbit passes through

𝑛 modes labeled 𝑖 = 1, 2, . . . , 𝑛, with mode periods Δ𝑖, then we define the monodromy matrix Φ,

[Leine and Nijmeijer, 2004, Eq. 7.28], [Wang and Hale, 2001, Eq. 1], and [Asahara and Kousaka,

2018, Eq. 12],

Φ = Ξ(𝑛,1)𝐴𝑛,Δ𝑛
Ξ(𝑛−1,𝑛)𝐴𝑛−1,Δ𝑛−1 · · · Ξ(1,2)𝐴1,Δ1 (3.33)

𝛿𝑥(𝑡 + Δ) = Φ𝛿𝑥(𝑡) (3.34)

which holds to first order. This monodromy matrix captures the change in perturbations from

one cycle through the orbit to the next and the eigenvalues (called Floquet multipliers [Leine and

Nijmeijer, 2004]) determine the stability of the trajectory. Namely, if the eigenvalues all have

magnitude less than one then the system is asymptotically stable [Leine and Nijmeijer, 2004].

Related to the monodromy matrix, a common technique to analyze stability of periodic systems

is to analyze the return/Poincaré map. We will give a brief introduction to the Poincaré map, but

more details can be found in [Leine and Nijmeijer, 2004].

A Poincaré map 𝑃(𝑥) converts the continuous-time system to a discrete map. For an autonomous

system with 𝑛 states and a limit cycle 𝐿, the Poincaré map is defined about a fixed point 𝑥∗ on

𝐿 where we define an 𝑛 − 1 dimensional hyper-plane transverse to the flow 𝐹 called the Poincaré

section Ω, with 𝑥∗ ∈ Ω. The Poincaré map tells us how points move along the Poincaré section

after one cycle (𝑃 : Ω ↦→ Ω). Stability of the fixed point is often computed by taking the Jacobian

of the Poincaré map and by analyzing its eigenvalues. If the eigenvalues are less than one (the

requirements for stability for a discrete system), the fixed point 𝑥∗ is stable.

Note that for the autonomous case, the dimensionality of the system is reduced by one due to

the embedding. For the non-autonomous case, we can no longer define a Poincaré section in state

space because it does not regard the dependency on time. Instead, the trajectory is augmented with

53

a periodic time coordinate on 𝑆1, and the Poincaré section is now defined to be at the end of each

period 𝑇 . In this case, the Poincaré map and its Jacobian are in the full 𝑛 space, as the Poincaré

section is defined on the added time coordinate.

Suppose we also construct a monodromy matrix for a cycle that starts and ends at the fixed point

𝑥∗ for one cycle. In the autonomous case, the monodromy matrix will have the same eigenvalues

as the Jacobian of the Poincaré map with an additional eigenvalue equal to one. This is because the

monodromy matrix is still in the full 𝑛 space, and perutrbations along the direction of the flow are

invariant. In the non-autonomous case, the monodromy matrix and the Jacobian of the Poincaré

map are equivalent, and so sometimes the monodromy matrix is defined to be the Jacobian of the

Poincaré map [El Aroudi et al., 2015].

If the system is autonomous and periodic, using the Poincaré map might be more practical

because the analysis is simplified by the reduction of a state variable as shown for passive dynamic

walkers [McGeer, 1990]. However, the benefits of the fundamental matrix solution (monodromy

matrix when periodic) is that it can be used to analyze non-cyclical behaviors. This is especially

important when designing dynamic behaviors that are drastically different like for parkour or

dynamic grasps.

3.4.4 Quadratic forms for the saltation matrix

Similar to linear forms, quadratic forms are often used in algorithms which rely on linearizations

and the evolution of quadratic forms behave similarly to linear forms. For quadratic forms, we

first zoom in at the moment of impact. We assume the input does not instantaneously change,

𝑢(𝑡+) = 𝑢(𝑡−), so that we can just look at variations in state. There are 2 main updates we will look

at, quadratic form of the vector (covariance) as well as the covector (value approximation).

For covariances, recall that the update law for covariance Σ through a discretized smooth system

is

Σ(𝑡𝑘+1) = 𝐴ΔΣ(𝑡𝑘)𝐴𝑇Δ (3.35)

54

Figure 3.5: Constant flow hybrid system with identity reset map. The Jacobian of the reset map𝐷𝑥𝑅

predicts no covariance change whereas using the saltation matrix Ξ predicts the correct covariance.

e.g. as in [Welch and Bishop, 1995, Eqn. 1.10] or [Julier and Uhlmann, 2004, Eqn. 6]. Similarly,

at hybrid transitions we use the saltation matrix in an analagous way (see derivation in Appendix

3.8.3 and validation experiments in Appendix 3.8.5)

Σ(𝑡+) = Ξ(𝐼,𝐽)Σ(𝑡−)Ξ𝑇(𝐼,𝐽) (3.36)

[Biggio et al., 2014, Eqn. 17], [Kong et al., 2021c, Eqn. 7], which holds to first order. As with

linear forms, the sandwich method (3.32) can be applied to get the covariance propagation for an

entire discrete timestep

Σ(𝑡𝑘+1) = 𝐴𝐽,Δ2Ξ(𝐼,𝐽)𝐴𝐼,Δ1Σ(𝑡𝑘)𝐴𝑇𝐼,Δ1
Ξ𝑇(𝐼,𝐽)𝐴

𝑇
𝐽,Δ2

(3.37)

[Kong et al., 2021c, Eqn. 19]. An example is shown in Fig. 3.5, where the covariance is only

updated by the saltation matrix because the flows are constant in both modes. We see that if only

the Jacobian of the reset is used, we get the incorrect end covariance. Algorithms, such as a Kalman

filter [Kong et al., 2021c], that propagate covariances with the dynamics can utilize this update law.

55

In the case of propagating a quadratic form of a co-vector, the transposes flip sides similar to

how a co-vector quadratic form propagates in the smooth domain

𝑃(𝑡𝑘) = 𝐴𝑇Δ𝑃(𝑡𝑘+1)𝐴Δ (3.38)

e.g. as in [Bertsekas, 2012, Eqn. 3.40]. The covector propogation law for the hybrid transition uses

the saltation matrix in an analagous way (see derivation in Appendix 3.8.4)

𝑃(𝑡−) = Ξ𝑇(𝐼,𝐽)𝑃(𝑡+)Ξ(𝐼,𝐽) (3.39)

[Rijnen et al., 2015, Eqn. 23], [Kong et al., 2021a, Eqn. 31]. The main application for the covector

case is in the update to the Riccati equation or Bellman update, e.g. in LQR [Kong et al., 2021a;

Rijnen et al., 2015].

3.5 Example: Calculating the saltation matrix for a ball drop-

ping on a slanted surface

One of the simplest examples of a hybrid system is a 2D point mass (ball) falling and hitting a flat

surface, as shown in Fig. 3.1. Intuitively, the impact should eliminate variations normal to the

constraint in both position and velocity. In this example, we show the computations for the saltation

matrix and how it removes variations normal to the constraint.

3.5.1 Dynamics definition

In this example, we give a summary of the dynamics for this system, but an in-depth derivation

for the general form is given in Sec. 3.6. The horizontal, vertical positions and their velocities

are defined to be the states of the system 𝑥 = [𝑞, ¤𝑞] = [𝑞1, 𝑞2, ¤𝑞1, ¤𝑞2]. The ball has mass 𝑚 and

acceleration due to gravity 𝑎𝑔. For the sake of demonstrating how inputs are handled, the ball is

56

fully actuated with control inputs along the configuration coordinates (𝑢1, 𝑢2). We consider two

cases on friction, one that assume frictionless sliding when in contact with the surface, i.e. the

sliding friction coefficient is zero, 𝜇𝑠 = 0, and one where the friction is sufficient to prevent sliding,

i.e. the ball sticks to a spot.

The ball impacts a sloped surface parameterized by an angle 𝜃, where the position constraint is

defined by the guard function

𝑔(𝑈,𝑆)(𝑡, 𝑥) = sin (𝜃)𝑞1 + cos (𝜃)𝑞2 = 0 (3.40)

where 𝑈 is the unconstrained mode and 𝑆 is the constrained sliding mode (the ball can slide

tangentially along the constraint surface). The resulting velocity constraint Jacobian 𝐽𝑆 in the

sliding mode is

𝐽𝑆(𝑞) = 𝐷𝑞𝑔(𝑈,𝑆)(𝑡, 𝑥) =
[
sin (𝜃) cos (𝜃)

]
, 𝑠.𝑡. 𝐽𝑆 ¤𝑞 = 0 (3.41)

The unconstrained mode dynamics are defined by ballistic motion

¤𝑥 = 𝐹𝑈(𝑡, 𝑥) =
[
¤𝑞1, ¤𝑞2,

𝑢1
𝑚
,
𝑢2 − 𝑎𝑔𝑚

𝑚

]𝑇
(3.42)

The hybrid guard for impact is defined by the constraint 𝑔(𝑈,𝑆)(𝑞) ≤ 0, i.e when the constraint

is met, the impact reset map is applied. The reset map is defined by plastic impact, which enforces

the velocity constraint.

𝑅(𝑈,𝑆)(𝑡, 𝑥) =

𝑞1

𝑞2

¤𝑞1 cos2 (𝜃) − ¤𝑞2 cos (𝜃) sin (𝜃)

¤𝑞2 sin (𝜃)2 − ¤𝑞1 sin (𝜃) cos (𝜃)

(3.43)

The constrained mode dynamics are found by solving the ballistic dynamics while maintaining

57

the velocity constraint

¤𝑥 = 𝐹𝑆(𝑡, 𝑥) =

¤𝑞1

¤𝑞2

𝑢1 cos2 (𝜃)
𝑚

− 𝑢2 cos(𝜃) sin(𝜃)
𝑚

+ 𝑔 𝑚 cos(𝜃) sin(𝜃)
𝑚

𝑢2 sin2 (𝜃)
𝑚

− 𝑔 𝑚 sin2 (𝜃)
𝑚

− 𝑢1 cos(𝜃) sin(𝜃)
𝑚

(3.44)

In the case where we want sticking friction to be applied in a third mode 𝐶, we add a no slip

condition to (3.41)

𝐽𝐶 =

− cos(𝜃), sin(𝜃)

sin(𝜃), cos(𝜃)

 , 𝑠.𝑡. 𝐽𝐶 ¤𝑞 = 0 (3.45)

such that the constrained dynamics become

¤𝑥 = 𝐹𝐶(𝑡, 𝑥) = [¤𝑞1, ¤𝑞2, 0, 0]𝑇 (3.46)

The reset map ends up eliminating all velocities

𝑅(𝑈,𝐶)(𝑡, 𝑥) = [𝑞1, 𝑞2, 0, 0]𝑇 (3.47)

Note that this mode is fully constrained and the ball will just stick to the surface (as ¤𝑞 = 0 after

impact).

3.5.2 Saltation matrix calculation

To compute the saltation matrix, the Jacobians of the guard and reset map with respect to state must

be computed first. The Jacobian of the guard is simply the velocity constraint Jacobian padded

58

with zeros for each velocity coordinate

𝐷𝑥𝑔(𝑈,𝑆)(𝑡, 𝑥) = [𝐽𝑆, 01×2] = [sin(𝜃), cos(𝜃), 0, 0] (3.48)

The Jacobian of the reset map is

𝐷𝑥𝑅(𝑈,𝑆)(𝑡, 𝑥) =

1 0 0 0

0 1 0 0

0 0 cos2 (𝜃) − cos (𝜃) sin (𝜃)

0 0 − cos (𝜃) sin (𝜃) sin2 (𝜃)

(3.49)

The saltation matrix is then computed by plugging in each component, (3.42)–(3.49), into the

definition, (3.2), to get,

Ξ(𝑈,𝑆) =

Ω(𝑈,𝑆) 02×2

02×2 Ω(𝑈,𝑆)

 (3.50)

where Ω(𝑈,𝑆) is a block element consisting of

Ω(𝑈,𝑆) =

cos2 (𝜃) − cos (𝜃) sin (𝜃)

− cos (𝜃) sin (𝜃) sin2 (𝜃)

 (3.51)

For the sticking saltation matrix, similar calculations are made as in the sliding case

𝐷𝑥𝑔(𝑈,𝐶)(𝑡, 𝑥) = [sin(𝜃), cos(𝜃), 0, 0] (3.52)

Note that the guard condition did not change which results in having the same Jacobian of the guard

59

as the sliding case. The Jacobian of the reset map is

𝐷𝑥𝑅(𝑈,𝐶)(𝑡, 𝑥) =

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

(3.53)

The resulting saltation matrix becomes

Ξ(𝑈,𝐶) =

Ω(𝑈,𝐶) 02×2

02×2 02×2

 (3.54)

where Ω(𝑈,𝐶) is a block element consisting of

Ω(𝑈,𝐶) =
1

¤𝑞2 cos (𝜃) + ¤𝑞1 sin (𝜃)

¤𝑞2 cos (𝜃) − ¤𝑞1 cos (𝜃)

− ¤𝑞2 sin (𝜃) ¤𝑞1 sin (𝜃)

 (3.55)

3.5.3 Saltation matrix analysis

Interestingly, the saltation matrix for the sliding case Ξ(𝑈,𝑆) is a block diagonal matrix with a

repeating block element as shown in (3.50)–(3.51), This implies that the variations in position get

mapped equivalently to variations in velocity. By analyzing the eigenvalues and eigenvectors of

this block, we see that variations in the direction of the constraint are eliminated, while variations

tangential to the constraint do not change. The eigenvalues and corresponding eigenvectors of this

block are,

𝜆0 = 0, 𝜆1 = 1

𝑣0 =

sin(𝜃)

cos(𝜃)

 , 𝑣1 =

− cos 𝜃

sin 𝜃

 (3.56)

60

Figure 3.6: Ball drop example with sliding friction which illustrates that position variations in
the direction of the constraint will be eliminated. 𝑣0 is the eigenvector associated with the zero
eigenvalue and 𝜃 is the angle of the surface.

The first eigenvalue is zero, so any variation in the direction of its eigenvector is eliminated. Note

that that this eigenvector is exactly the velocity constraint Jacobian, 𝐽𝑆 = [sin(𝜃), cos(𝜃)]. Thus,

variations off the constraints for both position and velocity go to zero, i.e. no variations lie above

or below the surface once impact is made, as shown in Fig. 3.6. Note that while the reset map zeros

out velocity in this direction (and so this effect arises from the 𝐷𝑥𝑅 term), the reset map has no

effect on positions. For the position block, the effect in the constraint direction arises from the final

𝐷𝑥𝑔 term in the numerator of the second term in (3.2), as in (3.48).

The second eigenvalue is identity, so variations in the direction of its eigenvector do not change.

We see that the eigenvector is tangent to the constraint direction [− cos(𝜃), sin(𝜃)], so variations

tangential to the constraint are not affected by the impact. In fact, the saltation matrix is always

just a rank one update to 𝐷𝑥𝑅 in the direction of 𝐷𝑥𝑔 and all other directions to be unaffected.

Although this is a simple example, this block matrix structure exists for all rigid body systems with

unilateral constraints, as explored in the next section.

61

Figure 3.7: Ball drop example with sticking friction which illustrates that position variations in the
direction of pre-impact velocity will be eliminated. 𝑣0 is the eigenvector associated with the zero
eigenvalue, 𝑞1 is the horizontal configuration, and 𝑞2 is the vertical configuration.

For plastic impact into sticking, (𝑈,𝐶), we expect the variations in configuration to map

differently than velocity variations. This is because the tangential constraint is only applied to the

velocity component and not the configuration, whereas in the normal direction, both position and

velocity had the same constraint – being on the constraint surface. The sticking saltation matrix

Ξ(𝑈,𝐶) reflects this change, where there is no longer a repeated element in the block diagonal.

Instead, the only nonzero component is how variations in position map onto the constraint surface

(3.54)–(3.55). The velocity components are all zero because velocity is fully constrained to zero.

Again, we analyze the non-zero block component by computing the eigenvalues and corresponding

eigenvectors,

𝜆0 = 0, 𝜆1 = 1

𝑣0 =

¤𝑞1

¤𝑞2

 , 𝑣1 =

− cos (𝜃)

sin (𝜃)

 (3.57)

62

Similar to the sliding case, variations tangential to the constraint are preserved. However, the

zero eigenvector is different. Configuration variations that are in the same direction as the impact

velocity will disappear. Fig. 3.7 illustrates this idea, where position variations in the direction of

pre-impact velocities are eliminated. This is intuitive because the ball impacting earlier or later has

no effect if the variation is in line with the impact velocity, it will hit the same contact point and

stick.

3.6 Saltation matrices for generalized rigid body systems with

unilateral constraints

For rigid body systems with contacts, the hybrid modes are the enumeration of different contact

conditions. In this work we adopt the same definition for a hybrid system from [Johnson et al.,

2016a]. These systems are also considered in [Johnson and Koditschek, 2013; Pace and Burden,

2017; Johnson, 2021]. In this section, we define the dynamics of these systems and calculate the

saltation matrix of all the common mode transitions for a single constraint.

3.6.1 Dynamics derivation

In the following examples, we consider four modes, illustrated in Fig. 3.8, where we label the

unconstrained mode approaching the constraint surface to be 𝑈, the unconstrained mode leaving

the surface 𝑉 , a constrained mode 𝐶, and a sliding with friction mode 𝑆. The reason we include

both 𝑈 and 𝑉 is to ensure that elastic impact is not defined with a self-reset and so we can avoid

degenerate impacts just after liftoff, when the velocity is not approaching the constraint but the

guard condition is satisfied 𝑔𝑛 ≤ 0, especially when using numerical integration.

The states of the system are the configuration coordinates 𝑞 and their velocities ¤𝑞, such that

𝑥 := [𝑞, ¤𝑞]𝑇 . The dimension of the configuration 𝑞 is defined to be 𝑚, while the dimension of the

state space 𝑥 is 𝑛 = 2𝑚. Contacts between rigid bodies are regulated through unilateral constraints

𝑔𝑛(𝑡, 𝑥) ≥ 0. Note that 𝑔𝑛(𝑡, 𝑥) only depends on the configuration 𝑞 and not the velocity. When

63

rigid bodies are in contact they must satisfy 𝑔𝑛(𝑥) = 0.

The Jacobian of 𝑔𝑛 with respect to the configuration coordinates is defined to be 𝐽𝑛 := 𝐷𝑞𝑔𝑛(𝑡, 𝑥).

In the sliding mode, the constraint Jacobian consists of just this normal direction constraint, 𝐽𝑆 = 𝐽𝑛.

However, if the no slip condition is added, the constrained mode 𝐶 has a constraint Jacobian

consisting of

𝐽𝐶 =

𝐽𝑡

𝐽𝑛

 (3.58)

For unconstrained modes, 𝐽 is empty.

In any mode, the following acceleration constraint is applied based on that mode’s 𝐽 to maintain

the active constraints until the next guard

𝐽(𝑡, 𝑥) ¥𝑞 + ¤𝐽(𝑡, 𝑥) ¤𝑞 = 0 (3.59)

The equations of motion for each mode are defined by the constrained manipulator dynamics

[Murray et al., 2017], where this constraint is combined with Lagrangian dynamics

𝑀 𝐽𝑇

𝐽 0

¥𝑞

𝜆

 =

Υ − 𝑁

0

 −

𝐶

¤𝐽

 ¤𝑞 (3.60)

[Johnson and Koditschek, 2013, Eqn. 33] where 𝜆 is the constraint force (Lagrange multiplier),

𝑀(𝑞) is the mass matrix, 𝐶(𝑞, ¤𝑞) is the Coriolis matrix, Υ(𝑢) the input vector, and 𝑁(𝑞, ¤𝑞) are the

other nonlinear forces such as gravity and sliding friction.

To help with the following equations, the † notation from [Johnson et al., 2016a, Eqn. 8] is

adopted where in each mode

𝑀† 𝐽†𝑇

𝐽† Λ

 :=

𝑀 𝐽𝑇

𝐽 0

−1

(3.61)

64

From this definition we can derive a number of identities, in particular,

𝑀†𝑀 = 𝐼𝑚×𝑚 − 𝐽†𝑇 𝐽 (3.62)

[Johnson et al., 2016a, Eqn. 11], which will be helpful in simplifying the saltation matrix expres-

sions.

With this notation we can now expand the state space dynamics as

¤𝑥 =
𝑑

𝑑𝑡

𝑞

¤𝑞

 =

¤𝑞

𝑀† (Υ − 𝑁 − 𝐶 ¤𝑞) − 𝐽†𝑇 ¤𝐽 ¤𝑞

 (3.63)

[Johnson et al., 2016a, Eqn. 75] where each † component is different depending on the hybrid mode

based on 𝐽. For the unconstrained case, 𝑀† = 𝑀−1.

When sliding, we assume Couloumb friction – frictional forces in the tangential direction 𝐹𝑡

(included in 𝑁) are applied to resist sliding motion proportional to the normal constraint force, 𝜆𝑛,

and in the direction resisting the sliding velocity, 𝑣𝑡 = 𝐽𝑡 ¤𝑞

𝐹𝑡 = 𝜇𝑠𝜆𝑛
𝐽𝑡 ¤𝑞
∥𝐽𝑡 ¤𝑞∥

= 𝜇𝑠𝜆𝑛
𝑣𝑡

∥𝑣𝑡 ∥
(3.64)

where 𝜇𝑠 is the sliding coefficient of friction.

When a contact constraint is added, for example the normal surface constraint 𝑔𝑛, we apply an

impact law, 𝐽𝑛 ¤𝑞+ = −𝑒𝐽𝑛 ¤𝑞− (where the coefficient of restitution 𝑒 = 1 is perfectly elastic and 𝑒 = 0

is perfectly plastic), along with the impulse momentum equation to get

¤𝑞+

𝑝

 =

𝑀 𝐽𝑇𝑛

𝐽𝑛 0

−1

𝑀

−𝑒𝐽𝑛

 ¤𝑞
− =

𝑀
†
𝑛 𝐽

†𝑇
𝑛

𝐽
†
𝑛 Λ𝑛

𝑀

−𝑒𝐽𝑛

 ¤𝑞
− (3.65)

[Johnson et al., 2016a, Eqn. 23], [Johnson, 2021], where 𝑝 is the impulse magnitude vector. Since

the positions do not change instantaneously, the state space reset map for elastic, frictionless impact

65

Figure 3.8: Depicting the different rigid body hybrid modes considered where blue arrows depict
velocities and red arrows depict forces. 𝑈 is the unconstrained mode with approaching velocity to
the constraint, 𝑉 is the unconstrained mode with separating velocity, 𝐶 is the constrained mode,
and 𝑆 is the sliding mode on the constraint. A single planar point is shown here, but the system
may have additional degrees of freedom.

from mode𝑈 to mode 𝑉 is

𝑥+ =

𝑞+

¤𝑞+

 = 𝑅(𝑈,𝑉)(𝑡, 𝑥−) =

𝑞−

𝑀
†
𝑛𝑀 ¤𝑞− − 𝑒𝐽†𝑇𝑛 𝐽𝑛 ¤𝑞−

 (3.66)

The plastic, frictionless impact reset map into mode 𝑆 follows (3.66) but with 𝑒 = 0 (and written

with 𝐽𝑆 for mode 𝑆, though 𝐽𝑆 = 𝐽𝑛, and similarly 𝑀†
𝑆
)

𝑥+ =

𝑞+

¤𝑞+

 = 𝑅(𝑈,𝑆)(𝑡, 𝑥−) =

𝑞−

𝑀
†
𝑆
𝑀 ¤𝑞−

 (3.67)

The frictional, plastic impact reset map, 𝑅(𝑈,𝐶), follows (3.67) but with 𝐽𝐶 and 𝑀†
𝐶

instead of 𝐽𝑆

and 𝑀†
𝑆
. Similarly, the liftoff reset maps into modes 𝑈 or 𝑉 are the same except that there is no

constraint 𝐽, and so the reset simplifies to an identity map. Note that the reset map does not depend

on the prior mode, so for example 𝑅(𝑆,𝐶) = 𝑅(𝑈,𝐶).

3.6.2 Apex

Apex is a “virtual” hybrid event – one that is specified by us and does not have a physical reset map

or change in the dynamics – and is triggered when the velocity switches from going away from the

66

constraint to towards the constraint (𝑉,𝑈). As the reset map is identity, and the dynamics match

before and after (since we don’t specify a difference in control at this event) the saltation matrix is

identity following (3.12)

Ξ(𝑉,𝑈) = 𝐼𝑛×𝑛 (3.68)

3.6.3 Liftoff

Liftoff is a hybrid transition into mode 𝑉 from 𝑆 or 𝐶 that depends on the constraint force 𝜆(𝑡, 𝑥),

which is both a function of time and state (and implicitly a function of control input), and is

calculated from the bottom row of (3.60)

𝜆(𝑡, 𝑥) = 𝐽† (Υ − 𝑁 − 𝐶 ¤𝑞) − Λ ¤𝐽 ¤𝑞 (3.69)

The guard for liftoff is determined by 𝜆𝑛, the constraint force in the 𝐽𝑛 direction: if the force

becomes non-repulsive, then the contact is released

𝑔(𝐶,𝑉)(𝑡, 𝑥) = 𝜆𝑛(𝑡, 𝑥) (3.70)

𝑔(𝑆,𝑉)(𝑡, 𝑥) = 𝜆𝑛(𝑡, 𝑥) (3.71)

Because the hybrid event occurs when the constraint force goes to zero, the dynamics at the

boundary are equal. This is true even in the case of sticking friction in mode 𝐶, as the friction

cone ensures that either the system will transition to sliding mode 𝑆 (as discussed in Sec. 3.6.6)

or the frictional force goes to zero at the same time. The state does not jump during liftoff, which

meaning the reset map for liftoff is an identity transformation. Since both conditions of (3.12) are

met for liftoff, the saltation matrices are identity

Ξ(𝐶,𝑉) = 𝐼𝑛×𝑛 (3.72)

67

Ξ(𝑆,𝑉) = 𝐼𝑛×𝑛 (3.73)

Due to the smooth nature of liftoff, we can safely ignore liftoff events when considering variations

from liftoff.

3.6.4 Plastic impact

Plastic impact occurs when the unconstrained mode 𝑈 makes contact and transitions to either the

sliding mode 𝑆 or the constrained mode 𝐶. We first analyze plastic impact into sliding (𝑈, 𝑆). For

simplicity, we assume frictionless sliding 𝜇𝑠 = 0 to expose the structure in the saltation matrix, but

the same calculations can be made with non-zero sliding friction 𝜇𝑠 > 0. The dynamics for each

mode is from (3.63)

𝐹𝑈(𝑡, 𝑥−) =

¤𝑞−

𝑀−1(Υ − 𝐶− ¤𝑞− − 𝑁)

 (3.74)

𝐹𝑆(𝑡, 𝑥+) =

¤𝑞+

𝑀
†
𝑆
(Υ − 𝐶+ ¤𝑞+ − 𝑁) − 𝐽†𝑇

𝑆
¤𝐽+
𝑆
¤𝑞+

 (3.75)

Note that − or + on 𝐶 and ¤𝐽 indicates that these functions use the pre- or post-impact velocity, ¤𝑞−

or ¤𝑞+, respectively. The Jacobian of the reset map for plastic impact, (3.67), is

𝐷𝑥𝑅(𝑈,𝑆)(𝑡, 𝑥−) =

𝐼𝑚×𝑚 0𝑚×𝑚

𝐷𝑞(𝑀†
𝑆
𝑀 ¤𝑞−) 𝑀

†
𝑆
𝑀

 (3.76)

The Jacobian of the guard 𝐷𝑥𝑔(𝑈,𝑆)(𝑡, 𝑥−) is

𝐷𝑥𝑔(𝑈,𝑆)(𝑡, 𝑥−) =
[
𝐽𝑆 01×𝑚

]
(3.77)

68

while the denominator of Ξ(𝑈,𝑆), 𝐷𝑥𝑔(𝑈,𝑆)𝐹𝑈 , is

𝐷𝑥𝑔(𝑈,𝑆)(𝑡, 𝑥−)𝐹𝑈(𝑡, 𝑥−) =
[
𝐽𝑆 01×𝑚

]
𝐹𝑈(𝑡, 𝑥−) = 𝐽𝑆 ¤𝑞− (3.78)

In this example, the guard and reset map are independent of time, 𝐷𝑡𝑅 = 0𝑛×1, 𝐷𝑡𝑔 = 0.

However, in other cases such as a paddle juggler [Sternad et al., 2001], the impact surface can move

as a function determined by time, in which case the guard and reset would depend on the prescribed

motion.

To further simplify the component of the saltation matrix (3.2) that contains the difference

between dynamics, 𝐹𝑆 − 𝐷𝑥𝑅𝐹𝑈 , we apply the following steps. First, substitute in ¤𝑞+ = 𝑀†
𝑆
𝑀 ¤𝑞− =

¤𝑞− − 𝐽†𝑇
𝑆
𝐽𝑆 ¤𝑞− using the reset map (3.67) and the identity (3.62). Then, plugging into the difference

between dynamics

𝐹𝑆(𝑡, 𝑥+) − 𝐷𝑥𝑅(𝑈,𝑆)(𝑡, 𝑥−)𝐹𝑈(𝑡, 𝑥−) = (3.79)
−𝐽†𝑇

𝑆
𝐽𝑆 ¤𝑞−

𝑀
†
𝑆
(𝐶− ¤𝑞− − 𝐶+ ¤𝑞+) − 𝐽†𝑇

𝑆
¤𝐽+
𝑆
¤𝑞+ − 𝐷𝑞(𝑀†

𝑆
𝑀 ¤𝑞−) ¤𝑞−

 (3.80)

The saltation matrix for plastic impact is obtained by inserting all terms into (3.2) and simplifying

(using (3.62) again)

Ξ(𝑈,𝑆) =

𝑀
†
𝑆
𝑀 0𝑚×𝑚

𝑍𝑆 + 𝐷𝑞(𝑀†
𝑆
𝑀 ¤𝑞−) 𝑀

†
𝑆
𝑀

 (3.81)

where

(3.82)
𝑍𝑆

=
(
𝑀
†
𝑆
(𝐶− ¤𝑞− − 𝐶+ ¤𝑞+) − 𝐽†𝑇

𝑆
¤𝐽+
𝑆 ¤𝑞

+ − 𝐷𝑞(𝑀†
𝑆
𝑀 ¤𝑞−) ¤𝑞−

)
· 𝐽𝑆/(𝐽𝑆 ¤𝑞−)

Note that the difference between the Jacobian of the reset map 𝐷𝑥𝑅 is in the first column of the

matrix where the identity matrix is now 𝑀
†
𝑆
𝑀 and the element on the lower left differs significantly,

as shown by (3.82).

When impacting into the frictional constrained mode 𝐶, all steps remain the same except with

69

𝐽𝐶 instead of 𝐽𝑆 (and similarly 𝑀†
𝐶

and 𝐽†𝑇
𝐶

). However, the upper left block of the saltation matrix no

longer simplifies as nicely with the Jacobian of the guard 𝐷𝑥𝑔 terms. This is because 𝐽𝑆 = 𝐷𝑥𝑔 = 𝐽𝑛

but 𝐽𝐶 ̸= 𝐷𝑥𝑔. Rather, 𝐷𝑥𝑔 = 𝐽𝑛 is a row of 𝐽𝐶 , i.e. the non-penetrating constraint. The resulting

saltation matrix is

Ξ(𝑈,𝐶) =

𝐼𝑚×𝑚 −

𝐽
†𝑇
𝐶
𝐽𝐶 ¤𝑞−𝐽𝑛
𝐽𝑛 ¤𝑞− 0𝑚×𝑚

𝑍𝐶 + 𝐷𝑞(𝑀†
𝐶
𝑀 ¤𝑞−) 𝑀

†
𝐶
𝑀

 (3.83)

where

(3.84)
𝑍𝐶

=
(
𝑀
†
𝐶

(𝐶− ¤𝑞− − 𝐶+ ¤𝑞+) − 𝐽†𝑇
𝐶
¤𝐽+
𝐶 ¤𝑞

+ − 𝐷𝑞(𝑀†
𝐶
𝑀 ¤𝑞−) ¤𝑞−

)
𝐽𝐶/(𝐽𝐶 ¤𝑞−)

Again, the difference between the saltation matrix and the Jacobian of the reset is in the left

column associated with the configuration variations. However, the upper left block no longer maps

configuration variations exactly the same as velocity variations in the lower right, because the

tangential constraint is only a velocity constraint – the contact point can be anywhere on the contact

surface, whereas the velocity of the contact point must be the same everywhere on the surface.

3.6.5 Elastic impact

When the coefficient of restitution is non-zero, states in the approaching unconstrained mode 𝑈

transition directly to the separating unconstrained mode 𝑉 through elastic impact. The dynamics

for each mode, (3.63), are

𝐹𝑈(𝑡, 𝑥−) =

¤𝑞

𝑀−1(Υ − 𝐶− ¤𝑞− − 𝑁)

 (3.85)

𝐹𝑉 (𝑡, 𝑥+) =

¤𝑞+

𝑀−1(Υ − 𝐶+ ¤𝑞+ − 𝑁)

 (3.86)

70

Again, note that − or + on 𝐶 indicates that these functions use the pre- or post-impact velocity, ¤𝑞−

or ¤𝑞+, respectively. The Jacobian of the reset map for elastic impact, (3.66), is

𝐷𝑥𝑅
−
(𝑈,𝑉) =

𝐼𝑚×𝑚 0𝑚×𝑚

𝐷𝑞((𝑀†𝑛𝑀 − 𝑒𝐽†𝑇𝑛 𝐽𝑛) ¤𝑞−) 𝑀
†
𝑛𝑀 − 𝑒𝐽†𝑇𝑛 𝐽𝑛

 (3.87)

The Jacobian of the guard is again 𝐷𝑥𝑔 = [𝐽𝑛, 01×𝑛]. Plugging each component back into the full

saltation matrix equation results in

Ξ(𝑈,𝑉) =

𝑀†𝑀 − 𝑒𝐽†𝑇 𝐽 0𝑚×𝑚

𝑍𝑉+𝐷𝑞((𝑀†𝑀 − 𝑒𝐽†𝑇 𝐽) ¤𝑞−) 𝑀†𝑀−𝑒𝐽†𝑇𝐽

 (3.88)

where 𝐽 and 𝑀† use the normal constraint, 𝐽𝑛 and 𝑀†𝑛 , and

(3.89)

𝑍𝑉

=
([
𝑀−1(𝐶− − 𝐶+(𝑀†𝑛𝑀 − 𝑒𝐽†𝑇𝑛 𝐽𝑛)) − 𝐷𝑞((𝑀†𝑛𝑀 − 𝑒𝐽†𝑇𝑛 𝐽𝑛) ¤𝑞−)

]
¤𝑞−

+ (1 + 𝑒)𝐽†𝑇𝑛 𝐽𝑛𝑀−1(Υ − 𝐶− ¤𝑞− − 𝑁)
)
· 𝐽𝑛/(𝐽𝑛 ¤𝑞−)

Note that the following substitution can be made 𝑀†𝑀 − 𝑒𝐽†𝑇 𝐽 = 𝐼𝑚×𝑚 − (1 + 𝑒)𝐽†𝑇 𝐽 by (3.62).

Again, the main point is that the block diagonal terms are identical and that there are additional

position variation terms that are not accounted for with just the Jacobian of the reset map.

3.6.6 Stick-slip friction

The saltation matrix for stick-slip friction has been calculated in [Leine and Nijmeijer, 2004,

Sec. 7.3]. We recompute this saltation matrix for our generalized system and analyze its components.

When the friction cone is broken, the mode is switched from the constrained mode 𝐶 to the

sliding mode 𝑆. The guard to check for slipping is the friction cone

𝑔(𝐶,𝑆)(𝑡, 𝑥) = 𝜇𝑠∥𝜆𝑛(𝑡, 𝑥)∥−∥𝜆𝑡(𝑡, 𝑥)∥= 0 (3.90)

71

where 𝜇𝑠 is the coefficient of static friction. The reset map for these hybrid transitions is an identity

transformation 𝑥+ = 𝑅(𝐶,𝑆)(𝑥−) = 𝑥−, and therefore 𝐷𝑥𝑅(𝐶,𝑆) = 𝐼𝑛×𝑛.

If the guard 𝑔(𝐶,𝑆) is met, we can assume that slipping will also occur in the direction of the

maximum tangential force. Therefore, at the slipping boundary, if both the coefficient of static

friction and kinetic friction match, 𝜇𝑠 = 𝜇𝑘 , then Δ𝐹 = 0 and the saltation matrix is identity by

(3.12). Any model where the coefficients of friction match at the boundary will result in an identity

saltation matrix. This includes fixed, Coulomb friction with matching coefficients and models

where 𝜇𝑘 is a function of velocity, such as Stribeck friction, so long as at 𝑣𝑡 = 𝐽𝑡 ¤𝑞 = 0, 𝜇𝑘 (0) = 𝜇𝑠,

to get

𝜇𝑠 = 𝜇𝑘 =⇒ 𝐹𝑆 − 𝐹𝐶 = 0

=⇒ Ξ(𝐶,𝑆) = 𝐼𝑛×𝑛

(3.91)

(3.92)

If 𝜇𝑠 ̸= 𝜇𝑘 , the saltation matrix is not necessarily identity, and the general computations of the

saltation matrix can be made to obtain this form

𝜇𝑠 ̸= 𝜇𝑘 =⇒ 𝐹+
𝑆 − 𝐹

−
𝐶 ̸= 0

=⇒ Ξ(𝐶,𝑆) = 𝐼𝑛×𝑛 +
(𝐹+
𝑆
− 𝐹−

𝐶
) · 𝐷𝑥𝑔(𝐶,𝑆)

𝐷𝑡𝑔(𝐶,𝑆) + 𝐷𝑥𝑔(𝐶,𝑆)𝐹
−
𝐶

(3.93)

(3.94)

For this saltation matrix, position variations do not change because the reset map is identity and

the top row of 𝐹𝑆 and 𝐹𝐶 are equal (i.e. the velocity ¤𝑞 does not change between modes).

However, this saltation matrix will be very prone to modeling errors as it depends on knowing

exactly how the sliding and sticking coefficients differ. From a modeling perspective, it may be

advantageous to assume that at the boundaries they match.

72

3.6.7 Slip-stick friction

When the tangential velocity in mode 𝑆 goes to zero, the sliding stops and “sticks” into the

constrained mode 𝐶. Therefore, the guard1 at slip stick friction is just the tangential velocity

𝑔(𝑆,𝐶)(𝑡, 𝑥) = 𝐽𝑡 ¤𝑞 = 𝑣𝑡 (3.95)

𝐷𝑥𝑔(𝑆,𝐶)(𝑡, 𝑥) =
[
¤𝐽−𝑡 𝐽𝑡

]
(3.96)

The reset is an identity transformation, 𝑥+ = 𝑅(𝑆,𝐶)(𝑥−) = 𝑥−, and therefore 𝐷𝑥𝑅(𝑆,𝐶) = 𝐼𝑛×𝑛, so

the saltation matrix is primarily composed of the difference between the dynamics of both modes

and the tangential velocity term from the guard. For this hybrid transition, the dynamics will not

be equal at the boundary because, while sliding, the tangential acceleration constraint will not be

satisfied until transitioning to 𝐶. Since the guard is not directly a function of time or control input

in this case, 𝐷𝑡𝑔(𝑆,𝐶) = 0 and can be ignored, and the saltation matrix is

Ξ(𝑆,𝐶) = 𝐼𝑛×𝑛 +
(𝐹+
𝐶
− 𝐹−

𝑆
) ·

[
¤𝐽−𝑡 𝐽𝑡

]
¤𝐽−𝑡 ¤𝑞− + 𝐽𝑡 ¥𝑞−

(3.97)

Note that the denominator is the tangential acceleration constraint (3.59) in mode 𝐶. If this

condition is met at the exact moment that the velocity guard is satisfied while in the sliding mode 𝑆,

the saltation matrix is not well defined; however, this would violate the transversality assumption

(3.11). For this saltation matrix, as with stick-slip, position variations do not change because the

reset map is identity and the top row of 𝐹𝐶 and 𝐹𝑆 are equal (i.e. the velocity ¤𝑞 does not change

between modes).

1Note that there is an additional condition that 𝜆𝑡 < 𝜇𝑠𝜆𝑛 in order to stick, which we assume is satisfied in this
section.

73

3.7 Conclusion

The saltation matrix is an essential tool when dealing with hybrid systems with state dependent

switches. In this paper, we derive the saltation matrix with two different methods and demonstrate

how the saltation matrix can be used in linear and quadratic forms for hybrid systems. We also

provide a survey of where saltation matrices are used in other fields. In the past, it has been heavily

utilized for analyzing the stability of periodic systems, but more recently it has been critical for

analyzing and designing non-periodic behaviors. This analysis is especially useful for robotics

where many important robotic motions are not periodic, but are hybrid due to the discontinuous

nature of impact in rigid body systems with unilateral constraints.

To further explore the nature of contact and how variations are mapped through them, we first

analyze a simple contact system where we compute the saltation matrix for plastic impact and

analyze the different components of the resulting saltation matrices. We find that these saltation

matrices capture the entirety of how position variations are mapped through contact, whereas the

Jacobian of the reset map does not provide any information on position. In addition to this simple

example, we compute saltation matrices for each of the hybrid transitions for a generalized rigid

body model and give insights on them. These computations are especially useful because the rigid

body model covers a wide variety of systems and will help when getting started using saltation

matrices for these systems. When analyzing these saltation matrices, we found similar structures in

them as the ones we found in the simple example. In particular, by only using the Jacobian of the

reset map instead of the saltation matrix, the entirety of the position variational information is lost.

For other hybrid transitions such as stick-slip friction, the Jacobian of the reset map provides no

additional information because it is an identity transformation and all the information is contained

from the saltation matrix.

By using saltation matrices for hybrid systems, we can produce efficient analysis, planning,

control, and state estimation algorithms. This is especially important as hybrid systems naturally

have combinatoric time complexities and through the use of these tools we can simplify these

problems. The hope of this paper is to introduce the topic of saltation matrices to a broader

74

community so that we can, as a whole, develop better methods for dealing with the complexities of

hybrid systems and their applications.

3.8 Appendicies

We derive the chain rule derivation of the saltation matrix and the early impact case for the geometric

derivation. We also prove the update laws through hybrid events for both covariance propagation

and the Riccati equations.

3.8.1 Saltation matrix chain rule derivation

Define the solutions of hybrid domains 𝐼 and 𝐽 which map an initial state state 𝑥 at time 𝑡0 to a state

𝑥 𝑓 at time 𝑡 𝑓

𝜙𝐼 : (𝑡0 ∈ R, 𝑡 𝑓 ∈ R, 𝑥 ∈ D𝐼) ↦→ 𝑥 𝑓 ∈ D𝐼 (3.98)

𝜙𝐽 : (𝑡0 ∈ R, 𝑡 𝑓 ∈ R, 𝑥 ∈ D𝐽) ↦→ 𝑥 𝑓 ∈ D𝐽 (3.99)

such that the vector fields 𝐹𝐼(𝑡0, 𝑥) = −𝐷𝑡0𝜙𝐼(𝑡0, 𝑡 𝑓 , 𝑥) and 𝐹𝐼(𝑡 𝑓 , 𝑥) = 𝐷𝑡 𝑓 𝜙𝐼(𝑡0, 𝑡 𝑓 , 𝑥) for both

modes. Define the solution across a hybrid transition from mode 𝐼 to 𝐽 to be

𝜙(𝑡0, 𝑡 𝑓 , 𝑥) :=𝜙𝐽(𝜏(𝑥), 𝑡 𝑓 , 𝑅(𝐼,𝐽)(𝜏(𝑥), 𝜙𝐼(𝑡0, 𝜏(𝑥), 𝑥))) (3.100)

where 𝜏(𝑥) is the time to impact map, such that

𝑔(𝐼,𝐽)(𝜏(𝑥), 𝜙𝐼(𝑡0, 𝜏(𝑥), 𝑥)) = 0 (3.101)

It helps to look at the in between steps of the function composition in (3.100)

𝑥−(𝑥) = 𝜙𝐼(𝑡0, 𝜏(𝑥), 𝑥) (3.102)

75

𝑥+(𝑥) = 𝑅(𝐼,𝐽)(𝜏(𝑥), 𝑥−) (3.103)

𝑥 𝑓 (𝑥) = 𝜙𝐽(𝜏(𝑥), 𝑡 𝑓 , 𝑥+) (3.104)

where 𝑥 𝑓 = 𝜙(𝑡, 𝑥) is the final state in the new mode. We want to find the derivative of 𝜙 with

respect to 𝑥 using the chain rule on each of these steps

𝐷𝑥𝑥
−(𝑥) = 𝐷𝜏(𝑥)𝜙𝐼𝐷𝑥𝜏 + 𝐷𝑥𝜙𝐼 (3.105)

𝐷𝑥𝑥
+(𝑥) = 𝐷𝜏(𝑥)𝑅(𝐼,𝐽)𝐷𝑥𝜏 + 𝐷𝑥−(𝑥)𝑅(𝐼,𝐽)𝐷𝑥𝑥

− (3.106)

𝐷𝑥𝑥 𝑓 (𝑥) = 𝐷𝜏(𝑥)𝜙𝐽𝐷𝑥𝜏 + 𝐷𝑥+(𝑥)𝜙𝐽𝐷𝑥𝑥
+ (3.107)

where the arguments to each function are suppressed but equal to their corresponding value in

(3.102)–(3.104).

Combining these, we get
(3.108)𝐷𝑥𝜙 = 𝐷𝜏(𝑥)𝜙𝐽𝐷𝑥𝜏 + 𝐷𝑥+(𝑥)𝜙𝐽[𝐷𝜏(𝑥)𝑅(𝐼,𝐽)𝐷𝑥𝜏 + 𝐷𝑥−(𝑥)𝑅(𝐼,𝐽)(𝐷𝜏(𝑥)𝜙𝐼𝐷𝑥𝜏 + 𝐷𝑥𝜙𝐼)]

As we are taking a first order approximation, the terms 𝐷𝑥𝜙𝐼 and 𝐷𝑥+(𝑥)𝜙𝐽 are identity, and so

this simplifies to (with additional substitutions for 𝐹𝐼 and 𝐹𝐽)
(3.109)𝐷𝑥𝜙 = (−𝐹𝐽 + 𝐷𝜏(𝑥)𝑅(𝐼,𝐽) + 𝐷𝑥−(𝑥)𝑅(𝐼,𝐽)𝐹𝐼)𝐷𝑥𝜏 + 𝐷𝑥−(𝑥)𝑅(𝐼,𝐽)

To obtain 𝐷𝑥𝜏 we use the implicit function theorem and take the chain rule on the guard condition,

0 = 𝑔(𝐼,𝐽)(𝜏(𝑥), 𝑥−), and using (3.105) to get the following relation

0 = 𝐷𝜏(𝑥)𝑔(𝐼,𝐽)𝐷𝑥𝜏(𝑥) + 𝐷𝑥−(𝑥)𝑔(𝐼,𝐽)𝐷𝑥𝑥
− (3.110)

0 =
(
𝐷𝜏(𝑥)𝑔(𝐼,𝐽) + 𝐷𝑥−(𝑥)𝑔(𝐼,𝐽)𝐹𝐼

)
𝐷𝑥𝜏 + 𝐷𝑥−(𝑥)𝑔(𝐼,𝐽) (3.111)

𝐷𝑥𝜏(𝑥) =
−𝐷𝑥−(𝑥)𝑔(𝐼,𝐽)

𝐷𝜏(𝑥)𝑔(𝐼,𝐽) + 𝐷𝑥−(𝑥)𝑔(𝐼,𝐽)𝐹𝐼
(3.112)

Plugging back into (3.109), evaluating at 𝑡 = 𝜏(𝑥) = 0, substituting the notation from (3.3)–(3.9),

and simplifying

𝐷𝑥𝜙 = 𝐷𝑥𝑅
− +

(
𝐷𝑥𝑅

−𝐹−𝐼 + 𝐷𝑡𝑅
− − 𝐹+

𝐽

)
𝐷𝑥𝜏 (3.113)

76

𝐷𝑥𝜙 = 𝐷𝑥𝑅
− +

(
𝐹+
𝐽
− 𝐷𝑥𝑅

−𝐹−
𝐼
− 𝐷𝑡𝑅

−) 𝐷𝑥𝑔
−

𝐷𝑡𝑔
− + 𝐷𝑥𝑔

−𝐹−
𝐼

(3.114)

𝐷𝑥𝜙 := Ξ(𝐼,𝐽) (3.115)

where all terms are evaluated at the time of impact and the state just before impact, except for 𝐹+
𝐽

which is evaluated at the state just after impact, as written out in (3.3)–(3.9).

3.8.2 Early impact saltation derivation

Since we assumed the perturbed trajectory impacted later to derive the geometric intuition of the

saltation matrix, we also show that the saltation matrix is invariant to early or late impact by

following the same derivation as before but with early impact. Again, we start by assuming the

same linearizations as before and now impact occurs early at time �̃�− i.e. �̃�− < 𝑡−. It helps to

visualize Fig. 3.3 with the linearization arrows flipped. Because the perturbed trajectory impacts

first, we want to find the mapping from 𝛿𝑥(̃𝑡−) to 𝛿𝑥(𝑡+) instead of 𝛿𝑥(𝑡−) to 𝛿𝑥(̃𝑡+) (like in the case

of late impact). In general, we want to compare states that are in the same hybrid domain, and this

notation allows for this.

We define 𝛿𝑥(̃𝑡−) and 𝛿𝑥(𝑡+) to be

𝛿𝑥(̃𝑡−) = �̃�(̃𝑡−) − 𝑥(̃𝑡−) (3.116)

𝛿𝑥(𝑡+) = �̃�(𝑡+) − 𝑥(𝑡+) (3.117)

Using the linearization of the flow before impact and the reset we can expand

�̃�(̃𝑡−) = 𝑥(𝑡−) − 𝐹−𝐼 𝛿𝑡 + 𝛿𝑥(̃𝑡−) (3.118)

Since the perturbed trajectory impacts earlier, we must compute where it ends up after going through

the reset map and flowing for 𝛿𝑡 time on the new dynamics. Again, we use the linearization of the

77

flow

�̃�(𝑡+) = 𝑅(𝑡−, �̃�(̃𝑡−)) + 𝐹+
𝐽 𝛿𝑡 (3.119)

Next, we want to get 𝑅(̃𝑡−), �̃�(̃𝑡−)) as a function of 𝑥(̃𝑡−). By substituting �̃�(̃𝑡−) into (3.118) and

using the linearization of the reset we get

𝑅(̃𝑡−, �̃�(̃𝑡−)) = 𝑅(̃𝑡−, 𝑥(𝑡−) − 𝐹−𝐼 𝛿𝑡 + 𝛿𝑥(̃𝑡−)) (3.120)

𝑅(̃𝑡−, �̃�(̃𝑡−)) = 𝑅(̃𝑡−, 𝑥(𝑡−)) + 𝐷𝑥𝑅
− (
𝛿𝑥(̃𝑡−) − 𝐹−𝐼 𝛿𝑡)

)
(3.121)

Now plugging back in we get

�̃�(𝑡+) = 𝑅(̃𝑡−, 𝑥(𝑡−)) + 𝐷𝑥𝑅
− (
𝛿𝑥(̃𝑡−) − 𝐹−𝐼 𝛿𝑡)

)
+ 𝐹+

𝐽 𝛿𝑡 (3.122)

�̃�(𝑡+) = 𝑅(̃𝑡−, 𝑥(𝑡−)) + 𝐷𝑥𝑅
−𝛿𝑥(̃𝑡−) +

(
𝐹+
𝐽 − 𝐷𝑥𝑅

−𝐹−𝐼
)
𝛿𝑡 (3.123)

Now we can write 𝛿𝑥(𝑡+) as a function of 𝛿𝑥(̃𝑡−) and 𝛿𝑡 by subbing �̃�(𝑡+) into (3.117)

𝛿𝑥(𝑡+) = 𝐷𝑥𝑅
−𝛿𝑥(̃𝑡−) +

(
𝐹+
𝐽 − 𝐷𝑥𝑅

−𝐹−𝐼
)
𝛿𝑡 (3.124)

Next, we want to find 𝛿𝑡 as a function of 𝛿𝑥(̃𝑡−) using

0 = 𝑔(�̃�(̃𝑡−)) (3.125)

Substitute in (3.118) and expand using the linearization of the guard

0 = 𝑔
(
𝑥(𝑡−) − 𝐹−𝐼 𝛿𝑡 + 𝛿𝑥(̃𝑡−)

)
(3.126)

0 = 𝑔(𝑥(𝑡−)) + 𝐷𝑥𝑔
− (
−𝐹−𝐼 𝛿𝑡 + 𝛿𝑥(̃𝑡−)

)
(3.127)

0 = 𝐷𝑥𝑔
− (
−𝐹−𝐼 𝛿𝑡 + 𝛿𝑥(̃𝑡−)

)
(3.128)

78

Now solve for 𝛿𝑡 in terms of 𝛿𝑥(̃𝑡−)

𝐷𝑥𝑔
−𝛿𝑥(̃𝑡−) = 𝐷𝑥𝑔

−𝐹𝐼𝛿𝑡 (3.129)

𝛿𝑡 =
𝐷𝑥𝑔

−

𝐷𝑥𝑔
−𝐹𝐼

𝛿𝑥(̃𝑡−) (3.130)

Note that the 𝛿𝑡 for early impact is flipped when compared to late impact – as we expect.

Substitute (3.130) into (3.124) and simplify to get the saltation matrix

𝛿𝑥(𝑡+) = 𝐷𝑥𝑅
−𝛿𝑥(̃𝑡−) (3.131)

+
(
𝐹+
𝐽 − 𝐷𝑥𝑅

−𝐹−𝐼
) 𝐷𝑥𝑔

−

𝐷𝑥𝑔
−𝐹−

𝐼

𝛿𝑥(̃𝑡−) (3.132)

𝛿𝑥(𝑡+) =

(
𝐷𝑥𝑅

− +
(
𝐹+
𝐽
− 𝐷𝑥𝑅

−𝐹−
𝐼

)
· 𝐷𝑥𝑔

−

𝐷𝑥𝑔
−𝐹−

𝐼

)
𝛿𝑥(̃𝑡−) (3.133)

= Ξ(𝐼,𝐽)𝛿𝑥(̃𝑡−) (3.134)

3.8.3 Covariance update through a hybrid event

In this section we derive the update for a covariance passing through a reset map, (3.36). Consider

the state trajectory as a random variable 𝑋(𝑡) with mean 𝜇(𝑡) = 𝑥(𝑡), the nominal trajectory, and

covariance Σ(𝑡). We can define a perturbation as a zero mean random variable 𝛿𝑥(𝑡) with the same

covariance, such that 𝑋(𝑡) = 𝑥(𝑡) + 𝛿𝑥(𝑡).

At a hybrid impact event, define the pre-impact time of the mean to be 𝑡−, where 𝑔(𝑡−, 𝜇(𝑡−), 𝑢−) =

0, and the corresponding post-impact time to be 𝑡+. Consider how the distribution is updated to

find 𝑋(𝑡+) based on 𝑋(𝑡−). To find the mean, we take the expectation of 𝑋(𝑡+)

𝜇(𝑡+) =E[𝑋(𝑡+)] = E[𝑥(𝑡+) + 𝛿𝑥(𝑡+)] (3.135)

=𝑥(𝑡+) + E[𝛿𝑥(𝑡+)] (3.136)

where the two terms are separable because expectation is a linear operator, and the expectation

79

of the nominal post-impact state is just its value, E[𝑥(𝑡+)] = 𝑥(𝑡+) = 𝑅(𝑥(𝑡−)). Substituting in

𝛿𝑥(𝑡+) = Ξ(𝐼,𝐽)(𝑡−, 𝑥(𝑡−))𝛿𝑥(𝑡−) + h.o.t. from (3.10)

𝜇(𝑡+) = 𝑥(𝑡+) + E[Ξ(𝐼,𝐽)(𝑡−, 𝑥(𝑡−))𝛿𝑥(𝑡−) + h.o.t.] (3.137)

𝜇(𝑡+) = 𝑥(𝑡+) + Ξ(𝐼,𝐽)(𝑡−, 𝑥(𝑡−))E[𝛿𝑥(𝑡−)] + E[h.o.t.] (3.138)

Again, because of the linear properties of the expectation, we can pull out Ξ(𝑡−, 𝑥(𝑡−)). Then,

because 𝛿𝑥(𝑡−) is centered about zero, E[𝛿𝑥(𝑡−)] = 0, as are the higher order terms, E[h.o.t.] = 0, to

get

𝜇(𝑡+) = 𝑥(𝑡+) = 𝑅(𝑥(𝑡−)) (3.139)

For covariance, we start with the definition of covariance

COV[𝑋] = E[(𝑋 − E[𝑋])(𝑋 − E[𝑋])𝑇] (3.140)

the post-impact covariance Σ(𝑡+) is

Σ(𝑡+) =COV[𝑋(𝑡+)] = COV[𝑥(𝑡+) + 𝛿𝑥(𝑡+)] (3.141)

=E
[(

(𝑥(𝑡+) + 𝛿𝑥(𝑡+) − 𝜇(𝑡+))

(𝑥(𝑡+) + 𝛿𝑥(𝑡+) − 𝜇(𝑡+)
)𝑇]

(3.142)

Since 𝜇(𝑡+) = 𝑥(𝑡+), this simplifies to

(3.143)Σ(𝑡+) = E[𝛿𝑥(𝑡+)𝛿𝑥(𝑡+)𝑇]

Using (3.10), 𝛿𝑥(𝑡+) can be expanded as

Σ(𝑡+) = E[(Ξ𝛿𝑥(𝑡−) + h.o.t.)(Ξ𝛿𝑥(𝑡−) + h.o.t.)𝑇] (3.144)

= ΞΣ(𝑡−)Ξ𝑇 + 2Ξ𝛿𝑥(𝑡−)(h.o.t.) + (h.o.t.)2 (3.145)

80

when h.o.t. is small, we get

Σ(𝑡+) = ΞΣ(𝑡−)Ξ𝑇 (3.146)

as in (3.36), which holds to first order and is exact for linear hybrid systems.

3.8.4 Riccati update through hybrid events

In this section, we derive the update for the Riccati update through a hybrid event. See [Tedrake,

2022, Ch. 8.3.1] for a background on the smooth discrete Riccati update. Define the optimal

cost-to-go ℓ∗𝑡− for the reference trajectory (𝑥(𝑡), 𝑢(𝑡)) and the optimal solution (𝑥∗, 𝑢∗) applied at a

hybrid transition at time 𝑡− as

ℓ𝑡−(𝑥∗(𝑡−), 𝑢∗(𝑡−)) =
1
2

(𝑥∗(𝑡−) − 𝑥(𝑡−))𝑇𝑄𝑡−(𝑥∗(𝑡−) − 𝑥(𝑡−)) +
1
2

(𝑢∗(𝑡−) − 𝑢(𝑡−))𝑇𝑅𝑡−(𝑢∗(𝑡−) − 𝑢(𝑡−))

(3.147)

where 𝑄𝑡 and 𝑅𝑡 are the quadratic penalty on state and input respectively at time 𝑡−. Define the

current state to be �̃� and the difference with the optimal solution to be

𝛿𝑥∗(𝑡−) := 𝑥∗(𝑡−) − �̃�(𝑡−) (3.148)

such that (3.147) becomes

ℓ∗𝑡− =
1
2

(𝛿𝑥∗ + �̃� − 𝑥(𝑡−))𝑇𝑄𝑡−(𝛿𝑥∗ + �̃� − 𝑥(𝑡−))

+
1
2

(𝑢∗(𝑡−) − 𝑢(𝑡−))𝑇𝑅𝑡−(𝑢∗(𝑡−) − 𝑢(𝑡−)) (3.149)

Because the transition is instantaneous, we assume that the input has no affect 𝑢(𝑡−) = 𝑢∗(𝑡−) and

we can simplify the optimal cost-to-go

ℓ∗𝑡− =
1
2

(𝛿𝑥∗ + �̃� − 𝑥(𝑡−))𝑇𝑄𝑡−(𝛿𝑥∗ + �̃� − 𝑥(𝑡−)) (3.150)

81

The Hamiltonian for the hybrid transition.

𝐻𝑡− := 𝐻(𝑥∗(𝑡−), 𝑢∗(𝑡−), 𝜆∗(𝑡+))

:= ℓ∗𝑡− + 𝜆∗(𝑡+)𝑇𝑅(𝐼,𝐽)(𝑡−, 𝑥∗(𝑡−)) (3.151)

where 𝜆∗(𝑡+) is the optimal costate. Using the expansion (3.10) about 𝑅(𝐼,𝐽)(𝑡−, �̃�(𝑡−) + 𝛿𝑥∗(𝑡−))

𝑅(𝐼,𝐽)(𝑡−, 𝑥∗(𝑡−)) = 𝑅(𝐼,𝐽)(𝑡−, �̃�(𝑡−)) + Ξ𝛿𝑥∗(𝑡−) + h.o.t. (3.152)

where Ξ = Ξ(𝐼,𝐽)(𝑡−, �̃�(𝑡−)) The Hamiltonian [Bertsekas, 2012] for the hybrid transition is then

(3.153)
𝐻

=
1
2

(𝛿𝑥∗(𝑡−))𝑇𝑄𝑡−𝛿𝑥∗(𝑡−) + 𝜆∗(𝑡+)𝑇
(
𝑅(𝐼,𝐽)(𝑡−, �̃�(𝑡−)) + Ξ𝛿𝑥∗(𝑡−) + h.o.t.

)
Using Pontryagin’s Maximum principle, we derive the optimal state update and costate update.

𝑥∗(𝑡+) =
𝛿

𝛿𝜆∗
𝐻 = 𝑅(𝐼,𝐽)(𝑡−, �̃�(𝑡−)) + Ξ𝛿𝑥∗(𝑡−) (3.154)

𝜆∗(𝑡−) =
𝛿

𝛿𝑥∗
𝐻 = 𝑄𝑡−𝛿𝑥∗ + Ξ𝑇𝜆∗(𝑡+) + h.o.t. (3.155)

Therefore, the update for 𝑃 can be derived for hybrid transitions. We start with a standard costate

guess of 𝜆(𝑡+) = 𝑃(𝑡+)𝛿𝑥(𝑡+) [Tedrake, 2022]

(3.156)𝑃(𝑡−)𝛿𝑥∗(𝑡−) = 𝑄𝑡−𝛿𝑥∗(𝑡−) + Ξ𝑇𝑃(𝑡+)𝛿𝑥∗(𝑡+) + h.o.t.

We substitute 𝛿𝑥∗(𝑡+) = Ξ𝛿𝑥∗(𝑡−) + h.o.t.

(3.157)𝑃(𝑡−)𝛿𝑥∗(𝑡−) = 𝑄𝑡−𝛿𝑥∗(𝑡−) + Ξ𝑇𝑃(𝑡+)(Ξ𝛿𝑥∗(𝑡−) + h.o.t.) + h.o.t.

(3.158)𝑃(𝑡−)𝛿𝑥∗(𝑡−) = 𝑄𝑡−𝛿𝑥∗(𝑡−) + Ξ(𝑥∗(𝑡−))𝑇𝑃(𝑡+)Ξ𝛿𝑥∗(𝑡−) + Ξ(𝑥∗(𝑡−))𝑇𝑃(𝑡+)h.o.t. + h.o.t.

See that the update for 𝑃(𝑡−) is recursive and cannot be computed as is. However, when higher

order terms are small, then we cancel 𝛿𝑥(𝑡−) from both sides and write the Bellman update for 𝑃(𝑡−)

𝑃(𝑡−)𝛿𝑥∗(𝑡−) ≈𝑄𝑡−𝛿𝑥∗(𝑡−) + Ξ𝑇𝑃(𝑡+)Ξ𝛿𝑥∗(𝑡−) (3.159)

82

𝑃(𝑡−) ≈𝑄𝑡− + Ξ𝑇𝑃(𝑡+)Ξ (3.160)

3.8.5 Covariance Propagation Validation

This experiment seeks to validate the hybrid transition covariance (3.36) propagation law experi-

mentally by analyzing the distributions of particles simulated through hybrid transitions. Distribu-

tions are created by randomly sampling 1000 particles from a known mean and covariance. The

particles are then simulated forwards through the hybrid dynamical system using Matlab’s ODE45.

The starting mean and covariance of the population are calculated then propagated for each timestep

using the smooth update law for eachtimestep and using the hybrid transition update when a hybrid

transition occurs. We also test using the Jacobian of the reset map 𝐷𝑥𝑅 instead of the saltation

matrix. The final covariance of the population and the estimated covariances are compared using

Kullback–Leibler (KL) divergence [Van Erven and Harremos, 2014] – where the output is a natural

unit of information (nat) therefore, the smaller the KL divergence, the more closely the distributions

match.

𝐾𝐿(Σ0∥Σ1) =
1
2

(
Σ−1

1 Σ0 − dim (Σ0) + ln
|Σ1 |
|Σ0 |

)
(3.161)

Each hybrid system example is tested with two different initial covariances – a higher and lower

value – to capture any nonlinearities. In this section we present the results of these experiments on

a series of hybrid systems.

Constant Flow

The simplest hybrid system we examine is the case where there are two hybrid modes that are

linearly separated and which have constant, but distinct, dynamics in each mode. The dynamics in

the hybrid modes are defined:

𝐹1 = [1,−1]𝑇 , 𝐹2 = [1, 1]𝑇 (3.162)

83

Figure 3.9: Flowing an initial distribution (blue dots) with covariance (red solid line) along a
nominal trajectory (blue dashed line) through hybrid systems with dynamics (arrows) and a single
guard (black dashed line). The final distribution (green dots) is overlaid with the actual covariance
(black line). Estimated covariance using the Jacobian of the reset map (red dashed line) is compared
against our proposed estimate using the saltation matrix (gold dashed line).

The guard sets are defined at 𝑥1 = 0, such that the domain of 𝐹1 is the left half plane and the domain

of 𝐹2 is the right half plane (Fig. 3.9). The reset is an identity map.

For the propagation experiment, the starting mean was 𝑥 = [−2.5, 0]𝑇 , the total simulation time

was 5 seconds, and the time steps were 0.01 seconds as shown in Fig. 3.9. The high covariance

level was 0.1𝐼 and the low covariance level was 0.005𝐼. All samples from the system began in

hybrid mode 1 and ended in hybrid mode 2.

This scenario is interesting because the covariance does not change in either hybrid mode as

the flow is simply translation in those regions – the only covariance changes are a result of the

hybrid transition. The results, listed in Table 3.1 and apparent in Fig. 3.9, show that this change

in covariance is captured well using the saltation matrix (as the KL-divergence is almost zero)

but not well using the Jacobian of the reset map. Note that, as expected for a linear system, the

KL-divergence does not significantly depend on the initial covariance and in this case the difference

is practically zero.

84

Bouncing Ball

The bouncing ball is a hybrid dynamical system which consists of 2 hybrid domains in the [𝑦, ¤𝑦]𝑇

plane, where the first domain is defined when the ball has negative velocity ¤𝑦 < 0 and the second

domain is defined when the ball has non-negative velocity ¤𝑦 ≥ 0. The guard sets are defined to be

when the ball hits the ground 𝑔1,2(𝑡, 𝑦, ¤𝑦) := 𝑦 and when the velocity changes sign 𝑔2,1(𝑡, 𝑦, ¤𝑦) := ¤𝑦.

Note that this could equivalently be defined as a single domain with a self-reset, however to match

our definition of a hybrid dynamical system (Definition 1) we treat it as a system with separate

domains. The dynamics are standard ballistic dynamics in both domains

𝐹1 = 𝐹2 = [¤𝑦,−𝑎𝑔]𝑇 (3.163)

where 𝑎𝑔 is the acceleration from gravity. The reset from 1 to 2 is defined by elastic impact

𝑅1,2 = [𝑦,−𝑒 ¤𝑦]𝑇 (3.164)

where 𝛼 is the coefficient of restitution. The reset from 2 to 1 is an identity transformation. For the

experiments, the gravitational acceleration is 𝑎𝑔 = 9.8 and the coefficient of restitution is 𝛼 = 0.75.

This system is an example of a system with linear dynamics, guards, and linear but non-identity

resets.

For the propagation experiment, the starting mean was 𝑥 = [3,−2]𝑇 , the total simulation time

was 1 second, and the time steps were 0.001 seconds as shown in Fig. 3.10. The high covariance

level was 0.05𝐼 and the low covariance level was 0.001𝐼. Most of the samples from the system

began in hybrid mode 1 and ended in hybrid mode 2, while some samples ended back in hybrid

mode 1 (after a (2,1) transition). There is no effect on the mean or covariance through the (2,1)

transition as 𝑅(2,1) is identity and 𝐹1 = 𝐹2 which means that Ξ(2,1) = 𝐷𝑥𝑅 + 0 is also identity.

The results are listed in Table 3.1 and an example trial is shown in Fig. 3.10. Interestingly,

even though the final distribution is no longer Gaussian for the bouncing ball, the second moment

85

Figure 3.10: Flowing an initial distribution (blue dots) with covariance (red solid line) along a
nominal trajectory (blue dashed line) through the bouncing ball hybrid system’s dynamics (gray
arrows) with guards (black dashed line and labeled). The final distribution (green dots) is overlaid
with the actual covariance (black line). Estimated covariance using the Jacobian of the reset map
(red dashed line) is compared against our proposed estimate using the saltation matrix (gold dashed
line).

(covariance) is still tracked accurately through the impact using the saltation matrix (as the KL-

divergence is small) but poorly with the Jacobian of the reset map. Again, as this is a linear system,

the KL-divergence is independent of the initial covariance.

Pendulum hitting a spring damper

The pendulum hitting a spring damper, as shown in Fig. 3.12, is a hybrid system which consists

of 2 hybrid domains over the [𝜃, ¤𝜃]𝑇 state space. The first domain is defined when the pendulum’s

angular position is positive 𝜃 > 0 and the second domain is defined when the angular position is

non-positive 𝜃 ≤ 0, such that the guard functions are 𝑔1,2(𝑡, 𝜃, ¤𝜃) = 𝜃 and 𝑔2,1(𝑡, 𝜃, ¤𝜃) = −𝜃. The

dynamics are standard pendulum dynamics while in domain 1, and while in domain 2 the pendulum

is in contact with a torsional spring and damper. The resulting dynamics are,

𝐹1 =
[
¤𝜃,−

𝑎𝑔

𝑙
sin(𝜃)

]𝑇
(3.165)

86

Figure 3.11: Flowing an initial distribution (blue dots) with covariance (red solid line) along a
nominal trajectory (blue dashed line) through the pendulum hitting a spring damper hybrid system’s
dynamics (gray arrows) with guards (black dashed line and labeled). The final distribution (green
dots) is overlaid with the actual covariance (black line). Estimated covariance using the Jacobian
of the reset map (red dashed line) is compared against our proposed estimate using the saltation
matrix (gold dashed line).

𝐹2 =
[
¤𝜃,
−(𝑘𝜃 + 𝑐 ¤𝜃 + 𝑚𝑎𝑔𝑙 sin(𝜃))

𝑚𝑙2

]𝑇
(3.166)

where 𝑎𝑔 is the acceleration from gravity, 𝑙 is the length of the pendulum’s center of mass along

the arm, and 𝑚 is the mass of the pendulum. In the experiment, the constants were set to 𝑎𝑔 = 9.8,

𝑙 = 1, 𝑚 = 1, 𝑘 = 10, and 𝑐 = 10. Both resets are identity transformations because there are no

instantaneous changes in state during mode transition. This system is nonlinear but with identity

resets.

For the propagation experiment, the starting mean was 𝑥 = [𝜋4 ,−3.7]𝑇 , the total simulation time

was 0.3 seconds, and the time steps were 0.001 seconds as shown in Fig. 3.9. An example run is

shown in Fig. 3.11.

The high covariance level was 0.05𝐼 and the low covariance level was 0.001𝐼. All samples from

the system began in hybrid mode 1 and ended in hybrid mode 2. This example demonstrates the

validity of the linear approximations when the higher order terms are small and as expected, using

the saltation update decreases KL-divergence when compared against the Jacobian of the reset map

87

Figure 3.12: Pendulum hitting a spring damper hybrid system where the pendulum engages a spring
damper at the 𝜃 = 0.

as shown in Table 3.1.

Asymmetric Spring Loaded Inverted Pendulum (ASLIP)

The asymmetric spring loaded inverted pendulum (ASLIP) system consists of a spring leg, torsional

spring hip, and a body with inertia in the sagittal plane as shown in Fig. 3.13. This system is

similar to the one in [Poulakakis and Grizzle, 2009] and a full derivation for the system dynamics

can be found in Appendix B. In this system, the body configuration space is defined to be the

position and orientation of the body 𝑞𝑏 := [𝑥𝑏, 𝑦𝑏, 𝜃𝑏]𝑇 ∈ R × R × S1. The leg configuration space

is defined to be the angle between the toe and the ground, the angle of the hip, and the length of

the leg 𝑞𝑙 := [𝜃𝑡 , 𝜃ℎ, 𝑙𝑙]𝑇 ∈ S1 × S1 × R, where impact location of the toe defines a pin joint for the

body to pivot around. Once the location of the toe, 𝑞𝑡 = [𝑥𝑡 , 𝑦𝑡]𝑇 ∈ R × R, is fixed to a ground

location, either configuration can be used to define the full configuration space of the system. When

the toe position is known, the transformation from the leg configuration to the body configuration

𝑇𝑙𝑏 : (𝑞𝑙 , 𝑞𝑡) ↦→ 𝑞𝑏. The inverse mapping can also be calculated which maps the body configuration

to the leg configuration 𝑇𝑏𝑙 : (𝑞𝑏, 𝑞𝑡) ↦→ 𝑞𝑙 .

Hybrid mode 1 is defined to be when the toe is not in contact with the ground. The resulting

domain D1 is chosen to be parameterized by the body’s configuration, toe position, and body’s

velocity.

[𝑥𝑏, 𝑦𝑏, 𝜃𝑏, 𝑥𝑡 , 𝑦𝑡 , ¤𝑥𝑏, ¤𝑦𝑏, ¤𝜃𝑏]𝑇 ∈ D1 (3.167)

88

Figure 3.13: Asymmetric Spring Loaded Inverted Pendulum (ASLIP) diagram showing the aerial
phase hybrid mode on the left and the stance phase hybrid mode on the right and their corresponding
configuration variables.

When the toe is in contact with the ground, the hybrid mode is 2. The domain D2 is chosen to be

parameterized by the toe angle with the ground, hip angle, the leg extension, toe position, the time

derivative of the toe angle, hip angle, and leg extension.

[𝜃𝑡 , 𝜃ℎ, 𝑙𝑙 , 𝑥𝑡 , 𝑦𝑡 , ¤𝜃𝑡 , ¤𝜃ℎ, ¤𝑙𝑙]𝑇 ∈ D2 (3.168)

Note that the toe position is augmenting the state rather than being treated as an external parameter

because variations in the toe placement affect the other configuration states. Because of this,

the toe dynamics are constrained relative to the body in domain 1 and relative to the ground

contact in domain 2. These dynamics 𝐹1, 𝐹2 are derived using a Lagrangian approach as shown in

Appendix 3.8.5.

The system parameters and their experimental values are body mass𝑚𝑏 = 1, body inertia 𝐼𝑏 = 1,

leg spring constant 𝑘 𝑙 = 1000, hip spring constant 𝑘𝜃 = 400, body length 𝑙𝑏 = 0.5, acceleration due

to gravity 𝑎𝑔 = 9.8, resting leg length 𝑙𝑙0 = 1, and resting angle of the hip spring 𝜃ℎ0 = − 𝜋8 .

For the propagation experiment, the starting mean was 𝑥 = [0, 1.8, 5𝑝𝑖
12 , 0.0011, 0.3256, 0−10]𝑇 ,

the total simulation time was 0.55 seconds, and the time steps were 0.0001 seconds. The high

covariance level was 0.001 and the low covariance level was 0.00005 for the non toe states. There

89

Table 3.1: KL-divergence comparison between the ground truth and estimated second moment of
distributions that undergo hybrid transitions for the 4 hybrid system test cases using the saltation
matrix Ξ(𝐼,𝐽) and the Jacobian of the reset map 𝐷𝑥𝑅(𝐼,𝐽).

System Nonlinear Identity Reset Init. Cov. KL-div 𝐷𝑥𝑅(𝐼,𝐽) KL-div Ξ(𝐼,𝐽)

1 Constant Flow No Yes Low 1.9193 1.8419 × 10−6

High 1.9219 2.2574 × 10−7

2 Bouncing Ball No No Low 32.2253 0.0035
High 32.2253 0.0035

3 Pendulum Yes Yes Low 29.2477 0.0011
High 32.3330 0.2058

4 ASLIP Yes No Low 26.8931 0.0011
High 24.8121 0.0867

was no additional noise injected into the toe states, because they are constrained to the body states.

The system started in hybrid mode 1 and ended in hybrid mode 2. This scenario is the most

complex out of all the considered hybrid systems because it includes both nonlinear dynamics and

nonidentity resets. Nevertheless, the change in covariance is still captured well using the saltation

matrix and is not captured well when using the Jacobian of the reset, Table 3.1. Similar to the

pendulum example, as the initial covariance increases, the saltation update approximation gets

worse due to the inaccuracies in the linearization.

Overall, using the saltation update estimates the covariance very well for the linear cases

as shown by the KL-divergence. For the non-linear cases, the saltation update is a good linear

approximation. This is especially apparent in the linear cases where increasing the initial covariance

did not have much affect on the KL-divergence while in the nonlinear cases the increase in initial

covariance increased the resulting KL-divergence; this is unsurprising, as the linearization is local

and will generally increasingly fail to predict the correct dynamics as the domain is enlarged. These

results motivate the use of the saltation update in a Kalman filtering framework.

90

Chapter 4

The Salted Kalman Filter: Kalman

Filtering on Hybrid Dynamical System

This chapter previously appeared in [Kong et al., 2021b].

4.1 Abstract

Many state estimation and control algorithms require knowledge of how probability distributions

propagate through dynamical systems. However, despite hybrid dynamical systems becoming

increasingly important in many fields, there has been little work on utilizing the knowledge of

how probability distributions map through hybrid transitions. Here, we make use of a propagation

law that employs the saltation matrix (a first-order update to the sensitivity equation) to create the

Salted Kalman Filter (SKF), a natural extension of the Kalman Filter and Extended Kalman Filter

to hybrid dynamical systems. Away from hybrid events, the SKF is a standard Kalman filter. When

a hybrid event occurs, the saltation matrix plays an analogous role to that of the system dynamics,

subsequently inducing a discrete modification of both the prediction and update steps. The SKF

outperforms a naive variational update – the Jacobian of the reset map – by having a reduced mean

squared error in state estimation, especially immediately after a hybrid transition event. Compared

against a hybrid particle filter, the particle filter outperforms the SKF in mean squared error only

91

Figure 4.1: Flowing an initial distribution (blue dots) with covariance (red solid line) along a
nominal trajectory (blue dashed line) through hybrid systems with dynamics (arrows) and a single
guard (black dashed line). The final distribution (green dots) is overlaid with the actual covariance
(black line). Estimated covariance using the Jacobian of the reset map (red dashed line) is compared
against our proposed estimate using the saltation matrix (gold dashed line).

when a large number of particles are used, likely due to a more accurate accounting of the split

distribution near a hybrid transition.

4.2 Introduction

From legged robots to manipulator systems, many important contemporary control problems revolve

around systems that make and break contact with their environments. These contact events are

often represented as a discrete change to the system dynamics which introduces complexity for

state estimation and control, as classic methods assume smoothness [Bloesch et al., 2012; Hartley

et al., 2020; Bledt et al., 2018; Varin and Kuindersma, 2018]. These “hybrid systems” [Back et al.,

1993; Lygeros et al., 2003; Goebel et al., 2009] are systems with both continuous states (such as

the position and velocity of a robot’s center of mass and joints) and discrete states (such as whether

or not a limb is in contact with the ground). Lacking out-of-the-box solutions, state estimation for

these systems is a frontier with novel difficulties [Blom and Bar-Shalom, 1988; Skaff et al., 2005],

92

including how to deal with nonlinear dynamics on the continuous phases [Barhoumi et al., 2012],

discrete jumps in the continuous state [Balluchi et al., 2013], and real time computation [Zhang

et al., 2020].

In this work we propose a Kalman-like filter compatible with hybrid dynamical systems while

also avoiding the combinatorial effects of considering multiple modes simultaneously [Zhang et al.,

2020]. To do this, we apply the saltation matrix (a standard tool from non-smooth analysis [Leine

and Nijmeijer, 2013]) to propagate state uncertainty covariance through hybrid transitions [Biggio

et al., 2014]. The saltation matrix provides a first order approximation of the effects of a hybrid

domain change based on the dynamics in the individual modes, the reset functions, and the location

of the reset. It might be assumed that the propagation of uncertainty through hybrid transitions

could be approximated by simply examining the first order approximation of the reset map itself,

i.e. the Jacobian of the reset map. For example, [Hartley et al., 2020] and [Bloesch et al., 2012]

assume that the hybrid transition does not affect the second moment of the distribution; i.e the reset

map is identity and therefore the Jacobian would be an identity matrix. However, this approach

does not take into account the differing dynamics in the distinct modes. The inaccuracy of the naive

approach can be seen in Fig. 4.1, where the system has an identity reset map but keeping the second

moment constant through the transition does not capture the effect of the hybrid transition. As such,

attempting to use the Jacobian of the reset map, while a “natural” idea, is ultimately incorrect.

The remainder of this paper is organized in the following manner. Section 4.3 provides a brief

review of the hybrid system estimation literature. Section 4.4 defines the problem that we seek to

solve in this work as well as establishing the notation and conventions used. Section 4.5 introduces

the “Salted Kalman Filter” (SKF), which is a Kalman Filter augmented with the capability to

propagate the estimated first and second moments through hybrid transitions. Section 4.6 explains

the experiments used to validate the performance of the Kalman filter. Section 4.7 compares results

from using the SKF to results using the Jacobian of the reset map and to a particle filter. Finally,

Section 4.8 provides a discussion of the work presented and potential future work.

93

4.3 Related Work

There has been a variety of work on the topic of state estimation for systems with differing dynamics

and discrete modes, however current approaches either do not consider systems with state-driven

mode transitions (i.e. are limited to the “switched system” case) [Blom and Bar-Shalom, 1988;

Blom and Bloem, 2004; Balluchi et al., 2002; Skaff et al., 2005; Eras-Herrera et al., 2019; Hwang

et al., 2006] or are computationally expensive and difficult to run in an online filtering setting

[Koval et al., 2015b; Zhang et al., 2020].

Our work seeks to understand how distributions are propagated through state-driven hybrid

dynamical systems by applying knowledge from non-smooth systems literature [Johnson et al.,

2016a; Aizerman and Gantmakher, 1958; Hiskens and Pai, 2000] in order to make simplifying

assumptions which retain sufficient information for the purposes of online state estimation.

4.3.1 Hybrid System Estimators

One approach to filtering on hybrid systems with linear dynamics is to use a filter bank where a filter

is assigned to each discrete mode and the output of the filter with the lowest residual is used as the

current state estimate [Balluchi et al., 2002]. Another style of filter bank method mixes the outputs

of individual filters by utilizing a probability weight calculated based on measurement residuals

and a posteriori estimate likelihoods such as the interacting multiple model (IMM) [Blom and

Bar-Shalom, 1988]. These filtering methods have been extended to hybrid systems with nonlinear

dynamics [Barhoumi et al., 2012] and hybrid systems with non-identity reset maps during hybrid

transitions [Balluchi et al., 2013]. However, these filtering bank strategies consider hybrid systems

with transitions that do not depend on continuous state and therefore do not account for the effect

that the continuous state dependent transitions have on the distribution. This is an issue because

the first 2 moments of the distribution are not guaranteed to be captured after a transition.

Particle filtering approaches seek to represent uncertainty distributions directly with a variety

of sample points rather than by representing belief as a parametric (e.g. Gaussian) distribution

94

[Koutsoukos et al., 2002; Koval et al., 2015b]. One of the major drawbacks of particle filters is

that they are computationally expensive – they may require (O(2𝑛)) where 𝑛 is the number of states

[Thrun, 2002]. Because of this, it may be difficult to utilize them in a real-time setting.

Some optimization based methods seek to circumvent this issue of computational complexity

by simultaneously selecting the continuous and discrete states over all timesteps to minimize the

error associated with the measurements and the dynamics[Zhang et al., 2020; Ferrari-Trecate et al.,

2002]. The resulting optimization problem requires a much higher computational load compared

to causal forward time stepping methods such as Kalman filters and finite impulse response filters

whose computational burden is polynomial in the dimension of the state, e.g. methods that rely on a

fixed finite number of matrix products per timestep and as such may be limited to offline estimation

settings.

Online state estimation methods have been created for complex systems with continuous states

and discrete modes, such as the case for legged robots making and breaking contact with the

ground [Hartley et al., 2020; Bloesch et al., 2012]. In these settings, an extended Kalman filter is

used to estimate the continuous states and the discrete mode is directly measured through contact

sensors. The primary focus of these works is on the continuous phases rather than the discrete mode

transitions due to the presence of direct mode sensing. Therefore, these estimators do not directly

work for general hybrid systems, because there might not be a sensor to determine the hybrid event

and there might be discontinuous jumps in the state.

4.3.2 Non-smooth systems and the saltation matrix

This work makes extensive use of the saltation matrix [Aizerman and Gantmakher, 1958; Hiskens

and Pai, 2000; Leine and Nijmeijer, 2013; Burden et al., 2018b], which is a discontinuous update

to the variational equation solution [Khalil and Grizzle, 2002] and is a key part of linearizing

hybrid dynamics around a chosen trajectory. They have previously been used to analyze stability

of periodic solutions [Aizerman and Gantmakher, 1958], trajectory sensitivity [Hiskens and Pai,

2000], and infinitesimal contraction [Burden et al., 2018b]. Most importantly for this work, the

95

saltation matrix has also been used to derive a covariance propagation update law for mapping

distributions through hybrid transitions [Biggio et al., 2014].

4.4 Problem Formulation

The problem we address in this work is the estimation of continuous states of a hybrid dynamical

system given:

1. A model of the dynamics in each mode.

2. A model of how the state resets between modes.

3. The location of the hybrid guards.

4. Measurements of the system’s continuous state.

We are specifically not considering:

1. The probability of the discrete state.

2. Hybrid systems with intersecting guards [Scholtes, 2012, § 3-4] (e.g. in a walking system

when multiple feet impact simultaneously).

Hybrid systems of the type given in Def. 1 can exhibit complex behavior including sliding

[Jeffrey, 2014], branching [Simić et al., 2000], Zeno, and more. To ensure that the saltation matrix is

well defined for all transitions, we accept the assumptions (which are conventional, e.g., [Aizerman

and Gantmakher, 1958; Bernardo et al., 2008; Leine and Nijmeijer, 2013; Burden et al., 2016])

enumerated in [Burden et al., 2018b, Assumptions. 1] to limit the class of hybrid dynamic systems

under consideration to possess piecewise-smooth trajectories. In particular, a key assumption is

that transitions are transverse, i.e.,

𝑑

𝑑𝑡
𝑔(𝐼,𝐽)(𝑡, 𝑥(𝑡)) =

96

𝐷𝑡𝑔(𝐼,𝐽)(𝑡, 𝑥) + 𝐷𝑥𝑔(𝐼,𝐽)(𝑡, 𝑥) · 𝐹𝐼(𝑡, 𝑥) < 0, (4.1)

Note that (4.1) restricts the definition of the guard from Def. 1 to be both a sublevel set and only

exist when the vector field is transverse to it at the boundary. That is, we can write each guard set

𝐺(𝐼,𝐽) as the following, where 𝑔 := 𝑔(𝐼,𝐽), and 𝑥(𝑡) is a trajectory in 𝐷 𝐼

𝐺(𝐼,𝐽) :=
{
𝑥 ∈ 𝐷 𝐼

���� 𝑔(𝑡, 𝑥) ≤ 0,
𝑑

𝑑𝑡
𝑔(𝑡, 𝑥(𝑡)) < 0

}
(4.2)

Intuitively, transversality implies that trajectories initialized nearby a given 𝐺(𝐼,𝐽) undergo exactly

one transition for small times. This assumption also ensures the denominator in (3.2) does not

approach zero.

With these definitions and assumptions, we can now apply the saltation matrix to propagate

covariance [Biggio et al., 2014, Eq. 17] as part of a dynamic update of a probability distribution at

a hybrid transition,

Proposition 3. When the higher order terms are zero, the mean 𝜇 and covariance Σ of a hybrid

system at the time of a reset are updated as (where 𝜇∗ := 𝜇(𝑡𝑖)),

𝜇(t𝑖+1) = 𝑅(𝐼,𝐽)(𝑡𝑖, 𝜇∗) (4.3)

Σ(t𝑖+1) = Ξ(𝐼,𝐽)(𝑡𝑖, 𝜇∗)Σ(𝑡𝑖, 𝜇∗)Ξ(𝐼,𝐽)(𝑡𝑖, 𝜇∗)𝑇 (4.4)

4.5 Kalman filtering for hybrid systems

In this section, we present the Salted Kalman Filter (SKF) by applying Prop. 3 on the mapping of

second moments to Kalman filters, which enables their use on hybrid dynamical systems. First,

we assume ∀𝐼, 𝐹𝐼(𝑡, 𝑥) = 𝐴𝐼(𝑡)𝑥 + 𝐵𝐼(𝑡)𝑢(𝑡), i.e. each mode’s vector field is linear. Note that for a

non-linear or linear time varying 𝐹𝐼 , 𝐴𝐼 and 𝐵𝐼 are obtained through sampling. Discretized linear

matrices with timestep Δ are denoted with 𝐴𝐼,Δ and 𝐵𝐼,Δ. To simplify expressions for discrete

97

timesteps, we abuse notation and use 𝑎(𝑘) := 𝑎(𝑡𝑘) for any relevant function 𝑎. Without loss of

generality, we assume the case 𝑢(𝑘) = 0∀ 𝑘 . To start, the stochastic difference equations considered

for the standard Kalman filter [Welch and Bishop, 1995, Eqn. 1.1] on domain 𝐼 for a hybrid

dynamical system with linear dynamics are given by

𝑥(𝑘 + 1) := 𝐴𝐼,Δ𝑥(𝑘) + 𝜔𝐼,Δ(𝑘) (4.5)

where the process noise, 𝜔𝐼,Δ, is sampled from a zero mean Gaussian distribution with covariance

𝑊𝐼,Δ at each timestep where the effect of the noise is constant throughout the timestep and is handled

by integration.

𝑓𝐼,Δ(𝑥, 𝑢, 𝜔(𝑘)) =
∫ 𝑡𝑘+Δ

𝑡𝑘

(𝐹𝐼(𝑡, 𝑥, 𝑢) + 𝜔(𝑘)) 𝑑𝑡 (4.6)

The stochastic measurement equation [Welch and Bishop, 1995, Eqn. 1.2] is defined to be 𝑦(𝑘) :=

𝐶𝐼𝑥(𝑘) + 𝑣 𝐼(𝑘), where 𝐶𝐼 is the measurement matrix, and 𝑣 𝐼 is the measurement noise that is

sampled from a zero mean Gaussian distribution with covariance 𝑉𝐼 .

The standard Kalman filter consists of two parts: the a priori update,

𝑥(𝑘 + 1|𝑘) = 𝐴𝐼,Δ𝑥(𝑘) (4.7)

Σ̂(𝑘 + 1|𝑘) = 𝐴𝐼,ΔΣ̂(𝑘)𝐴𝑇𝐼,Δ +𝑊𝐼,Δ (4.8)

and the a posteriori update,

𝐾𝑘+1 = Σ̂(𝑘 + 1|𝑘)𝐶𝑇𝐼
[
𝐶𝐼 Σ̂(𝑘 + 1|𝑘)𝐶𝑇𝐼 +𝑉𝐼

]−1 (4.9)

𝑥(𝑘 + 1|𝑘 + 1) = 𝑥(𝑘 + 1|𝑘) (4.10)

+ 𝐾𝑘+1 [𝑦(𝑘 + 1) − 𝐶𝐼𝑥(𝑘 + 1|𝑘)]

Σ̂(𝑘 + 1|𝑘 + 1) = Σ̂(𝑘 + 1|𝑘) − 𝐾𝑘+1𝐶𝐼 Σ̂(𝑘 + 1|𝑘) (4.11)

98

where 𝐾𝑘+1 is the Kalman gain [Welch and Bishop, 1995, Eqns. 1.9–1.13].

While the standard Kalman filter is adequate when a trajectory is confined to a single domain,

we must also account for hybrid events. In this setting, we assume that the true time of impact to

the guard 𝑡𝑖 is unknown to the filter and is estimated by determining when a hybrid transition occurs

for the mean. In this filter, we allow both the a priori and a posteriori update to trigger a hybrid

transition. Therefore, both updates are modified such that the mean and covariance are properly

transformed during the hybrid transition.

In this section we first show these changes for a Kalman filter on a hybrid dynamical system with

linear dynamics (Sec. 4.5.1–4.5.2), then the same changes are similarly applied for the Extended

Kalman filter on general hybrid dynamical systems (Sec. 4.5.3).

4.5.1 Hybrid transition during a priori update

For the a priori update, the state is propagated from the previous estimate for a single timestep

Δ. If the guard and transversality conditions (4.2) are not met during the propagation, no hybrid

transition is considered and the standard update is used (4.7)–(4.8). If the conditions are met for the

estimated mean trajectory, then the forward simulation is stopped and the time of impact 𝑡𝑖 = 𝑡𝑘 +Δ1

is estimated to be the stopping time – where Δ1 = 𝑡𝑖 − 𝑡𝑘 and Δ2 = 𝑡𝑘+1 − 𝑡𝑖 denote the sub-timesteps

such that Δ1 + Δ2 = Δ. Because we assume that a finite number of isolated transitions occur,

this process can be repeated until the entire timestep is simulated. Without loss of generality, in

this section we only consider the case where a single transition occurs, but appending additional

transitions can be computed in a similar fashion.

If a transition occurs from mode 𝐼 to mode 𝐽, the stochastic dynamics (4.5) are defined to be,

𝑥(𝑘 + 1) :=𝐴𝐽,Δ2

(
𝑅(𝐼,𝐽)

([
𝐴𝐼,Δ1𝑥(𝑘) + 𝜔𝐼,Δ1(𝑘)

])
+ 𝜔𝑅(𝐼,𝐽)(𝑘)

)
+ 𝜔𝐽,Δ2(𝑘) (4.12)

where 𝜔𝑅(𝐼,𝐽) is the reset process noise, sampled from a zero mean Gaussian distribution with

covariance𝑊𝑅(𝐼,𝐽) , 𝜔𝐼,Δ1 is the process noise in domain 𝐼 with timestep Δ1, and 𝜔𝐽,Δ2 is the process

99

noise in domain 𝐽 with timestep Δ2. The dynamic update at transition (4.3)–(4.4) augmented with

the reset process noise is,

𝑥(t𝑖+1) =𝑅(𝐼,𝐽)𝑥(𝑡𝑖) (4.13)

Σ(t𝑖+1) =Ξ(𝐼,𝐽)Σ(𝑡𝑖)Ξ𝑇(𝐼,𝐽) +𝑊𝑅(𝐼,𝐽) (4.14)

where the saltation matrix is evaluated at Ξ(𝐼,𝐽) = Ξ(𝐼,𝐽)(𝑡𝑖, 𝑥(𝑡𝑖)). Combined with the continuous a

priori updates before and after transition, (4.7)–(4.8), the a priori update over a full timestep is,

𝑥(𝑘 + 1|𝑘) =𝐴𝐽,Δ2𝑅(𝐼,𝐽)𝐴𝐼,Δ1𝑥(𝑘) (4.15)

Σ̂(𝑘 + 1|𝑘) =𝐴𝐽,Δ2[Ξ(𝐼,𝐽)(𝐴𝐼,Δ1Σ(𝑘)𝐴𝑇𝐼,Δ1
+𝑊𝐼,Δ1)Ξ𝑇(𝐼,𝐽) +𝑊𝑅(𝐼,𝐽)]𝐴

𝑇
𝐽,Δ2

+𝑊𝐽,Δ2 (4.16)

where the saltation matrix is evaluated at Ξ(𝐼,𝐽) = Ξ(𝐼,𝐽)(𝑡𝑖, 𝐴𝐼,Δ1𝑥(𝑘)).

A naive approach to updating the covariance through a hybrid transition is to use the Jacobian of

the reset function instead of the saltation matrix in Eq. (4.16). To illustrate the difference between

this naive approach and the proposed, we compare using the Jacobian of the reset map instead of

the saltation matrix in all experiments.

4.5.2 Hybrid transition during a posteriori update

Next, we consider the case where the measurement update pulls the mean estimate into a guard set

(4.2), i.e. 𝑥(𝑘 + 1|𝑘 + 1) ∈ 𝐺(𝐼,𝐽) for some 𝐽. In that case, the a posteriori update is modified by

applying the reset to the mean and the saltation update to the covariance after applying the standard

update (4.9)–(4.11),

𝑥(𝑘 + 1|𝑘) = 𝑅(𝐼,𝐽)𝑥(𝑘 + 1|𝑘) (4.17)

Σ̃(𝑘 + 1|𝑘) = Ξ(𝐼,𝐽)Σ̂(𝑘 + 1|𝑘)Ξ𝑇(𝐼,𝐽) +𝑊𝑅(𝐼,𝐽) (4.18)

100

where the saltation matrix is evaluated at Ξ(𝐼,𝐽) = Ξ(𝐼,𝐽)(𝑡𝑖, 𝑥(𝑘 + 1|𝑘)). These 𝑥(𝑘 + 1|𝑘) and

Σ̃(𝑘 + 1|𝑘) are the updated a posteriori mean and covariance in the new hybrid domain, 𝐽. Note

that this update is identical to (4.13)–(4.14).

4.5.3 Extended Kalman Filter

Similar to the Kalman filter, the standard Extended Kalman Filter (EKF) [Welch and Bishop, 1995,

Eqn. 2.1–2.2] can be directly applied for nonlinear hybrid systems when no transition occurs. The

nonlinear stochastic dynamics are given by

𝑥(𝑘 + 1) = 𝑓𝐼,Δ(𝑥(𝑘), 𝑢(𝑘), 𝜔(𝑘)) (4.19)

�̂�𝐼,Δ = 𝐷𝑥 𝑓𝐼,Δ(𝑥(𝑘), 𝑢(𝑘), 𝜔(𝑘)) (4.20)

�̂�𝐼,Δ = 𝐷𝜔 𝑓𝐼,Δ(𝑥(𝑘), 𝑢(𝑘), 𝜔(𝑘)) (4.21)

𝑦(𝑘) = ℎ𝐼(𝑥(𝑘), 𝑣 𝐼(𝑘)) (4.22)

�̂�𝐼 = 𝐷𝑥ℎ𝐼(𝑥(𝑘)) (4.23)

where 𝑓𝐼,Δ is the discrete nonlinear update for the continuous dynamics 𝐹𝐼 , �̂�𝐼,Δ is the linear

approximation of the dynamics, �̂�𝐼,Δ is the linear approximation of the process noise, ℎ𝐼 is the

measurement function and �̂�𝐼 is the linear approximation of the measurement function.

When there is a hybrid transition during the a priori update, the dynamic updates for the

nonlinear transition case are substituted in the same manner as the linear case into (4.15)–(4.16).

When there is a hybrid transition during the a posteriori update, the mean update equation (4.17)

is applied with the full nonlinear reset map, while the covariance update (4.18) is the same for both

the linear and nonlinear hybrid systems because the saltation matrix is already a linearization. With

these updates, the nonlinear extension to the Salted Kalman Filter follows naturally.

101

4.5.4 Summary and psuedocode

The Salted Kalman Filter (SKF) as presented above is summarized in Algorithm 1. Note that

the only difference from the standard Kalman Filter algorithm is applying the proposed moment

updates when the estimated state satisfies the guard condition (lines 7–11 and 16–20). The SKF

is in many ways similar to the EKF because the saltation matrix is a linearization about the hybrid

transition – if the transition is linear or the prediction is close to the actual then the filter performs

well. This property holds for the nonlinear Extended SKF as well, and in general this filter suffers

from the same pitfalls as the EKF. Furthermore, like the EKF this linearization means that the

optimal belief may not remain Gaussian, and thus that the filter may fail to have the optimally

properties we obtain in the linear case.

For the measurement update, if a hybrid transition is triggered, the approach presented here

simply transforms the already updated estimates. However, a more accurate approach might include

breaking up the measurement update into sub-updates over each domain. In this work, we assume

the updates are small enough such that this isn’t an issue, but as the measurement update magnitude

increases, this may be worth investigating. While the extended version of this filter is not optimal,

like the EKF, we expect that it will perform well when the covariances and timesteps are relatively

small so that the local linearizations hold. Therefore, we expect the performance of the filter to

falter when the estimation heavily deviates from the actual trajectory in cases such as initializing

the filter far away from the actual starting state, initializing in the wrong mode, or trajectories with

grazing impact (when the dynamics are not transverse to the guard).

4.6 Experiments

This section lays out the experimental design (Sec. 4.6.1) and example systems (Sec. 4.6.2) that are

used to test the utility of the Salted Kalman Filter.

102

Algorithm 1 Salted Kalman Filter (SKF)
1: input (𝑡𝑘 , 𝑥𝑘 , Σ𝑘 , 𝑚𝑘 , 𝑦𝑘+1)
2: 𝑡 ← 𝑡𝑘 , 𝑥 ← 𝑥𝑘 , Σ̂← Σ𝑘 , 𝐼 ← 𝑚𝑘

3: while (𝑡 < 𝑡𝑘 + Δ) do
4: (𝑡+, 𝑥)← integrate 𝐹𝐼(𝑡, 𝑥)

until (𝑡+ = 𝑡𝑘 + Δ) or (∃𝐽 s.t. 𝑥 ∈ 𝐺(𝐼,𝐽))
5: Δ1 ← 𝑡+ − 𝑡, 𝑡 ← 𝑡+

6: Σ𝑘 ← 𝐴𝐼,Δ1Σ̂𝐴
𝑇
𝐼,Δ1

+𝑊𝐼,Δ1 ⊲ (4.8)
7: if ∃𝐽 s.t. 𝑥 ∈ 𝐺(𝐼,𝐽) then
8: 𝑥 ← 𝑅(𝐼,𝐽)(𝑡, 𝑥) ⊲ (4.13)
9: Σ̂← Ξ(𝐼,𝐽)Σ̂ Ξ𝑇(𝐼,𝐽) +𝑊𝑅(𝐼,𝐽) ⊲ (4.14)

10: 𝐼 ← 𝐽

11: end if
12: end while
13: 𝐾 ← Σ̂𝐶𝑇

𝐼

[
𝐶𝐼 Σ̂𝐶

𝑇
𝐼

+𝑉𝐼
]−1

⊲ (4.9)
14: 𝑥 ← 𝑥 + 𝐾 [𝑦𝑘+1 − 𝐶𝐼𝑥] ⊲ (4.10)
15: Σ̂← Σ̂ − 𝐾𝐶𝐼 Σ̂ ⊲ (4.11)
16: if ∃𝐽 s.t. 𝑥 ∈ 𝐺(𝐼,𝐽) then
17: 𝑥 ← 𝑅(𝐼,𝐽)(𝑡, 𝑥) ⊲ (4.17)
18: Σ̂← Ξ(𝐼,𝐽)Σ̂ Ξ𝑇(𝐼,𝐽) +𝑊𝑅(𝐼,𝐽) ⊲ (4.18)
19: 𝐼 ← 𝐽

20: end if
21: 𝑡𝑘+1 ← 𝑡, 𝑥𝑘+1 ← 𝑥, Σ𝑘+1 ← Σ̂, 𝑚𝑘+1 ← 𝐼

22: return (𝑡𝑘+1, 𝑥𝑘+1, Σ𝑘+1, 𝑚𝑘+1)

4.6.1 Experimental Design

In the experiments, three different estimation techniques are used: 1) the proposed Salted Kalman

Filtering (SKF) algorithm using the saltation matrix to map covariance, 2) the naive mapping

using the Jacobian of the reset map (which we call the Jacobian of the Reset Kalman Filter, JRKF,

and which follows Algorithm 1 but with the saltation matrix Ξ replaced by the Jacobian of the

reset map 𝐷𝑥𝑅), and 3) a hybrid system Particle Filter (PF), following [Koutsoukos et al., 2002].

Experiments are performed in simulation to ensure consistency and accurate model knowledge.

These experiments evaluate the SKF by comparing the mean squared error of the 3 filters in a series

of Monte Carlo tests.

For the simulation, the stochastic difference equation, (4.19), is calculated for each timestep

using MATLAB’s ode45 [Shampine et al., 2003] where the integration follows (4.6). Ode45 is

103

used to account for the guard zero crossing detection using the MATLAB event location feature.

Tests comparing the Kalman Filters were run with a range of measurement noise, process noise,

and time steps. Tests comparing to the particle filter were run with a range of time steps with

a single representative process and measurement noise. For simplicity the starting covariance,

starting mean, reset covariance, chosen measurements, and simulation time were held constant

between trials.

The effectiveness of the filter for each trial is evaluated by calculating the mean squared error

(MSE) along a simulated trajectory,

MSE =
1
𝐾

𝐾∑︁
𝑘=1

(
(𝑥(𝑡𝑘) − 𝑥(𝑡𝑘))𝑇 (𝑥(𝑡𝑘) − 𝑥(𝑡𝑘)

)
(4.24)

where 𝐾 is the number of time steps, 𝑥(𝑡𝑘) is the state estimate at time 𝑡𝑘 , and 𝑥(𝑡𝑘) is the true state

at time 𝑡𝑘 . For each measurement noise, process noise, and time step combination, the filter is run

on 1000 randomly sampled starting conditions with randomly sampled process noise and randomly

sampled measurements. The same random trials are then passed to each filter for comparison.

Each set of trials are compared using the sign test [Dixon and Mood, 1946]. The null hypothesis

is that the median difference between the pairs is zero, 𝐻0 : 𝑀𝑆𝐸1 − 𝑀𝑆𝐸2 = 0. The sign test is

chosen because the data are not normally distributed, which rules out the paired t-test, and are not

necessarily symmetric, which rules out the Wilcoxon Signed Rank test.

4.6.2 Hybrid System Definitions

We present experiments for two different hybrid systems: 1) a simpler system which retains a

Guassian distribution, Sec. 4.6.2, and 2) a more complex system with nonlinear non-identity reset

maps, nonlinlear dynamics, and a higher dimensional state space, Sec. 4.6.2.

104

Constant Flow

The simplest hybrid system we examine is the case where there are two hybrid modes that are

linearly separated and which have constant, but distinct, dynamics in each mode. The dynamics

in the hybrid modes are defined as, 𝐹1 = [1,−1]𝑇 , and 𝐹2 = [1, 1]𝑇 . The guard sets are defined at

𝑥1 = 0, such that the domain of 𝐹1 is the left half plane and the domain of 𝐹2 is the right half plane

(Fig. 4.1). The reset is an identity map. The measurements for this system were chosen to be both

states, i.e., ℎ𝐼(𝑥) = 𝑥.

Asymmetric Spring Loaded Inverted Pendulum (ASLIP)

The asymmetric spring loaded inverted pendulum (ASLIP) system consists of a spring leg, torsional

spring hip, and a body with inertia in the sagittal plane as shown in Fig. 4.2. This system is similar

to the one in [Poulakakis and Grizzle, 2009] and a full derivation for the system dynamics can be

found in Section 3.8.5. This hybrid system is especially useful to analyze because it includes both

nonlinear dynamics and non-identity resets.

In this system, the body configuration space is defined to be the position and orientation of the

body 𝑞𝑏 := [𝑥𝑏, 𝑦𝑏, 𝜃𝑏]𝑇 ∈ R×R×S1. The leg configuration space is defined to be the angle between

the toe and the ground, the angle of the hip, and the length of the leg 𝑞𝑙 := [𝜃𝑡 , 𝜃ℎ, 𝑙𝑙]𝑇 ∈ S1×S1×R,

where impact location of the toe defines a pin joint for the body to pivot around. Once the location

of the toe, 𝑞𝑡 = [𝑥𝑡 , 𝑦𝑡]𝑇 ∈ R × R, is fixed to a ground location, either configuration can be used to

define the full configuration space of the system. When the toe position is known, the transformation

from the leg configuration to the body configuration is defined as 𝑇𝑙𝑏 : (𝑞𝑙 , 𝑞𝑡) ↦→ 𝑞𝑏, while the

inverse mapping is defined as 𝑇𝑏𝑙 : (𝑞𝑏, 𝑞𝑡) ↦→ 𝑞𝑙 .

Hybrid mode 1 is defined to be when the toe is not in contact with the ground. The resulting

domain D1 is chosen to be parameterized by the body’s configuration, toe position, and body’s

velocity.

[𝑥𝑏, 𝑦𝑏, 𝜃𝑏, 𝑥𝑡 , 𝑦𝑡 , ¤𝑥𝑏, ¤𝑦𝑏, ¤𝜃𝑏]𝑇 ∈ D1 (4.25)

105

Figure 4.2: Asymmetric Spring Loaded Inverted Pendulum (ASLIP) diagram showing the aerial
phase hybrid mode on the left and the stance phase hybrid mode on the right and their corresponding
configuration variables.

When the toe is in contact with the ground, the hybrid mode is 2. The domain D2 is chosen to be

parameterized by the toe angle with the ground, hip angle, the leg extension, toe position, the time

derivative of the toe angle, hip angle, and leg extension.

[𝜃𝑡 , 𝜃ℎ, 𝑙𝑙 , 𝑥𝑡 , 𝑦𝑡 , ¤𝜃𝑡 , ¤𝜃ℎ, ¤𝑙𝑙]𝑇 ∈ D2 (4.26)

Note that the toe position is augmenting the state rather than being treated as an external parameter

because variations in the toe placement affect the other configuration states. Because of this, the

toe dynamics are constrained relative to the body in domain 1 and relative to the ground contact

in domain 2. These dynamics 𝐹1, 𝐹2 are derived using a Lagrangian approach (see Section 3.8.5).

The system parameters and their experimental values are body mass 𝑚𝑏 = 1, body inertia 𝐼𝑏 = 1,

leg spring constant 𝑘 𝑙 = 1000, hip spring constant 𝑘𝜃 = 400, body length 𝑙𝑏 = 0.5, acceleration due

to gravity 𝑎𝑔 = 9.8, resting leg length 𝑙𝑙0 = 1, and resting angle of the hip spring 𝜃ℎ0 = − 𝜋8 .

The guard for mode 1 is defined to be when the toe touches the ground, 𝑔(1,2)(𝑡, 𝑞, ¤𝑞) = 𝑦𝑡 , and

the guard for mode 2 is defined to be when the normal force of the toe reaches zero, i.e when the

leg spring reaches the resting length, 𝑔(2,1)(𝑡, 𝑞, ¤𝑞) = 𝑙𝑙 − 𝑙𝑙0. The reset maps are defined to be the

106

coordinate changes from the body states to the leg states.

𝑅1,2 = [𝑇𝑏𝑙(𝑞𝑏), 𝑞𝑡 , 𝐷𝑞𝑏𝑇𝑏𝑙(𝑞𝑏, 𝑞𝑡) ¤𝑞𝑏]𝑇 (4.27)

𝑅2,1 = [𝑇𝑙𝑏(𝑞𝑙)𝑞𝑡𝐷𝑞𝑙𝑇𝑙𝑏(𝑞𝑙 , 𝑞𝑡) ¤𝑞𝑙]𝑇 (4.28)

For this system, only measurements of the body states are given, because it is assumed that the

hybrid mode is unknown. Therefore, in the aerial phase, hybrid mode 1, the measurement function

is simply, ℎ1(𝑥) = [𝑞𝑏, ¤𝑞𝑏]𝑇 . However, in the stance phase, hybrid mode 2, the states are the

leg states and the toes positions and cannot be directly compared against the body measurements.

Therefore, the measurement function in hybrid mode 2 is the transformation from leg states to body

states, ℎ2(𝑥) = [𝑇𝑙𝑏(𝑞𝑙), 𝑇𝑙𝑏(𝑞𝑙 , 𝑞𝑡 , ¤𝑞𝑙)]𝑇 .

4.7 Results

In this section we present the results of the experiments detailed in the previous section on the

example systems.

4.7.1 Constant Flow

The first experiment uses the constant flow system defined in Sec. 4.6.2 and shown in Fig. 4.1. The

system was simulated for 5 seconds with 4 different time steps: Δ = 5, 1, 0.1, and 0.05 seconds. The

process covariance levels ranged from ∥𝑊𝐼,Δ∥= 0.1Δ2 to 0.0001Δ2 and the measurement covariance

was swept from ∥𝑉𝐼 ∥= 1 to 0.0001, both in powers of 10, for a total of 4 process covariance levels

and 5 measurement covariance levels. In total, the Monte Carlo simulations for the 80 parameter

sets were tested with 1000 trials each. An example experiment is shown in Fig. 4.3. Note the

difference when comparing the error starting at the hybrid transition.

The result of the Monte Carlo Kalman filter tests were that the SKF performed better than the

JRKF for 76 of the 80 combinations (to statistical significance 𝑝 < 0.05). In the 4 remaining

107

Figure 4.3: Kalman filter results on the constant flow system. Note that the main differences are just
after the transition where the methods differ, but because Kalman Filters are stable these differences
disappear as time goes on. Testing conditions for this example are timestep Δ = 0.05s, process
noise ∥𝑊𝐼,Δ∥= 0.01Δ2, and measurement noise ∥𝑉𝐼 ∥= 1. Top: For a single trial, the ground truth
trajectory (black solid) is shown with the measurements (green dots) and highlighting (gray shaded)
when the system is in D2. Bottom: Absolute mean error is plotted for the SKF (blue solid), JRKF
(red dots), and PF (black dashed) while highlighting (gray shaded) the mean transition time toD2.

cases the filters are statistically indistinguishable, and in none of the experiments did the JRKF

outperform the SKF to statistical significance. For each of these cases, the time step is large,

the measurement noise is low, the process noise is high, and so both filters depend mostly on the

sensors. Therefore, the difference in dynamic update becomes less important.

For the particle filter experiment, the following parameters were chosen: process noise ∥𝑊𝐼,Δ∥=

0.01Δ2, measurement noise ∥𝑉𝐼 ∥= 1, initial covariance Σ(0) = 0.1𝐼, and Δ = 5, 1, 0.1, and 0.05

seconds. There was no noise added to reset because the reset map is an identity transformation.

The particle filter was initialized with 50 to 3000 particles sampled from the initial distribution.

108

Figure 4.4: Mean Squared Error versus average runtime for constant flow case with the particle
filter ranging from 50 to 3000 particles (black pluses) compared against the JRKF (red plus) and
SKF (blue plus, with a constant blue line highlighting the SKF MSE level for comparison). The
means were taken from a Monte Carlo Simulation with 1000 trials where Δ = 0.05s, process noise
∥𝑊𝐼,Δ∥= 0.01Δ2, and measurement noise ∥𝑉𝐼 ∥= 1.

The results of the particle filter experiments are shown in Fig. 4.4, where it is clear that the

particle filter took significantly higher computation time than the Kalman filters. This is expected,

because the Kalman filters is only simulating 1 particle’s mean and updating the covariance with

matrix computations. Starting only at 1000 particles did the PF perform statistically better than

the SKF, with a decrease of 2.7% MSE at the cost of taking 941 times longer to compute. At

2000 particles, the decrease is 5.2% in MSE and the computation required 1736 times the SKF’s

computation time. Increasing the number of particles to 3000 did not result in a statistically

significant improvement over 2000 and so for further comparison with the SKF and JRKF, the

number of particles was held constant at 2000.

Considering the effect of the time step on the particle filter experiments, at the largest time step

109

Table 4.1: The covariance magnitude at the time of transition ∥Σ(𝑡𝑖)∥ and the ratio between the
time it takes to transition 99% of the probability mass for each timestep level Δ𝑇 and the current
timestep length Δ for the constant flow system with process noise ∥𝑊𝐼,Δ∥= 0.1Δ2 and measurement
noise ∥𝑉𝐼 ∥= 1. Trials where the PF had a statistically lower MSE than the SKF are marked with
a ∗.

Δ ∥Σ(𝑡𝑖)∥ Δ𝑇/Δ

5𝑠 0.16 0.38
1𝑠∗ 0.10 1.5
0.1𝑠∗ 0.028 7.9
0.05𝑠∗ 0.015 12

(Δ = 5s) the MSE of the SKF and the PF are statistically indistinguishable. For the smaller time

steps (Δ = 1s, 0.1s, and 0.05s), the PF has lower MSE than the SKF (𝑝 < 0.05). We hypothesize

that this is due to the assumption in the SKF that the majority of the probability mass transitions

together during a single timestep. The SKF performs comparably worse when the timesteps are

small and the distribution is split across a hybrid transition. To test this hypothesis, we compare

the time step levels to the time it takes for this system to transition 99% of the probability mass at

the transition time as shown in Table 4.1. We find that if the time to transition Δ𝑇 was less than the

timestep duration Δ, then no increase in performance was observed with the PF.

4.7.2 ASLIP

The Kalman filtering and particle filtering experiments were also run on the ASLIP system, defined

in Sec. 4.6.2. For these tests, we simulated the dynamics for 1.25 seconds which resulted in 2

jumps (4 hybrid transitions). Experiment time steps were set at Δ ∈ {0.03, 0.01, 0.005, 0.001}

seconds. The process noise covariance levels were ∥𝑊𝐼,Δ∥= 0.01Δ2, 0.001Δ2, and 0.0001Δ2,

and the measurement noise covariance levels were ∥𝑉𝐼 ∥= 0.005, 0.001, and 0.0001. The initial

covariance was set to be 1×10−4𝐼, where the noise in the toe position was set to match the constraint

between the body configuration and the toe (as the toe position is correlated to the body states).

Reset noise is not applied because there is no uncertainty in the coordinate transformation.

In total, the Monte Carlo simulation for the 36 parameter sets that were tested with 100 trials

110

each. An example experiment is shown in Fig. 4.5. The result of these tests were that the SKF

performed better than the JRKF for all 36 combination with statistical significance (𝑝 < 0.001).

While the SKF performs better than the JRKF on average over all states, this does not indicate

that the SKF performs better than the JRKF in all coordinates for each timestep. In several of the

Monte Carlo simulations, the mean absolute error peaked above the JRKF’s mean in ¤𝑥𝑏, ¤𝑦𝑏, or ¤𝜃𝑏

for several timesteps – generally after the first touchdown. However, one consistent difference that

was seen in all simulations was that SKF had sustained improvements in the vertical body position

𝑦𝑏. The difference between the saltation matrix and the Jacobian of the reset map on impact is in

the column associated with the vertical height 𝑦𝑏. Therefore, the improvements in 𝑦𝑏 are expected

because the dynamics along this axis are accounted for.

For the particle filter experiment, 30, 000 particles were used and the following testing parame-

ters were chosen: process noise ∥𝑊𝐼,Δ∥= 0.01Δ2, measurement noise ∥𝑉𝐼 ∥= 0.005, and Δ = 0.005

seconds. An example run with these parameters are shown in the top plot of Fig. 4.5 and the filter

performance is shown in the lower plot. As with the constant flow system, the filters again perform

similarly for each state away from hybrid transitions and the differences are magnified near hybrid

transitions.

The result of this experiment was that the SKF has a lower MSE than the particle filter

with statistical significance (𝑝 < 0.001) over the 100 trials. We believe that the particle filters

performance can be improved to be better than or equal to the performance of the SKF by increasing

the number of particles. However, at 30, 000 particles the computation time is already unwieldy,

taking on average 5200 seconds to simulate a 1.25s experiment. Similar to constant flow example,

the hybrid particle filter takes significantly longer (×22000) to run than the SKF.

4.8 Conclusion

In this paper, we created a new Kalman filtering algorithm which allows estimation on hybrid

dynamical systems with state-defined transitions, including an extended Kalman filter variant

111

which can handle nonlinear dynamics with non-identity reset maps. This “Salted Kalman Filter”

was validated on both a linear and nonlinear system and compared against both a particle filter and

the “Jacobian of the reset map” counterpart.

The results show that using our proposed method is statistically better than or equivalent to the

naive method in all tested cases. However, both Kalman filters perform well and have relatively

low mean squared error. We believe this is because the naive solution and our proposed method

have the same mean update and algorithm structure, the fact that they both perform well highlights

the importance of having an accurate update for the mean as well as handling each transition case

in the algorithm. When comparing against a hybrid particle filter for the constant flow case, the

SKF is statistically indistinguishable when we are able to closely approximate that the probability

distribution stays Gaussian and that the majority of the probability mass transitions in a single

or several time steps. When the assumption that the probability mass transitions over a small

number of time steps is broken, the particle filter outperformed the SKF, but the largest increase

in performance was small (5.2%) especially compared to the 1736 times increase in computation

time.

For the more complex ASLIP system, the SKF performed statistically better than the 30, 000

particle filter when comparing MSE. However, we believe that with enough particles the particle

filter should be better than the SKF, though increasing the number of particles would increase the

computation time.

The proposed method, similar to the extended Kalman Filter, suffers when model uncertainty is

added to the hybrid dynamical system, when the local approximation is violated, or when the noise

is non-Gaussian. Overall, like an extended Kalman filter, if the estimate diverges from the actual

trajectory (i.e. the estimate is initialized far away from the actual, the starting mode is incorrect, or if

an incorrect transition is made) the performance of the filter will suffer. Incorrect mode transitions

are mitigated by the class of hybrid dynamical systems that are considered which require transverse

guards (Assumption 4.1). In cases where the non-linearity, non-localness, or non-Gaussianness are

significant, a hybrid particle filter or other particle filtering approaches may be more appropriate,

112

but will be accompanied with a respective increase in computation complexity. For a smooth

system, an unscented Kalman filter may be used in place of an extended Kalman filter if the local

assumption is not valid. However, using an unscented Kalman filter for a hybrid dynamical system

may not transfer well because the sampled sigma points may end up past the guard.

Note that while using the saltation matrix captures the update for the covariance to first order,

the saltation matrix is model-dependent, and may require significant effort to obtain in practice

in order to use (3.2) directly. However, as the saltation matrix is a linear map relating pre- and

post-transition states, regression techniques may be able to approximate it with measured data

without the need for complete (and differentiable) models of the hybrid system.

While this is a good start to developing an online hybrid state estimation system, there is still

further work needed to improve the estimation. Our method does not explicitly reason about the

probability of a state or measurement being in a particular hybrid mode or guard, and an extension

that reasons about this probability will be covered in future work. Additionally, future work is

required to cover distributions which pass through intersections of hybrid guards, in which case an

extension based on the Bouligand derivative [Burden et al., 2016; Scholtes, 2012] could be used to

capture the propagation of uncertainty.

113

Figure 4.5: ASLIP Kalman filter results comparing the SKF to the JRKF. Note that the main
differences between the methods are at the transitions and also that the improvement is in one
direction (here, mostly in the vertical body position 𝑦𝑏) because the saltation matrix is different
from the Jacobian of the reset map by a rank 1 update. Testing conditions for this example are
timestep Δ = 0.005s, measurement noise ∥𝑉𝐼 ∥= 0.005, and process noise ∥𝑊𝐼,Δ∥= 0.01Δ2. Top:
For a single trial, the ground truth trajectory (black solid) is shown with the measurements (green
dots) and highlighting (gray shaded) when the system is in D2. Bottom: Absolute mean error is
plotted for the SKF (blue solid), JRKF (red dots), and PF (black dashed) while highlighting (gray
shaded) the mean transition times to D2.

114

Chapter 5

iLQR for piecewise-smooth hybrid

dynamical systems

This chapter previously appeared in [Kong et al., 2021a].

5.1 Abstract

Trajectory optimization is a popular strategy for planning trajectories for robotic systems. However,

many robotic tasks require changing contact conditions, which is difficult because of the hybrid

nature of the dynamics. The optimal sequence and timing of these modes is typically not known

ahead of time. In this work, we extend the Iterative Linear Quadratic Regulator (iLQR) method to a

class of piecewise smooth hybrid dynamical systems by allowing for changing hybrid modes in the

forward pass, using the saltation matrix to update the gradient information in the backwards pass,

and using a reference extension to account for mode mismatch. We demonstrate these changes on

a variety of hybrid systems and compare the different strategies for computing the gradients.

115

5.2 Introduction

For robots to be useful in real world settings, they need to be able to interact efficiently and

effectively with their environments. However, systems like the quadcopter perching example

shown in Fig. 5.1 often have highly nonlinear dynamics and complex, time-varying environmental

interactions that make trajectory planning computationally challenging. These systems are often

modeled as mechanical systems with impacts, a type of hybrid dynamical system (Def. 1), [Back

et al., 1993; Lygeros et al., 2003; Goebel et al., 2009]. Hybrid dynamical systems differ from smooth

dynamical systems in many ways which make planning and control more difficult, including: 1)

they contain a discrete component of state (the “hybrid mode”) over which the continuous dynamics

may differ. 2) These modes are connected by a reset function that applies a discrete (and potentially

discontinuous) change to the state. 3) There may be different control authority available in each

mode.

While a wide range of trajectory optimization approaches have been proposed for smooth

dynamical systems (e.g. [Betts, 1998; Rao, 2009; Kelly, 2017]), most prior methods are not

suitable for hybrid dynamical systems. One approach that has been used successfully is direct

collocation, which transcribes the trajectory directly into an nonlinear program and optimizes for

both the state and control input at discrete points. If the sequence of hybrid modes is fixed and

known, the collocation can be solved as a multi-phase method [Von Stryk, 1999; Kelly, 2017]

which is a simultaneous optimization over each smooth segment with the reset map defining

boundary conditions between them [Schultz and Mombaur, 2009; Posa et al., 2016]. However, the

optimal mode sequence is often not known, and so contact-implicit optimization methods have been

proposed [Posa et al., 2014; Mordatch et al., 2012]. These methods use complementary constraints

to allow for any contact mode sequence, though such constraints are hard to solve in practice and

this approach does not extend to generic hybrid systems. Furthermore, for many real-time planning

applications direct collocation methods are unfavorable because they scale poorly with time and

the trajectories are not feasible until the optimization has finished.

In this paper, we propose to extend the Iterative Linear Quadratic Regulator (iLQR) method

116

Figure 5.1: Demonstrating an example solution using the proposed hybrid iLQR algorithm (labeled
withΞ, the saltation matrix, Def. 2) where the goal is to control a quadcopter to a target final position
(shown with a magenta plus) and can make contact with a curved wall with friction. Using a different
approximation for the gradient (Jacobian of the reset map, 𝐷𝑥𝑅, [Li and Wensing, 2020]) leads to
poor convergence and significantly higher cost. Note that in the force plots, the optimal input is not
smooth because of the hybrid transition.

[Li and Todorov, 2004; Tassa et al., 2012] to work for hybrid systems. iLQR (a special case of

the Differential Dynamic Programming method, DDP [Mayne, 1973]) is a shooting method [Betts,

1998] that utilizes linearization in the search direction (backward pass), but implements the full

nonlinear dynamics when obtaining the states of the optimized trajectory (forward pass). One

advantage of iLQR, like most shooting methods, is that it can be stopped prematurely to produce a

feasible trajectory [Posa et al., 2014].

However, traditional iLQR is defined only for smooth systems. Here, we extend iLQR to hybrid

systems by:

1. Allowing for varying mode sequences on the forward pass by using event detection to dictate

when a transition occurs and enforcing the appropriate dynamics in each mode, Sec. 5.3.2.

117

2. Applying the reset map on the forward pass and propagating the value function through reset

maps in the backwards pass by using a saltation matrix, Sec. 5.3.3.

3. Using reference extensions when there is a mode mismatch to get a valid control input in

each mode, Sec. 5.3.4.

In previous hybrid system DDP/iLQR work, [Li and Wensing, 2020] took an important first step

by extended the approach from [Lantoine and Russell, 2012] to create an “impact aware” iLQR

algorithm which utilizes a prespecified hybrid mode sequence to allow for different dynamics and

uses the Jacobian of the reset map to approximate the value function through a hybrid transition.

Constrained dynamics and mode sequence are handled by a outer layer in their algorithm. We

instead use the saltation matrix (Def. 2), [Leine and Nijmeijer, 2013; Rijnen et al., 2015; Aizerman

and Gantmakher, 1958; Burden et al., 2018b], to propagate the value function in the backwards

pass. This change makes a significant difference in solution quality and convergence, as we show

in Sec. 5.5. Furthermore, to allow use on a more general class of hybrid dynamical systems (not

just rigid bodies with contact) without prespecifying the mode sequence, the switching constraints

are enforced as part of the dynamics on the forward pass – if the current timestep reaches a hybrid

event, the solution jumps to the next hybrid mode using the reset map. These changes enable the

algorithm presented here to be run as a standalone algorithm with improved solution quality and

convergence properties.

5.3 Derivation/implementation

This section introduces an abridged derivation of iLQR [Li and Todorov, 2004] following [Tassa

et al., 2012] and then proposes the changes to make iLQR work on hybrid systems and discusses

several important key features of the new algorithm.

118

5.3.1 Smooth iLQR background

Consider a nonlinear dynamical system with states 𝑥 ∈ R𝑛, inputs 𝑢 ∈ R𝑚, and dynamics ¤𝑥 =

𝐹(𝑥(𝑡), 𝑢(𝑡)). Define a discretization of the continuous dynamics over a timestep Δ such that at time

𝑡𝑘 the discrete dynamics are 𝑥𝑘+1 = 𝑓Δ(𝑥𝑘 , 𝑢𝑘), where 𝑡𝑘+1 = 𝑡𝑘 + Δ, 𝑥𝑘 = 𝑥(𝑡𝑘), and 𝑢𝑘 = 𝑢(𝑡𝑘).

Let 𝑈 := {𝑢0, 𝑢1, ..., 𝑢𝑁−1} is the input sequence, 𝐽𝑁 is the terminal cost and 𝐽 is the runtime cost,

where 𝐽 and 𝐽𝑁 are both differentiable functions into R.

The optimal control problem over 𝑁 timesteps is

min
𝑈

𝐽𝑁 (𝑥𝑁) +
𝑁−1∑︁
𝑖=0

𝐽(𝑥𝑖, 𝑢𝑖) (5.1)

where 𝑥0 = 𝑥(0) (5.2)

𝑥𝑖+1 = 𝑓Δ(𝑥𝑖, 𝑢𝑖) ∀𝑖 ∈ {0, ..., 𝑁 − 1} (5.3)

To solve this problem, DDP/iLQR uses Bellman recursion to find the optimal input sequence𝑈,

we which briefly review here. Let 𝑈𝑘 := {𝑢𝑘 , 𝑢𝑘+1, ..., 𝑢𝑁−1} be the sequence of inputs including

and after timestep 𝑘 . Define the cost-to-go 𝐽𝑘 as the cost incurred including and after timestep 𝑘

𝐽𝑘 (𝑥𝑘 ,𝑈𝑘) := 𝐽𝑁 (𝑥𝑁) +
𝑁−1∑︁
𝑖=𝑘

𝐽(𝑥𝑖, 𝑢𝑖) (5.4)

with {𝑥𝑘+1, ..., 𝑥𝑁 } the sequence of states starting at 𝑥𝑘 based on 𝑈𝑘 and (5.3). The value function

𝑉 (Bellman equation) at state 𝑥𝑘 is the optimal cost to go 𝐽𝑘 (𝑥𝑘 ,𝑈𝑘), which can be rewritten as a

recursive function of variables from the current timestep using the dynamics (5.3),

𝑉(𝑥𝑘) := min
𝑢𝑘

𝐽(𝑥𝑘 , 𝑢𝑘) +𝑉(𝑓Δ(𝑥𝑘 , 𝑢𝑘)) (5.5)

Since there is no input at the last timestep, the boundary condition of the value is the terminal cost,

𝑉𝑁 (𝑥𝑁) := 𝐽𝑁 (𝑥𝑁). Next, define𝑄𝑘 to be the argument optimized in (5.5). Optimizing the Bellman

equation directly is incredibly difficult. DDP/iLQR uses a second order local approximation of 𝑄𝑘

119

where perturbations about the state and input (𝑥𝑘 , 𝑢𝑘) are taken. The resulting function is defined

to be

𝑄𝑘 (𝛿𝑥, 𝛿𝑢) :=𝐽(𝑥𝑘 + 𝛿𝑥, 𝑢𝑘 + 𝛿𝑢) − 𝐽(𝑥𝑘 , 𝑢𝑘)+ (5.6)

𝑉(𝑓Δ(𝑥𝑘 + 𝛿𝑥, 𝑢𝑘 + 𝛿𝑢)) −𝑉(𝑓Δ(𝑥𝑘 , 𝑢𝑘))

where the value function expansion is for timestep 𝑘 + 1 and when expanded to second order

𝑄𝑘 (𝛿𝑥, 𝛿𝑢) ≈ 1
2

1

𝛿𝑥

𝛿𝑢

𝑇
0 𝑄𝑇𝑥 𝑄𝑇𝑢

𝑄𝑥 𝑄𝑥𝑥 𝑄𝑇𝑢𝑥

𝑄𝑢 𝑄𝑢𝑥 𝑄𝑢𝑢

1

𝛿𝑥

𝛿𝑢

(5.7)

the expansion coefficients are

𝑄𝑥,𝑘 = 𝐽𝑥 + 𝑓 𝑇𝑥,𝑘𝑉𝑥 (5.8)

𝑄𝑢,𝑘 = 𝐽𝑢 + 𝑓 𝑇𝑢,𝑘𝑉𝑥 (5.9)

𝑄𝑥𝑥,𝑘 = 𝐽𝑥𝑥 + 𝑓 𝑇𝑥,𝑘𝑉𝑥𝑥 𝑓𝑥,𝑘 +𝑉𝑥 𝑓𝑥𝑥,𝑘 (5.10)

𝑄𝑢𝑥,𝑘 = 𝐽𝑢𝑥 + 𝑓 𝑇𝑢,𝑘𝑉𝑥𝑥 𝑓𝑥,𝑘 +𝑉𝑥 𝑓𝑢𝑢,𝑘 (5.11)

𝑄𝑢𝑢,𝑘 = 𝐽𝑢𝑢 + 𝑓 𝑇𝑢,𝑘𝑉𝑥𝑥 𝑓𝑢,𝑘 +𝑉𝑥 𝑓𝑢𝑥,𝑘 (5.12)

where subscripted variables represent derivatives of the function with respect to the variable (e.g.

𝐽𝑥 = 𝐷𝑥𝐽) and the discretized dynamics are abreviated as 𝑓𝑘 = 𝑓Δ(𝑥𝑘 , 𝑢𝑘). Note that the second

derivative terms (where adjacency indicates tensor contraction) with respect to the dynamics (𝑓𝑥𝑥,𝑘 ,

𝑓𝑢𝑢,𝑘 , and 𝑓𝑢𝑥,𝑘) in (5.10)–(5.12) are used in DDP but ignored in iLQR.

With this value function expansion, the optimal control input, 𝛿𝑢∗, can be found by setting the

derivative of 𝑄(𝛿𝑥, 𝛿𝑢) with respect to 𝛿𝑢 to zero and solving for 𝛿𝑢,

𝛿𝑢∗ = arg min
𝛿𝑢

𝑄(𝛿𝑥, 𝛿𝑢) = −𝑄−1
𝑢𝑢 (𝑄𝑢 +𝑄𝑢𝑥𝛿𝑥) (5.13)

120

This optimal control input can be split into a feedforward term 𝑢 𝑓 𝑓 = −𝑄−1
𝑢𝑢𝑄𝑢 and a feedback term

𝐾 = −𝑄−1
𝑢𝑢𝑄𝑢𝑥𝛿𝑥. Therefore, the optimal input for the local approximation at timestep 𝑘 is the sum

of the original input and the optimal control input, 𝑢∗
𝑘

= 𝑢𝑘 + 𝛿𝑢∗.

Once the optimal controller is defined, the expansion coefficients of 𝑉 for timestep 𝑘 can be

updated by plugging in the optimal controller into (5.7)

𝑉𝑥 = 𝑄𝑥 −𝑄𝑢𝑄−1
𝑢𝑢𝑄𝑢𝑥 (5.14)

𝑉𝑥𝑥 = 𝑄𝑥𝑥 −𝑄𝑇𝑢𝑥𝑄−1
𝑢𝑢𝑄𝑢𝑥 (5.15)

Now that the expansion terms for the value function at timestep 𝑘 can be expressed as sole a function

of 𝑘 + 1 the optimal control input can be calculated recursively and stored (𝑢 𝑓 𝑓 ,𝑘 , 𝐾𝑘). This process

is called the backwards pass.

Once the backwards pass is completed, a forward pass is run by simulating the dynamics given

the new gain schedule (𝑢 𝑓 𝑓 ,𝑘 , 𝐾𝑘) and the previous iterations sequence of states and inputs.

𝑥0 = 𝑥0 (5.16)

�̂�𝑘 = 𝐾𝑘 (𝑥𝑘 − 𝑥𝑘) + 𝛼𝑢 𝑓 𝑓 ,𝑘 (5.17)

𝑥𝑘+1 = 𝑓Δ(𝑥𝑘 , �̂�𝑘) (5.18)

where the new trajectory is denoted with hats (𝑥, �̂�) and 𝛼 is used as a backtracking line-search

parameters 0 < 𝛼 ≤ 1 [Tassa et al., 2012, Eqn. 12]. The backwards and forwards passes are run

until convergence. Following [Tassa et al., 2012], convergence is when the magnitude of the total

expected reduction 𝛿𝐽 is small

𝛿𝐽(𝛼) =
𝑁−1∑︁
𝑖=0

𝑢𝑇𝑓 𝑓 ,𝑖𝑄𝑢,𝑖 +
1
2

𝑁−1∑︁
𝑘=0

𝑢𝑇𝑓 𝑓 ,𝑖𝑄𝑢𝑢,𝑖𝑢 𝑓 𝑓 ,𝑖 (5.19)

Convergence issues may occur when 𝑄𝑢𝑢 is not positive-definite or when the second order

approximations are inaccurate. Regularization is often added to address these issues and here we

121

use the same regularization scheme as in [Tassa et al., 2012].

5.3.2 Hybrid system modifications to the forward pass

The first change that is required for iLQR to work on hybrid dynamical systems is that the forward

pass must accurately generate the hybrid system execution. The dynamics are integrated for the

currently active mode 𝐼 𝑗 for the duration of the hybrid time period 𝑗 , i.e. ∀𝑡 ∈ [𝑡 𝑗 , 𝑡 𝑗], until a guard

condition is met,

𝑔(𝐼 𝑗 ,𝐼 𝑗+1)(𝑡 𝑗 , 𝑥(𝑡 𝑗), 𝑢(𝑡 𝑗)) = 0 (5.20)

To capture these hybrid dynamics in the discrete forward pass, the discretized dynamics are

computed using numerical integration with event detection, so that if no event occurs the dynamic

update, (5.3), is,

𝑓Δ 𝑗
(𝑥𝑘 , �̂�𝑘) :=

∫ 𝑡𝑘+1

𝑡𝑘

𝑓𝐼 𝑗 (𝑥(𝑡), �̂�𝑘)𝑑𝑡 + 𝑥𝑘 (5.21)

If during the integration the hybrid guard condition is met, (5.20), the integration halts, the transition

state is stored, the reset map is applied, and then the integration is continued with the dynamics

of the new mode, 𝐼 𝑗+1. Suppose that the guard condition is met once (which is ensured for small

times by transversality) at time 𝑡 𝑗 , such that 𝑡𝑘 ≤ 𝑡 𝑗 ≤ 𝑡𝑘+1, then

𝑓 ′Δ(𝑥𝑘 , �̂�𝑘) =
∫ 𝑡𝑘+1

𝑡 𝑗+1

𝑓𝐼 𝑗+1(𝑥(𝑡), �̂�𝑘)𝑑𝑡+ (5.22)

𝑅(𝐼 𝑗 ,𝐼 𝑗+1)

(
𝑡 𝑗 ,

∫ 𝑡 𝑗
𝑡𝑘

𝑓𝐼 𝑗 (𝑥(𝑡), �̂�𝑘)𝑑𝑡 + 𝑥𝑘
)

Note that this process can be repeated for as finitely many times as there are hybrid changes during

a single timestep, but there cannot be infinitely many changes during a single timestep (no Zeno).

In this work, we use MATLAB’s ode45 method for integration and event detection.

122

Finally, in addition to updating the dynamics the cost function, (5.4), can be augmented with

additional cost terms, 𝐽𝑁 𝑗
, associated with each hybrid transition between the 𝑀 hybrid modes, as

shown in [Lantoine and Russell, 2012],

𝐽0 = 𝐽𝑁 (𝑥𝑁) +
𝑁−1∑︁
𝑖=0

𝐽(𝑥𝑖, 𝑢𝑖) +
𝑀−1∑︁
𝑗=1

𝐽𝑁 𝑗
(𝑥𝑁 𝑗

) (5.23)

Such an addition may be desirable if e.g., one wanted to penalize the occurrences of a transition

event in the hopes of having a minimal number of hybrid events.

5.3.3 Hybrid system modifications to the backwards pass

The backwards pass must be updated to reflect the discrete jumps that were added through the hybrid

transitions. Away from hybrid transitions, the dynamics are smooth and behave the same way as

in the smooth iLQR backwards pass, so our modification to backwards pass is occurs at timesteps

where a hybrid transition is made. By substituting (5.22) into (5.5), and adding the transition

cost from (5.23), the resulting Bellman equation for the timesteps during hybrid transition 𝑗 over

timestep 𝑘 is

𝑉(𝑥𝑘) = min
𝑈𝑘

𝐽(𝑥𝑘 , 𝑢𝑘)+𝐽𝑁 𝑗
(𝑥𝑁 𝑗

)+𝑉(𝑓 ′Δ(𝑥𝑘 , 𝑢𝑘)) (5.24)

We elect to approximate the hybrid transition timestep to have the hybrid event occur at the end

of the timestep in order to maintain smooth control inputs for each hybrid epoch. For the backwards

pass to work on the Bellman equation during transition timesteps, we need to find the linearization

of 𝑓 ′
Δ

(𝑥𝑘 , 𝑢𝑘). This linearization step is straight forward when using the saltation matrix to map

perturbations pre and post hybrid transition (3.10).

The linearization can be broken up into 2 different steps, where each step the linearization is

known.

𝛿𝑥(𝑡 𝑗) ≈ 𝑓𝑥,Δ 𝑗
𝛿𝑥(𝑡𝑘) + 𝑓𝑢,Δ 𝑗

𝛿𝑢(𝑡𝑘) (5.25)

123

𝛿𝑥(𝑡 𝑗+1) ≈ Ξ𝛿𝑥(𝑡 𝑗) (5.26)

where 𝑓∗,Δ 𝑗
= 𝐷∗ 𝑓Δ 𝑗

(𝑥, 𝑢) and the saltation matrix is abbreviated as Ξ = Ξ(𝐼 𝑗 ,𝐼 𝑗+1)(𝑡 𝑗 , 𝑥(𝑡 𝑗), 𝑢(𝑡𝑘))

These linearization steps can be combined and directly substituted in the coefficient expansion

equations (5.8)–(5.12) in place of the 𝑓𝑘 terms. For the transition cost, 𝐽𝑁 𝑗
, an expansion is taken

about 𝛿𝑥(𝑡 𝑗) which can be mapped back to (𝛿𝑥(𝑡𝑘), 𝛿𝑢(𝑡𝑘)) and added to the expansion coefficients.

When combining all the expansion terms, the hybrid iLQR coefficients in (5.7) are,

𝑄𝑥,𝑘 = 𝐽𝑥 + 𝑓 𝑇𝑥,Δ 𝑗
𝐽𝑥,𝑁 𝑗

+ 𝑓 𝑇𝑥,Δ 𝑗
Ξ𝑇𝑉𝑥 (5.27)

𝑄𝑢,𝑘 = 𝐽𝑢 + 𝑓 𝑇𝑢,Δ 𝑗
𝐽𝑥,𝑁 𝑗

+ 𝑓 𝑇𝑢,Δ 𝑗
Ξ𝑇𝑉𝑥 (5.28)

𝑄𝑥𝑥,𝑘 = 𝐽𝑥𝑥 + 𝑓 𝑇𝑥,Δ 𝑗
𝐽𝑥𝑥,𝑁 𝑗

𝑓𝑥,Δ 𝑗
+ 𝑓 𝑇𝑥,Δ 𝑗

Ξ𝑇𝑉𝑥𝑥Ξ 𝑓𝑥,Δ 𝑗
(5.29)

𝑄𝑢𝑥,𝑘 = 𝐽𝑢𝑥 + 𝑓 𝑇𝑢,Δ 𝑗
𝐽𝑥𝑥,𝑁 𝑗

𝑓𝑥,Δ 𝑗
+ 𝑓 𝑇𝑢,Δ 𝑗

Ξ𝑇𝑉𝑥𝑥Ξ 𝑓𝑥,Δ 𝑗
(5.30)

𝑄𝑢𝑢,𝑘 = 𝐽𝑢𝑢 + 𝑓 𝑇𝑢,Δ 𝑗
𝐽𝑥𝑥,𝑁 𝑗

𝑓𝑢,Δ 𝑗
+ 𝑓 𝑇𝑢,Δ 𝑗

Ξ𝑇𝑉𝑥𝑥Ξ 𝑓𝑢,Δ 𝑗
(5.31)

After this update to the coefficient expansion, the backwards pass continues normally. If the second

order variational expression for the saltation matrix is calculated, then these exact changes can be

used for a hybrid DDP version of this backwards pass.

As a alternative expansion, in [Li and Wensing, 2020, Eq. (21)] the authors use the Jacobian

of the reset map to propagate perturbations in state through the hybrid transition, instead of the

saltation matrix (3.10). For the hybrid backwards pass that we define, this change would be the

equivalent of substituting the Jacobian of the reset map in place of the saltation matrix in (5.26)

𝛿𝑥(𝑡 𝑗+1) ≈ 𝐷𝑥𝑅(𝐼 𝑗 ,𝐼 𝑗+1)(𝑡 𝑗 , 𝑥(𝑡 𝑗), 𝑢(𝑡𝑘))𝛿𝑥(𝑡 𝑗) (5.32)

and similarly in the hybrid coefficient expansion equations (5.27)–(5.31). We show empirically that

using this alternate version with the Jacobian of the reset map does not perform as well as using

the saltation matrix and may not converge.

124

5.3.4 Hybrid extensions for mode mismatches

Since the forward pass can alter the contact sequence, the new trajectory is not confined to the

previous trajectory’s mode sequence or timing. This feature is intended because the algorithm can

now remove, add, or shift mode transitions if cost is reduced. However, this introduces an issue

when the reference mode is not the same as the current mode.

In [Rijnen et al., 2015, Eq. 7], the authors consider the problem of mode mismatch for an optimal

hybrid trajectory, both of the reference and of the feedback gains – the reference is extended by

integration, and the gains are held constant. We employ their strategy, as well as apply this same

rule for the input and the feedforward gains – applying the input intended for a different mode can

cause destructive results, or be not well-defined. If the number of hybrid transitions exceeds that of

the reference, we elected to hold the terminal state and gains constant, though other choices could

be made instead.

5.3.5 Algorithm

With each hybrid modification to iLQR listed in Sections 5.3.2, 5.3.3, and 5.3.4 our new algorithm

can be summarized as follows: 1) Given some initial state, input sequence, quadratic loss function,

number of timesteps, and timestep duration a rollout is simulated to get the initial reference

trajectory and mode sequence. 2) A hybrid backwards pass (using the regularization from [Tassa

et al., 2012]) computes the optimal control inputs for the reference trajectory. 3) Hybrid reference

extensions are computed on the start and end states for each hybrid reference segment. 4) The

forward pass simulates the current mode’s dynamics until a hybrid guard condition is met or it is

the end of the simulation time; if the guard is reached, the corresponding reset map is applied and

the simulation is continued. This forward pass is repeated with a different learning rate until the

line search conditions are met [Tassa et al., 2012]. 5) Then the backwards pass, hybrid extensions,

and forward passes are repeated until convergence.

125

5.4 Hybrid System Examples and Experiments

In this section, we define a set of hybrid systems – ranging from a simple 1D bouncing ball to a

perching quadcopter with constrained dynamics and friction – and a series of experiments which

evaluates how our hybrid iLQR algorithm performs in a variety of different settings.

For all of the examples, we assume that there is no desired reference trajectory to track and that

there is no hybrid transition cost 𝐽𝑁 𝑗
– this means the runtime cost is only a function of input. In

each experiment, a comparison against using the Jacobian of the reset map instead of the saltation

matrix is made by evaluating the expected cost reduction for the entire trajectory and the final cost.

The Jacobian of the reset variant is labeled as 𝐷𝑥𝑅-iLQR and the main variant which uses the

saltation matrix Ξ-iLQR.

For all examples, 𝑚 = 1 is the mass of a rigid body, 𝑔 = 9.8 is the acceleration due to gravity,

the number of timesteps simulated is 𝑁 = 1000, and the timestep duration is Δ = 0.001s unless

specified.

The dynamics considered here fall into the category of Euler Lagrange dynamics subjected

to unilateral holonomic constraints. We use the dynamics, impact law, and complementarity

conditions as derived in [Johnson et al., 2016a]. These systems have configuration variables 𝑞

where the state of the system is the configurations and their time derivatives 𝑥 = [𝑞𝑇 , ¤𝑞𝑇]𝑇 . When

the system is in contact with a constrained surface 𝑎(𝑞) = 0, a constraint force 𝜆 is applied to not

allow penetration in the direction of the constraint. The accelerations ¥𝑞 and constraint forces 𝜆 are

found by solving the constraint and accelerations simultaneously,

𝑀(𝑞) ¥𝑞 + 𝐶(𝑞, ¤𝑞) ¤𝑞 + 𝑁(𝑞, ¤𝑞) + 𝐴(𝑞)𝑇𝜆 = Υ(𝑞, 𝑢) (5.33)

𝐴(𝑞) ¥𝑞 + ¤𝐴(𝑞) ¤𝑞 = 0 (5.34)

where𝑀(𝑞) is the manipulator inertia matrix,𝐶(𝑞, ¤𝑞) are the Coriolis and centrifugal forces, 𝑁(𝑞, ¤𝑞)

are nonlinear forces including gravity and damping, 𝐴(𝑞) = 𝐷𝑞𝑎(𝑞) is the velocity constraint, and

Υ(𝑢) is the input mapping function.

126

Suppose the constrained surface 𝑎𝐽(𝑞) is the 𝐽th possible hybrid mode, and the current mode

is the unconstrained mode. 𝑎𝐽(𝑞) acts as the guard surface for impacts 𝑔(1,𝐽) = 𝑎𝐽(𝑞). When the

system hits the impact guard, the velocity is reset using a plastic or elastic impact law [Johnson

et al., 2016a].

Releasing a constrained mode (liftoff) occurs when a constraint force becomes attractive rather

than repulsive; thus we define hybrid guard 𝑔(𝑡, 𝑥, 𝑢) := 𝜆 and the reset map at these events are

identity transforms because no additional constraints are being added.

5.4.1 Bouncing ball elastic impact

We begin with a 1D bouncing ball under elastic impact [Goebel et al., 2009], where the state

𝑥 = [𝑧, ¤𝑧]𝑇 is the vertical position 𝑧 and velocity ¤𝑧. The input 𝑢 is a force applied directly to the ball.

The two hybrid modes, 1 and 2, are defined when the ball has negative velocity ¤𝑧 < 0 and when

the ball has non-negative velocity ¤𝑧 ≥ 0, respectively. The dynamics on each mode are ballistic

dynamics plus the input

𝐹1(𝑥, 𝑢) = 𝐹2(𝑥, 𝑢) :=
[
¤𝑧, 𝑢 − 𝑚𝑔

𝑚

]𝑇
(5.35)

Hybrid mode 1 transitions to 2 when the ball hits the ground, 𝑔(1,2)(𝑥) := 𝑧, and mode 2 transitions

to 1 at apex 𝑔(2,1)(𝑥) := ¤𝑧. When mode 1 transitions to 2, an elastic impact is applied, 𝑅(1,2)(𝑥) =

[𝑧,−𝑒 ¤𝑧]𝑇 where 𝑒 is the coefficient of restitution. The reset map from 2 to 1 is identity.

The Jacobian of the reset map and saltation matrix are,

𝐷𝑥𝑅(1,2) =

1 0

0 −𝑒

 , Ξ(1,2) =

−𝑒 0

(𝑢−𝑚𝑔)(𝑒+1)
𝑚 ¤𝑧 −𝑒

 (5.36)

When transitioning from 2 to 1, both Jacobian of the reset map and saltation matrix are identity.

The problem data is to have the ball fall from an initial height with no velocity, 𝑥0 = [4, 0]𝑇 , and

end up at a final height 𝑥𝑑𝑒𝑠 with no velocity with penalties 𝑅 = 5 × 10−7/Δ, 𝑄𝑁 = 100𝐼2×2 and the

127

Table 5.1: Bouncing ball with elastic impacts. Trials vary in optimal number of bounces, number
of seeded bounces, which method was used, total cost, and convergence |𝛿𝐽 |< 0.05

Optimal # Seed # Method Actual # Cost Converged
0 0 Ξ 0 53.1 Yes
0 0 𝐷𝑥𝑅 0 53.1 Yes
0 1 Ξ 1 114 Yes
0 1 𝐷𝑥𝑅 0 53.1 Yes
0 1 Direct 1 114 Yes
1 0 Ξ 0 97.3 Yes
1 0 𝐷𝑥𝑅 0 97.3 Yes
1 1 Ξ 1 42.5 Yes
1 1 𝐷𝑥𝑅 0 97.3 Yes
1 3 Ξ 1 42.5 Yes
1 3 𝐷𝑥𝑅 1 125 No
3 1 Ξ 1 105 Yes
3 1 𝐷𝑥𝑅 0 114 Yes
3 3 Ξ 3 0.536 Yes
3 3 𝐷𝑥𝑅 3 19.6 No
3 3 No Ext. 3 53.3 No

problems were seeded with a constant input force to obtain different number of bounces. A suite of

bouncing conditions are considered and are summarized in Table 5.1. In the case where 0 bounces

are optimal 𝑥𝑑𝑒𝑠 = [3, 0]𝑇 while where 1 or 3 bounces are optimal 𝑥𝑑𝑒𝑠 = [1, 0]𝑇 . For 3 bounces

the timestep is set to Δ = 0.004. To evaluate the effectiveness of the hybrid extensions, Sec. 5.3.4,

an additional comparison using our hybrid iLQR algorithm where we do not apply any hybrid

extensions is made. For all cases, a convergence cutoff for this problem is set to be if |𝛿𝐽 |≤ 0.05.

5.4.2 Ball dropping on a spring-damper

Hard contacts are sometimes relaxed using springs and dampers, so we consider the 1D bouncing

ball case, but instead of having a discontinuous event at impact, the impact event is extended by

assuming the ground is a spring damper (i.e., a force law 𝑓𝑠𝑑(𝑧, ¤𝑧) := 𝑘𝑧+𝑑 ¤𝑧) when being penetrated

and a spring when releasing. With this change the system now has an identity reset, but since the

saltation matrix is not identity, the hybrid transition still produces a jump in the linearization.

128

The hybrid modes are defined as: the aerial phase 1, the spring-damper phase 2 and the spring

phase 3. The spring and dampening coefficients are chosen to be 𝑘 = 100 and 𝑑 = 5. The guards

are when the ball hits the ground 𝑔(1,2) = 𝑧, when the ball no longer has any penetrating velocity

𝑔(2,3) = ¤𝑧, and when the ball is released from the ground 𝑔(3,1) = 𝑧. For all of these transitions, the

reset map is an identity transformation and the states do not change.

The example is setup to have the ball fall an initial height with an initial downwards velocity

𝑥0 = [3,−2], end up at a height with no velocity 𝑥𝑑𝑒𝑠 = [1, 0], with penalties 𝑅 = 0.0001,

𝑄𝑁 = 100𝐼2×2 and no input for the seed.

5.4.3 Ball drop on a curved surface with plastic impacts

To test our algorithm with a nonlinear constraint surface, we designed a system where an actuated

ball in 2D space is dropped inside a hollow tube and is tasked to end in a goal location on the tube

surface.

The configuration states of the system are the horizontal and vertical positions 𝑞 = [𝑦, 𝑧]𝑇 . This

system consists of two different hybrid modes: the unconstrained mode 1 and in the constrained

mode 2. The constrained surface is defined to be a circle with radius 2, 𝑎(𝑞) = 4 − 𝑦2 − 𝑧2.

The dynamics of the system, (5.33), are ballistic dynamics with direct inputs on configurations,

𝑀(𝑞) = 𝑚𝐼2×2, 𝑁(𝑞, ¤𝑞) = [0,−𝑚𝑔]𝑇 , 𝐶(𝑞, ¤𝑞) = 02×2, and Υ = [𝑢𝑦, 𝑢𝑧]𝑇 . The impact guard from

(1,2) is defined by the circle’s constrained surface and the liftoff guard from (2,1) is the constraint

force 𝜆.

The example is setup to have the ball fall from an initial height with velocity pointing down and

to the right 𝑥0 = [1, 0], end up at a specific location on circle with no velocity 𝑥𝑑𝑒𝑠 = [−
√

3,−1, 0, 0],

with penalties 𝑅 = 0.0001,𝑄𝑁 = 100𝐼4×4 and no input for the initial seed except for a vertical force

2𝑚𝑔 applied for a small duration to cause the ball to momentarily leave the constraint.

129

5.4.4 Perching quadcopter

We introduce a quadcopter perching example inspired by [Lussier Desbiens et al., 2011], where we

consider a planar quadcopter which can make contact with sliding friction on a surface. When both

edges of the quadcopter are touching the constraint, we assume some latching mechanism engages

and fully constrains the quadcopter in place with no way to release. This problem explores planning

with an underactuated system, friction, constraint surfaces, nonlinear dynamics, nonlinear guards,

and nonlinear resets.

The configurations of the system are the vertical, horizontal, and angular position 𝑞 = [𝑦, 𝑧, 𝜃]𝑇

and the inputs are the left and right thrusters, 𝑢1 and 𝑢2. The dynamics are defined by (5.33) with

the following

𝑀(𝑞) :=

𝑚 0 0

0 𝑚 0

0 0 𝐼

, 𝐶(𝑞, ¤𝑞) :=

0 0 0

0 0 0

0 0 0

, (5.37)

𝑁(𝑞, ¤𝑞) :=

0

−𝑚𝑔

0

, Υ :=

− sin(𝜃)(𝑢1 + 𝑢2)

cos(𝜃)(𝑢1 + 𝑢2)
1
2 (𝑢2𝑤 − 𝑢1𝑤)

(5.38)

where 𝑤 = 0.25 is the width and 𝐼 = 1 is the inertia of the quadcopter.

To add more complex geometry, the constrained surface is a circle centered about the origin

with radius 5. Since the edges of the quadcopter make contact with the surface, the left and right

edges of the quadcopter are located at,

[𝑦𝐿 , 𝑧𝐿]𝑇 = [𝑦 − 1
2
𝑤 cos 𝜃, 𝑧 − 1

2
𝑤 sin 𝜃]𝑇 (5.39)

[𝑦𝑅, 𝑧𝑅]𝑇 = [𝑦 +
1
2
𝑤 cos 𝜃, 𝑧 +

1
2
𝑤 sin 𝜃]𝑇 (5.40)

The constraints are then 𝑎1 = 25 − 𝑦2
𝐿
− 𝑧2

𝐿
and 𝑎2 = 25 − 𝑦2

𝑅
− 𝑧2

𝑅
. Frictional force 𝜆𝑡 is defined

to be tangential to the constraint with magnitude proportional to the constraint force 𝜆𝑛, 𝜆𝑡 = 𝜇𝜆𝑛,

130

Figure 5.2: Bouncing ball with elastic impact where 1 bounce is optimal and 3 bounces are seeded.
The target end position is shown in (magenta plus). Both gradient update methods were able to
pull away the unnecessary bounces, but the method using 𝐷𝑥𝑅 did not converge or get to the target
state.

where 𝜇 is the coefficient of friction.

The example is setup to have the quadcopter start some distance away from the constraint

with a horizontal velocity, 𝑥0 = [2, 2.5,−𝜋/8, 4, 0, 0]𝑇 , end up oriented with the constraint with no

velocity 𝑥𝑑𝑒𝑠 = [5 cos(−𝜋/12), 5 cos(−𝜋/12),−7/12𝜋, 0, 0, 0]𝑇 , timesteps Δ = 0.002, with penalties

𝑅 = 0.012×2, and 𝑄𝑁 = [1000𝐼3×3, 03×3; 03×3, 0.1𝐼3×3]. The position portion is weighted more

heavily than velocity because the goal is to get close enough to the desired location to perch. For

the seed, a combined thrust of equal to 1.5𝑚𝑔 was applied constantly and if both edges made

contact with the constraint, the thrust force was dropped to 0.1𝑚𝑔. This initial input resulted in

a trajectory which makes contact with the right edge and then shortly after makes double contact

with the constraint as shown in Fig. 5.1.

5.5 Results

In this section, the results of the experiments on each system are presented. Overall, the Jacobian

of the reset map method 𝐷𝑥𝑅-iLQR has trouble converging and has worse cost compared to our

proposed algorithm Ξ-iLQR which uses the saltation matrix.

131

5.5.1 Bouncing Ball with Elastic Impacts

The outcomes of the experiment comparing 𝐷𝑥𝑅-iLQR to Ξ-iLQR are shown in Table 5.1. An

example run is shown in Fig. 5.2. 𝐷𝑥𝑅-iLQR did not converge (|𝛿𝐽 |> 0.05) on any example if

a hybrid transition was maintained, while Ξ-iLQR converged on every example. The only cases

where 𝐷𝑥𝑅-iLQR converged were when the algorithm removed all of the bounces – which becomes

equivalent to smooth iLQR. Ξ-iLQR has lower cost compared to 𝐷𝑥𝑅-iLQR for every example

except for when the problem is seeded with no bounces (they obtain the same smooth solution) and

when no bounces was the optimal solution but the problem was seeded with a single bounce. In

this case, Ξ-iLQR did converge to a different local minima1, which is not surprising as it is not a

global optimization.

The value of the hybrid extension was tested on the three bounce optimal three bounce seeded

case. Without the hybrid extension, the optimizer did not converge and did significantly worse

than 𝐷𝑥𝑅-iLQR. This highlights the importance of the hybrid trajectory extensions: even though

the backwards pass is correct, having mode mismatches will lead to unfavorable convergence and

trajectory quality.

Overall, Ξ-iLQR produced locally optimal solutions for each variation and was able to remove

unnecessary bounces in some cases, though it never added any. This result is expected because

there is no gradient information on the backwards pass being provided to give knowledge about

adding additional bounces. Furthermore, as discussed above, there may not be an appropriate

controller available when a novel hybrid mode is encountered.

5.5.2 Ball dropping on a spring-damper

For this experiment, Ξ-iLQR and 𝐷𝑥𝑅-iLQR came up with similar solutions where the cost of

Ξ-iLQR 𝐽 = 13.21 is slightly lower than 𝐷𝑥𝑅-iLQR 𝐽 = 13.29. This difference is highlighted in

Fig. 5.3 where 𝐷𝑥𝑅-iLQR was not able to smooth out the spikes near mode changes. This is also

1This solution was confirmed as a local minima under a single bounce by comparing it against a trajectory produced
using direct collocation [Kelly, 2017] constrained to a single bounce, as shown in Table. 5.1.

132

Figure 5.3: Bouncing ball on a spring-damper ground where both gradient update methods found
similar trajectories but using the Jacobian of the reset map 𝐷𝑥𝑅 lead to not being able to fully
converge as evident by the residual spikes near hybrid transitions.

Figure 5.4: Ball drop on a curved surface with plastic impacts where both gradient methods
produced trajectories that got to the end goal, but using 𝐷𝑥𝑅 did not converge and had a significantly
higher cost.

reflected in 𝐷𝑥𝑅-iLQR having a higher expected cost reduction as well 𝛿𝐽 = 0.001 where Ξ-iLQR

is a magnitude lower 𝛿𝐽 = 0.00017. This difference in convergence can most likely be attributed to

𝐷𝑥𝑅 providing gradient information that does not adjust the input pre-impact accordingly to allow

for adjustments on the spikes post-impact without destructively changing the resulting end state.

5.5.3 Ball drop on a curved surface with plastic impacts

The trajectory produced by Ξ-iLQR has a cost of 𝐽 = 10.7 and 𝐷𝑥𝑅-iLQR a cost of 𝐽 = 50.5. The

generated position trajectories along with the initial seeded trajectory are shown in Fig. 5.4 where

133

both methods ended up at the goal state but 𝐷𝑥𝑅-iLQR converged significantly less than Ξ-iLQR.

In this example, we purposely seeded a sub-optimal trajectory which releases the contact for

small duration and returns back to the constraint to evaluate if the algorithms would modify the

contact sequence. Ξ-iLQR ended up removing this erroneous contact change and whereas 𝐷𝑥𝑅-

iLQR ended up not going back to the constraint surface and ended in the unconstrained mode. We

speculate that because 𝐷𝑥𝑅 has the wrong gradient information about contacts, it ended up staying

in the unconstrained mode for a longer duration and ultimately could not converge.

5.5.4 Perching quadcopter

In this example, the final position trajectories are shown in Fig. 5.1 where Ξ-iLQR converged

𝛿𝐽 = 0.170 with a cost of 𝐽 = 4.76 whereas 𝐷𝑥𝑅-iLQR did not converge 𝛿𝐽 = 3×105 and produced

an erratic solution with very high cost of 𝐽 = 2.66 × 103.

Ξ-iLQR seemed to make the natural extension of the seed and followed the constraint until the

target position was achieved, but removed the double constrained mode at the end. We postulate

that the fully constrained mode was removed in order to better fine tune the final position because

position error is weighted significantly more than velocity. However, the true optimal solution

should include the fully constrained mode to eliminate any velocity for free.

5.6 Discussion

In this work, we extended iLQR to hybrid dynamical systems with piecewise smooth solutions. We

compared our algorithm (Ξ-iLQR) against using the incorrect hybrid backwards pass update (𝐷𝑥𝑅-

iLQR) over a variety of hybrid systems. For each example, Ξ-iLQR outperformed 𝐷𝑥𝑅-iLQR in

terms of cost and convergence when there was a hybrid transition in the final trajectory. This result

is expected because the saltation matrix is the correct linearization about a hybrid transition.

We believe that our algorithm excels at refining a trajectory which has an initial hybrid mode

sequence that needs the timing to be refined. This is similar to other shooting methods, where they

134

are sensitive to initialization. However, this issue of locality is accentuated in our algorithm by

only giving gradient information and control reference for transitions it has seen.

An interesting phenomenon occurs in hybrid systems where the controllability between different

hybrid modes can vary significantly. For example, in a jumping robot, there is not much control

authority in the air than compared to against on the ground. This poses an issue, as the system

may diverge or otherwise be extremely sensitive. In future work, we want to investigate this

issue of varying controllabilty through different hybrid modes as well as introducing systems with

intersecting hybrid guard where the Bouligand derivative [Burden et al., 2016; Scholtes, 2012] will

play an analogous role as the saltation matrix does in this work.

135

Chapter 6

Hybrid iLQR MPC

The content in this chapter has been submitted to T-RO [Kong et al., 2022a].

6.1 Abstract

Model Predictive Control (MPC) is a popular strategy for controlling robotic systems but is difficult

for systems with contact due to the complex nature of hybrid dynamics. To implement MPC for

systems with contact, dynamic models are often simplified, or contact sequences are fixed in time,

in order to plan trajectories efficiently. In this work, we extend Hybrid iterative Linear Quadratic

Regulator to work in a MPC fashion (HiLQR MPC) by modifying how the cost function is computed

when contact modes don’t align, utilizing parallelizations when simulating rigid body dynamics,

and using efficient analytical derivative computations of the rigid body dynamics. The result is a

system that can modify the contact sequence of the reference behavior and plan whole body motions

cohesively – which is crucial when dealing with large perturbations. HiLQR MPC is tested on

two systems: first, the hybrid cost modification is validated on a simple actuated bouncing ball

hybrid system. Then HiLQR MPC is compared against methods that utilize centroidal dynamic

assumptions on a quadruped robot (Unitree A1). HiLQR MPC outperforms the centroidal methods

in both simulation and hardware tests.

136

6.2 Introduction

Figure 6.1: HiLQR MPC forward pass for tracking a backflip with an initial 0.5 m/s lateral
perturbation on the body. 9 robot models are used on the forward pass to solve the line search in
parallel.

In order for robots to reliably move and interact within our unstructured world, they need to be

able to replan motions to handle unexpected perturbations or changes in the environment. However,

replanning is difficult for robotic systems that have changing contact with the world because of the

complexity of the discontinuous dynamics and combinatoric issues that arise.

There are many methods for planning contact-rich behaviors offline [Posa et al., 2014; Mordatch

et al., 2012; Mombaur, 2009; Diehl et al., 2006], but these methods generally suffer from poor time

complexity and cannot be used directly in real-time applications. Direct methods for contact implicit

trajectory optimization [Posa et al., 2014; Mordatch et al., 2012] simultaneously solve for the states,

inputs, and contact forces of an optimal trajectory while encoding the contact conditions through

complementarity constraints – which are notoriously difficult and slow to solve. A relaxation of

contact implicit trajectory optimization is to fix the contact sequence for each timestep [Von Stryk,

1999; Posa et al., 2016; Kelly, 2017; Pardo et al., 2017; Winkler et al., 2018].

Other relaxations have been made for the planning problem to achieve real-time planning for

Model Predictive Control (MPC). Centroidal motion planning methods [Di Carlo et al., 2018; Kim

et al., 2019; Da et al., 2020; Xie et al., 2021; Gehring et al., 2013] have had a lot of success in

planning gaits in real-time by making large simplifications on the robot dynamics and also assuming

a fixed contact sequence a priori. Swing legs are often controlled separately using Raibert heuristics

137

[Raibert, 1986] and capture point methods [Pratt et al., 2006] to regulate body velocities. However,

simplifications to the robot dynamics can lead to the controller being less robust to perturbations

which require reasoning about the full dynamics, such as nonlinear changes in lever arm for leg

extension, varying inertia when the leg changes shape, or not accounting for unexpected changes

in contact.

Shooting methods which utilize Differential Dynamic Programming (DDP) [Mayne, 1966] or

iterative Linear Quadratic Regulator (iLQR) [Li and Todorov, 2004; Tassa et al., 2012] are good

candidates for model predictive control because they are fast, can utilize the full nonlinear dynamics,

and solutions are always dynamically feasible. Methods that utilize the full nonlinear dynamics [Li

and Wensing, 2020; Mastalli et al., 2020] generally come at the cost of enforcing a fixed contact

sequence. [Li et al., 2021] utilizes the full nonlinear dynamics for timesteps closer to the current

horizon and then uses simplified dynamics for timesteps later in the future, but also uses a fixed

contact sequence. Similar to the fixed contact sequence issue of [Di Carlo et al., 2018], it is less

robust due to constraining the solution to maintain the original contact sequence in scenarios where

it would be much better to change them.

To allow efficient updates of the contact sequence, [Le Cleac’h et al., 2021] speeds up contact

implicit trajectory optimization through strategic linearizations about a target trajectory and focuses

on the tracking problem, which allows the possibility of running in real time and can easily change

the contact timing and sequence to stabilize a trajectory. However, the basin of attraction may be

smaller because it is linearized about a single nominal trajectory. If the robot needs to drastically

change the trajectory, the controller will not use a good model given the linearization of the target

trajectory.

In this work, we make use of Hybrid iLQR (HiLQR) [Kong et al., 2021a], a full-order contact

implicit trajectory optimization approach, in order to create a receding horizon MPC that utilizes

nonlinear dynamics and is not constrained to the reference trajectory’s gait sequence. By using

Hybrid iLQR as an MPC, the contact sequence can be greatly modified when stabilizing large

perturbations, e.g. as shown in Fig. 6.1. We show that HiLQR MPC can reject bigger disturbances

138

than centroidal methods when perturbed along a walking trajectory. We also show that HiLQR

MPC working on a real robot in real-time can reject disturbances more reliably than centroidal

methods.

6.3 Hybrid systems background

In this section, we two different hybrid simulation techniques are reviewed for rigid body systems

with unilateral constraints.

6.3.1 Hybrid Simulators

There are 2 main hybrid simulation techniques for rigid bodies with unilateral constraints – event-

driven and timestepping. HiLQR MPC uses a hybrid simulator and can use either method. But

different modifications need to be made depending on which simulation type is used. Its important

to have a high level understanding of each of these simulation types to understand that modifications

discussed in this work.

Event-driven hybrid simulators [Wehage and Haug, 1982; Pfeiffer and Glocker, 1996; Brogliato

et al., 2002] follow very closely to the example shown in the definition of hybrid dynamical systems

Def. 1. Event-driven simulations are convenient because the dynamics have a well defined structure

and contacts are persistently maintained. However, event-driven simulations have problems with

behaviors like Zeno, where an infinite number of hybrid transitions are made in a finite amount of

time, as they must stop integration and apply a reset map for each individual event.

Time-stepping [Stewart and Trinkle, 1996; Anitescu and Potra, 1997; Brogliato et al., 2002]

schemes circumvent issues like Zeno by integrating impulses over small timesteps at a time and

are numerically efficient, especially for systems with large numbers of constraints. These methods

allow contact constraints to be added or removed at any time step, but only once per time step.

Furthermore, no distinction is made between continuous contact forces and discontinuous impulses.

However, they are limited to first-order (Euler) integration of the dynamics.

139

6.4 HiLQR MPC Implementation

In this section, the tracking problem is defined, and we show how to adapt Hybrid iLQR to be a

model predictive controller.

6.4.1 Hybrid Cost Update

The goal is now to minimize the difference in state and input with respect to a reference state and

input

𝐽(𝑥𝑖, 𝑢𝑖) = (𝑥𝑖 − 𝑥𝑖)𝑇𝑄𝑖(𝑥𝑖 − 𝑥𝑖) + (𝑢𝑖 − �̂�𝑖)𝑇𝑅𝑖(𝑥𝑖 − �̂�𝑖) (6.1)

where 𝑄𝑖 is the quadratic penalty matrix on state, and 𝑅𝑖 is the quadratic penalty matrix on input,

and (𝑥, �̂�) denotes the reference.

However, because Hybrid iLQR is contact implicit (the hybrid mode sequence can differ from

the target’s mode sequence), the runtime cost (6.1) can be ill defined when the candidate trajectory’s

mode does not match the target’s. For example, if there is an early or late contact in a rigid body

system with unilateral constraints, the velocities will be heavily penalized for having a mismatched

timing. This issue is further propagated to the backward pass, where the gradient information

relies on these differences and can ultimately lead to the algorithm not converging. To mitigate

these mode mismatch issues, we propose 2 different solutions for event-driven and timestepping

simulations.

For event-driven hybrid simulators, the same hybrid extensions used in reference tracking on the

forward pass in Hybrid iLQR can be used when comparing error during mode mismatches. Suppose

a hybrid transition occurs at time 𝑡. The reference state at pre-transition 𝑥(𝑡−) is extended beyond the

hybrid guard by flowing the pre-transition dynamics forwards while holding the pre-transition input

constant. The post-transition reference state 𝑥(𝑡+) is extended backward by flowing the dynamics

backward in time while again holding the input constant. With these hybrid extensions, when there

is a mode mismatch induced by a transition timing error, the reference is switched to the extension

140

with the same hybrid mode.

In timestepping simulations, the effect of the hybrid transition is applied over several timesteps

rather than instantaneously as in event-driven hybrid simulations. For example, when a contact is

made, the penetrating velocities do not immediately go to zero and actually take several timesteps

to go to zero. During these timesteps, the hybrid mode is not well defined. Because of this, the

hybrid extension method does not work due to the timesteps that are “in between” hybrid modes.

Instead, we propose to use a different approach for legged robots, where the constraint forces 𝜆 𝑗

are used to scale the penalty on input from 𝑅𝑚𝑖𝑛 to 𝑅𝑚𝑎𝑥

𝑤 𝑗 =
𝜆 𝑗∑
𝑖 𝜆𝑖

(6.2)

𝑅 𝑗 = 𝑅𝑚𝑎𝑥 − 𝑤 𝑗 (𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛) (6.3)

where 𝑗 corresponds to the leg index. This modification penalizes changes in input less when a leg

applies more ground reaction force and penalizes changes in input more when the leg applies less

force to the ground. This is intuitive because when a leg is not supporting much weight, we want

that leg to have lower gains because it has less control authority on the robot body.

6.4.2 Rollout and Forward Pass

Depending on the hybrid system, HiLQR MPC uses either an event-driven or timestepping simula-

tion for its rollouts and forward passes. In this work, we demonstrate the cost mismatch update for

an event-driven simulation on a bouncing ball. However, when multiple contacts are involved, as

in the case for a quadruped robot, simulating an event-driven system is significantly more difficult

than using an out-of-the-box timestepping rigid body dynamics simulator. Many rigid body contact

simulators utilize timestepping simulation methods. In this work, we use “Isaac Gym” (a high

performance GPU-based physics simulation) [Makoviychuk et al., 2021], because the simulator

has a unique feature where it can simulate multiple robots at once in an optimized fashion. We

utilize parallel computations to parallelize the linesearch in the forward pass. An example line-

141

Figure 6.2: Linesearch for the first HiLQR MPC forward pass iteration after applying a 1.5𝑚
𝑠

lateral
perturbation while walking as shown in Fig 6.9. If computed sequentially, the linesearch would
terminate after 12 steps.

search is shown in Fig. 6.2, which shows the cost for different learning rates. Note that the cost

is discontinuous with respect to the learning rate because the line search explores different contact

sequences. In order for cost to be reduced in this case, the linesearch needs to take 12 steps if done

sequentially. Due to the efficiency of parallel computations on the forward passes, parallelizing is

on average twice as fast as computing the linesearch sequentially when comparing the computation

times for the solutions in Fig. 6.9.

Several key implementation features consist of precomputing the gain schedule for the reference

trajectory, reusing the valid portions of previous solutions, and always seeding the reference

trajectory as one of the parallel solves in the linesearch.

Lastly, quaternion differences [Jackson et al., 2021] are used instead of Euler angles when

computing the orientation cost and linear feedback. This change allows for better convergence

properties, as well as allowing for tracking more dynamic behaviors like the backflip in Fig. 6.1.

6.4.3 Backward Pass

The main challenge for the backward pass is how to compute the derivatives of the dynamics.

For simple hybrid systems like the bouncing ball, the derivatives of the dynamics and saltation

142

matrix are trivial to find and compute [Kong et al., 2021a]. However, computing the derivatives

for the full order rigid body dynamics with unilateral constraints is not trivial – if done naively,

the computations are incredibly slow. This is the same for the saltation matrix because it relies on

computing the derivative of the impact map. In this work, we utilize a rigid body dynamics library

called Pinocchio [Carpentier et al., 2015–2021] (which computes these derivatives in an optimized

fashion) for all full order contact rigid body dynamics derivatives.

For the backward pass, HiLQR MPC assumes the trajectory is produced by an event-driven

simulation. If the timesteps are small enough, then approximating a timestepping simulation as an

event-driven simulation on the backward pass is reasonable. Another approximation HiLQR MPC

makes is that when simultaneous contacts are made during a timestep (i.e., 2 feet making contact at

the same time), the contact sequencing is assumed to always follow the same contact order and to

have happened at the end of the timestep. The chosen order is in increasing order of the indexing

of the limbs. These approximations are validated through experimentation, where HiLQR MPC is

still able to converge with these approximations in the presence of perturbations.

6.4.4 General Robot Implementation

For all robot experiments using HiLQR MPC, a 50 timestep MPC horizon is used with timesteps

of 0.01 seconds. When running HiLQR MPC in simulation, the algorithm is able to pause the

simulation in order to compute a new trajectory. Once a trajectory is generated, the first input of the

planned trajectory is used as the control input for that timestep. Allowing HiLQR MPC to pause

the simulation ensures that we can analyze how well the controller can perform independent of

the computation time available. We also run the controller in real-time, because on hardware the

dynamics cannot be paused.

To run HiLQR MPC in real-time for the physical robot implementation, several changes are

made and hyper parameters are tuned to speed up the algorithm at the cost of performance. The

first change is to run a hierarchy of controllers, as shown in Fig. 6.3, where a fast low level Hybrid

LQR controller is run asynchronously from the trajectory generator (HiLQR MPC). HiLQR MPC

143

Figure 6.3: Hierarchy of controllers where HiLQR MPC is replanning trajectories as fast as possible
while Hybrid LQR is tracking the most recent trajectory that was sent by HiLQR MPC.

runs separately as fast as possible and always using the latest robot state. When solving for a

new trajectory, sub-optimal trajectories are sent out at each forward pass iteration in order to send

the low level controller the most recent trajectory modifications. If the current solve exceeds the

maximum allotted time, the current solve is terminated and a new solve is started for the most recent

robot state information. Several hyper-parameters are modified to reduce computation time, from

reducing the number of robots running in parallel in the rollouts and forward passes to relaxing

the optimality condition. Lastly, joint PD terms from the gain matrix are sent directly to the motor

controller, which runs at 10KHz rather than computing the feedback at the Hybrid LQR level.

6.5 Experiments

In this section, the experimental setups for HiLQR MPC are presented, with results given in

Section 6.6. To validate the event-driven mode mismatch cost update, we first compare using the

proposed update with not using any hybrid cost updates on a simple actuated bouncing ball hybrid

system. Then, to show how this approach can scale up to a real system, simulated and physical robot

experiments are carried out on a quadrupedal robot (Unitree A1) to compare HiLQR MPC with

methods that use centroidal simplifications and Raibert heuristics for swing leg control: “Convex

MPC” [Di Carlo et al., 2018] and “Instant QP” [Da et al., 2020; Xie et al., 2021; Gehring et al.,

2013]. Convex MPC returns ground reaction forces for the feet that are in contact with the ground

and are subjected to friction constraints for a set horizon length. The dynamic model is a linearized

144

floating base model and the optimization is formulated as a quadratic program. Instant QP solves

the same problem, but for a single timestep. Because only one timestep is solved, Instant QP can

update the solver with the actual contact condition of the feet and can provide more stability with

respect to contact mismatches, but lacks the robustness that is gained from looking ahead.

6.5.1 Bouncing Ball

In this experiment, the same 1D bouncing ball hybrid system from [Kong et al., 2021a] is used.

The states of the system 𝑥 = [𝑧, ¤𝑧]𝑇 are the vertical position 𝑧 and the velocity ¤𝑧 and the input 𝑢 is

a force applied directly to the ball. The two hybrid modes, 1 and 2, are defined when the ball has

a negative velocity ¤𝑧 < 0 and when the ball has a non-negative velocity ¤𝑧 ≥ 0, respectively. The

dynamics on each mode is ballistic dynamics plus the input

𝐹1(𝑥, 𝑢) = 𝐹2(𝑥, 𝑢) :=
[
¤𝑧, 𝑢
𝑚
− 𝑔

]𝑇
(6.4)

Hybrid mode 1 transitions to 2 when the ball hits the ground, 𝑔(1,2)(𝑥) := 𝑧, and mode 2 transitions

to 1 at the apex 𝑔(2,1)(𝑥) := ¤𝑧. When mode 1 transitions to 2, an elastic impact is applied,

𝑅(1,2)(𝑥) = [𝑧,−𝑒 ¤𝑧]𝑇 where 𝑒 is the coefficient of restitution. The reset map from 2 to 1 is identity.

The event-driven simulation is implemented with MATLAB ODE 45 [Shampine et al., 2003] with

event detection.

To validate that updating the cost on mode mismatches improves convergence for HiLQR MPC,

we first generate a reference trajectory using Hybrid iLQR to create an optimal single bounce

trajectory. HiLQR MPC is used to stabilize an initial large perturbation and is run with and without

the hybrid cost update for event-driven simulations. For both cases, HiLQR MPC is applied at

every timestep. At each timestep, convergence is recorded where convergence is determined by

the expected reduction (5.19). For this test, the convergence cut-off is set to be 𝛿𝐽 < 1𝑒−4. It is

expected that, by utilizing the mode extensions, convergence will improve because the algorithm

will not spend unnecessary computation and effort in flipping the velocity of the ball if there is a

145

mismatch in impact timing, rather it will wait for when the impact applies the flip.

6.5.2 Simulated Robot Controller Comparison

To demonstrate the robustness of cohesively planning whole body motions and allowing contact

schedules to change, we compare HiLQR MPC to Convex MPC and Instant QP by applying

perturbations to A1 while implementing a walking gait in simulation. To make the comparison fair,

the walking gait that HiLQR MPC is tracking is the same one generated from Convex MPC in the

absence of perturbations. Similar gait parameters are chosen for Instant QP to produce a similar

gait. All controllers are run at each timestep and use the first control input of the new trajectory as

the control input for that timestep.

The walking gait starts from a standing pose and then attempts to reach a desired forward

velocity of 0.2𝑚
𝑠
. Lateral velocity perturbations are applied to the robot’s body at two different

magnitudes and eight different times along the gait cycle: four when each foot is in swing when

getting up to speed and the other four when the gait is in steady state. The number of times the

robot falls and the maximum perturbed lateral position are recorded for each push.

It is expected that HiLQR MPC should be able to recover from a wider variety of perturbations

and have less deviation when the perturbations are large when compared against the centroidal

methods because it can utilize the nonlinear contact dynamics of the swing and stance legs cohe-

sively.

6.5.3 Physical Robot Controller Comparison

The bulk of the analysis for comparing the controllers is done in simulation because the perturbations

can be consistently applied in both cases with a variety of different perturbations. To reliably apply

the same perturbation on hardware, we opt for a consistent motor command block for a short period

of time while the robot is walking. Once the motor commands are unblocked, the controller must

react to the robot falling over, catch itself, and then continue walking.

In this experiment, we compare HiLQR MPC against Instant QP, where both controllers are

146

able to handle the perturbation in simulation but come up with different solutions. HiLQR MPC

tends to replan a stand trajectory after it realizes that it is falling to catch itself, while Instant QP

tries to continue the walking gait and recirculates the legs in order to catch itself. The perturbation

is applied shortly after walking has started, and the torque commands are blocked for 0.15 seconds.

The experiment is run 5 times for each controller and failure is determined by if the robot’s body

hits the floor and if the controller is able to continue walking after the perturbation. For state

estimation, we use the Kalman filter from [Bledt et al., 2018]. Because HiLQR MPC creates a new

plan to track in order to handle the perturbation, it is expected to outperform Instant QP which is

trying its best to continue walking.

6.6 Results

In this section, we review the results for each experiment. Overall, utilizing the cost mismatch

updates is crucial for obtaining good solutions, and HiLQR MPC can withstand large perturbations

by modifying the contact sequence in an optimal manner.

6.6.1 Bouncing ball HiLQR MPC

The task for the bouncing ball experiment, detailed in Sec. 6.5.1, is to track a predefined trajectory

using HiLQR MPC for a fully actuated bouncing ball. The target trajectory is 1 second long, where

the ball starts at 4 meters above the ground with no velocity and ends at 2.5 meters above the ground

with no velocity. We compare using the event-driven hybrid cost update (Sec. 6.4.1) to not using

this update, and the results of this experiment are shown in Fig. 6.4.

As expected, both methods converge and track well before the impact event is within the horizon

of the HiLQR MPC. The approaches differ once the hybrid event is within the horizon, as can be

seen by the high control effort and unnatural kink in state space that is produced when not using the

cost update. Furthermore, of the 1001 time steps, 8 did not converge when the cost update was not

used. Although the number of unconverged timesteps is small, the quality of the trajectory suffered

147

Figure 6.4: Comparing HiLQR MPC not using the event-driven hybrid cost update (top row) and
using the event-driven hybrid cost update (bottom row) where the state space trajectory tracking
is shown in (left column) and input usage in time series is shown in (right column). HiLQR
solutions are shown in (blue dashed) and the target trajectory is shown in (black solid). The end
of trajectories are denoted with (circle). When not using the event-driven hybrid cost update the
trajectory tracking suffered, as evident by the high input effort and sharp deviations in trajectory
that attempt to track the post-impact velocity before the impact occurs. Several solutions did not
converge as shown in with (green highlight). Whereas, using the event-driven hybrid cost update
led to altogether better convergence and tracking.

greatly, as shown in Fig. 6.4, top row. This is because without updating the cost to account for

hybrid mode mismatches, the gradient information biases the solution towards flipping the velocity

before impact.

Using the cost update for hybrid mode mismatches, HiLQR MPC can correctly utilize the

impact to reduce tracking error, as shown in Fig. 6.4, bottom row. The cost update allows HiLQR

MPC to create plans that are closer to the target trajectory by shifting contact times rather than

making large modifications to the input to match the contact schedule, which results in significantly

better convergence. In addition to having better tracking performance, when using trajectory

optimization for MPC, it is desirable to always converge and to not make drastic changes from the

148

Figure 6.5: Medium perturbation (1.0 m/s lateral perturbation). Plots the nominal trajectory and
worst case error in lateral position for both controllers.

planned trajectory unless necessary.

6.6.2 Simulated Robot Controller Comparison

The robustness of HiLQR MPC is compared with Convex MPC and Instant QP for a walking

trajectory at eight different perturbations in simulation as discussed in Sec. 6.5.2. The results are

summarized in Table 6.1, farthest perturbed position is visualized for each experiment in Figs. 6.5

and 6.6, change in contact sequence in Figs. 6.7 and 6.8, and the resuling behavior shown in Fig 6.9.

As expected, deviations from the smaller perturbation lead to similar results and high success

for all controllers. This is most likely because the perturbations do not require the controller to

heavily modify the trajectory while stabilizing less stable robot states, such as in the case of the

larger perturbations. In the medium and large perturbation experiments, HiLQR MPC had a higher

success rate of 100% and 88% compared to the centroidal methods – Convex MPC 88% and 50%

and Instant QP 50% and 25%. Failure for the controllers tended to occur when a right leg was in

swing (both front right and back). This failure mode is most likely due to the lateral perturbation

being applied in the left direction causing the stabilizing maneuvers to be more complicated and

less stable. Because HiLQR MPC is able to plan the body and swing legs more cohesively, it can

handle these complex maneuvers better than the centroidal methods, where the stance and swing

149

Figure 6.6: Large perturbation (1.5 m/s lateral perturbation). Plots the nominal trajectory and worst
case error in lateral position for both controllers.

Table 6.1: Lateral perturbation success rates for a medium perturbation 1.0𝑚/𝑠, a large perturbation
1.5𝑚/𝑠, and the average max deviation for the large perturbation over 8 trials.

Controller 1.0𝑚/𝑠 Succ. [%] 1.5𝑚/𝑠 Succ. [%] Avg. Dev. [𝑚]
HiLQR MPC 100% 88% 0.512𝑚
Convex MPC 88% 50% 1.032𝑚
Instant QP 50% 25% 3.729𝑚

legs are planned separately. This difference is mostly highlighted when the perturbations are larger.

Since Instant QP performed worse than Convex MPC, further comparisons are made only between

HiLQR MPC and Convex MPC.

In the large perturbation experiments, HiLQR MPC deviated half as much as Convex MPC

when comparing max lateral deviations in body position, as shown in Table 6.1. An example trial

(large perturbation during the first step) is shown in Fig. 6.9, where HiLQR MPC used less steps to

stabilize the perturbation, which ultimately led to the body deviating less than half of the deviation

from Convex MPC. The contact sequence for the reference and the initial solution after applying

the perturbation are shown in Figures 6.7 and 6.8. Note that HiLQR MPC is solving for new

trajectories that modify the contact sequence in order to better stabilize the behavior rather than

adhering to the original plan’s contact sequence. This is crucial because HiLQR MPC can add or

remove contacts to help catch itself, as well as optimize the new contact locations.

150

Figure 6.7: Hildebrand diagram for the nominal walking gait where black means the foot is in
contact.

Overall, HiLQR MPC performed similarly to or better than Convex MPC when stabilizing per-

turbations along a walking trajectory. When the perturbations are large, HiLQR MPC outperforms

Convex MPC because it is able to replan a new contact sequence to stabilize about and it can fully

utilize the nonlinear dynamics for the more aggressive maneuvers.

6.6.3 Physical Robot Controller Comparison

The results of the motor-blocking physical robot experiment from Sec. 6.5.3 – where the motor

commands were blocked for 150 milliseconds shortly after the walk started and HiLQR is compared

to Instant QP over five trials – are shown in Fig. 6.10 and Table 6.2. Over five trials, HiLQR MPC

was able to stabilize successfully after the motor block was released every time, while Instant QP

was completely unstable 60% of the time and 40% of the time was able to stand up and walk after

the body hit the ground. Two unintended additional perturbations occurred in this experiment –

there is a consistent 10 millisecond input delay on A1 and another perturbation caused by the state

estimator. The estimator relies on the kinematic information from the legs that are in contact to

get a better estimate of the robot body. However, when the motor commands were blocked, all the

contact forces went close to zero, which resulted in a degraded estimate of the robot body until the

legs made sufficient contact with the ground again.

151

Figure 6.8: Hildebrand diagram for a single solve of HiLQR MPC rejecting the large perturbation
at 60 ms as shown in the top of Fig. 6.9 where black means the foot is in contact. See that HiLQR
MPC is removing and adding back contacts when advantageous to help stabilize the behavior.

HiLQR MPC was able to replan a stand trajectory in order to catch itself rather than sticking

to the original plan of walking as Instant QP. In the times that Instant QP successfully rejected

the perturbation, the robot body actually hits the ground and the legs that are planned to be in

stance apply enough standing force to get back up while the back right leg recirculates in order to

counteract the backward velocity induced by getting back up. Since this relies on the body hitting

the ground correctly and the back leg perfectly stabilizing the motion, it is a lot less reliable but is

able to catch itself occasionally.

Similarly to the simulated experiments, HiLQR MPC outperforms the centroidal method (Instant

QP) because HiLQR MPC does not have to adhere to a rigid gait schedule and can fluidly replan a

new contact sequence to help stabilize the perturbation. Although Instant QP utilizes the current

contact information to inform which legs are in contact, the controller is trying its best to follow

the scheduled gait sequence. In this case, modifying the gait sequence from a walk to a stand is

much more reliable. HiLQR MPC is able to track the walking gait when appropriate but modify

it to a stand if needed to catch the robot and seamlessly return to walking once the perturbation

has been stabilized. Having the ability to automatically modify the gait schedule to generate these

stabilizing behaviors is important for a controller because the initial plan might not always be the

best in the presence of disturbances.

152

Figure 6.9: Applying 1.5 m/s lateral perturbation during the first step of the walking gait. (Top row)
shows HiLQR MPC recovering from the perturbation in one step and accruing a lateral deviation of
0.3 meters while (bottom row) shows Convex MPC taking several steps to handle the perturbation
and is perturbed 0.7 meters away from the nominal.

Table 6.2: Motor blocking perturbation results over 5 trials.

Controller Success Hit Ground Uncontrolled
HiLQR MPC 100% 0% 0%
Instant QP 0% 40% 60%

6.7 Discussion

Allowing for varying contact sequences while planning for the full nonlinear dynamics of a robotic

system is very difficult, but leads to more robust control. In this work, we extend Hybrid iLQR to

work as a model predictive controller, which can vary the contact sequence of the target trajectory

as well as plan with the nonlinear dynamics. This extension is made possible by fixing gradient

issues that occur when there are hybrid mode mismatches, using fast analytical derivatives of the

contact dynamics, and parallelizing the line search in the forward pass.

In simulation, HiLQR MPC outperforms the state of the art centroidal motion planning technique

(Convex MPC) for stabilizing perturbations 88% success rate vs 50% for large perturbations and

100% vs 88% for medium perturbations. This is because HiLQR MPC is able to fully utilize the

153

Figure 6.10: Turning off motor commands for 150 ms during the first step. HiLQR MPC (top row)
creates a catching behavior and then goes back into the scheduled walk. Instant QP sometimes tries
to step to regulate velocity which destabilizes the robot (middle row). Other times, Instant QP hits
the ground (bottom row), which stabilizes the body velocities and the robot is able to shoot its legs
out in order to get back into the walk.

legs of the robot to help catch itself and can create more efficient and elegant solutions, needing

fewer steps to recover.

HiLQR MPC is also able to run in real-time with some modifications to the hyperparameters

and utilizing a hierarchical control structure where trajectories are sent to a lower level Hybrid

LQR controller to track the hybrid trajectories planned by HiLQR MPC. We are able to show for

a motor blocking perturbation that HiLQR MPC is able to withstand this better than Instant QP,

where HiLQR MPC succeeded for all trials and Instant QP could only stabilize 40% of the time

(and even then only after the robot body hit the ground). The high success rate for HiLQR MPC is

due to planning a reliable catching behavior, while Instant QP is continuously attempting to walk

as best it can.

The code is currently implemented in Python while using several C++ libraries that utilize

Python wrappers. Improvements in the real-time application will be seen by further optimizing

the code and implementing it in C++. Overall, HiLQR MPC is a very modular model predictive

154

controller which can be run for any hybrid dynamical system of type Def. 1. Besides the

hybrid dynamical systems definition, there are no restrictive simplifications that are made, which

makes the controller generalizable to many different behaviors. Future work will add additional

constraints through Augmented Lagrangian [Howell et al., 2019] for obstacle avoidance and actuator

constraints.

155

Chapter 7

Conclusion

This work addresses the issue of state estimation, planning, and control for legged robots. In Chapter

2, we present a trajectory optimization framework to create optimally convergent trajectories that

utilize the natural dynamics of a system to funnel trajectories to the nominal. We demonstrate the

effectiveness of this framework on both an undersensed GPS denied hill navigation system and an

underactuated rotary cart pole system.

Because of the hybrid nature of legged robots, this thesis frequently utilizes the saltation matrix

to extend traditionally smooth methods to hybrid. In Chapter 5 we provide a tutorial for using the

saltation matrix.

In Chapter 4, we present the Salted Kalman Filter, which has performance comparable to that of

a hybrid particle filter, but requires only a fraction of the computation time. For planning in hybrid

systems, we present hybrid iLQR in Chapter 5, which plans optimal trajectories through hybrid

events, varies contact timings/placements, and provides a jump linear feedback law (the gains can

jump at hybrid transitions to match the discontinuous nature of hybrid dynamics).

Reliable control for hybrid systems is complex because large perturbations will disrupt local

strategies such as utilizing the jump linear feedback law given by Hybrid iLQR. Large perturbations

can also lead to contact mismatches when tracking a reference trajectory and can quickly become

unstable. In Chapter 6, we address these issues by creating a model predictive controller which can

156

replan trajectories in order to handle large perturbations as well as contact mismatches. Replanning

also allows for the controller to select a new contact sequence if it is beneficial for tracking the

behavior as a whole if it leads to better stabilization to the reference. We compare Hybrid iLQR

MPC against popular methods which use heavy linearizations and simplifications as well as a rigid

gait schedule. Hybrid iLQR MPC plans new strategies in order to handle a variety of perturbations

more robustly than the popular methods.

7.1 Possible Future directions for convergent planning

We showed that planning convergent trajectories increases reliability in both undersensed and

underactuated systems in Chapter 2. A possible future direction is to simultaneously design a con-

troller that can converge the directions in which the dynamics naturally diverge. Another direction

includes reasoning about uncertainty in modeling parameters and dynamics. This can possibly

be done by extending contraction analysis with the ultimate boundedness analysis. However, con-

traction analysis is already very conservative, and adding additional ultimate boundedness would

give an even more conservative bound (which might not be too helpful). A more useful direction

may be to create a new divergence metric that captures the average divergence due to parameter

uncertainty.

In this work, convergent planning was only considered for smooth underactuated and under-

sensed systems, but it would be beneficial to design convergent dynamic legged behaviors by

extending convergent planning to hybrid systems. Work has been done to extend contraction anal-

ysis to hybrid systems [Burden et al., 2018b] by using the saltation matrix, but its even harder to

find contraction regions on hybrid systems than on smooth systems. This will lead to even poorer

convergence if we use pure contraction. However, the expected divergence trick does not seem

to work well because the directions and magnitude of convergence can discontinuously change on

hybrid transitions, whereas for smooth systems the divergence smoothly changes. In the future, we

are looking at using Hybrid iLQR to create convergent plans for hybrid systems [Zhu and Johnson,

157

2022].

7.2 Possible Future directions for state estimation

We validated the performance of the SKF by comparing it with a hybrid particle filter and found

that the estimation of the SKF suffered when assuming the entire distribution transitions in a single

time step in Chapter 4. The performance of the filter can possibly be improved by utilizing multiple

SKF’s in parallel to better capture the split distributions. Similarly to an interacting multiple model,

a bank of SKF filters can be run simultaneously, and the filters with the most likely residual with

respect to the posterior covariance are weighted the most.

Another direction of improvement that we have already addressed is to add uncertainty in the

guard location, where we augment the saltation matrix with additional terms to account for the

uncertainty in the guard [Payne et al., 2022a]. We are also currently addressing the uncertainty

in contact timing by solving the moving horizon estimation problem, which is the dual problem

to Hybrid iLQR MPC [Payne et al., 2022b]. This will allow us to find the contact timing that

optimally represents the data.

In addition to moving horizon estimation, it is also possible to utilize the guard information to

determine the likelihood that a transition will be made during the next timestep. For contact systems,

the probability of transition can also be calculated using contact sensors or using a generalized-

momentum-based disturbance observer [De Luca et al., 2006]. Utilizing the probability of transition

will make the filter more robust to missing or accidentally making a contact.

Lastly, we have not run hybrid state estimation on a real system yet, but before that, the

probability of transition should be integrated into the algorithm.

7.3 Future directions for Hybrid iLQR

Hybrid iLQR can solve a wide variety of problems because it works for a broad definition of

hybrid dynamical systems, as shown in Chapter 5. In Chapter 6, this broad definition includes a

158

generalizable robot model which allows us to utilize Hybrid iLQR as a model predictive controller

to stabilize a quadruped robot while solving the contact implicit optimization problem efficiently.

In this work, we created a foundation from which to easily extend. The first example is

planning hybrid convergent trajectories by biasing the trajectory towards a convergent reference

point [Zhu and Johnson, 2022]. Separately, any smooth methods that have been applied to iLQR

can be extended to hybrid methods, such as using the Augmented Lagrangian to add constraints to

optimization [Howell et al., 2019].

For Hybrid iLQR MPC, an interesting next step would be to incorporate terrain estimation data

into the rollout and forward pass simulation. By having a good estimate of the terrain and contact

geometry, we can efficiently replan if the environment changes or is different than expected. Overall,

for a more robust implementation of Hybrid iLQR MPC, the code should be further optimized and

implemented in C++ to decrease any effects on delay.

159

Bibliography

A. Abusorrah, K. Mandal, D. Giaouris, A. El Aroudi, M. M. Al-Hindawi, Y. Al-Turki, and S. Baner-

jee. Avoiding instabilities in power electronic systems: Toward an on-chip implementation. IET

Power Electronics, 10(13):1778–1787, 2017.

A. Ageno and A. Sinopoli. Lyapunov’s Exponents for Non-Smooth Dynamical Systems: Behavior

Identification Across Stability Boundaries With Bifurcations. In Volume 6: 5th International

Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C, Interna-

tional Design Engineering Technical Conferences and Computers and Information in Engineering

Conference, pages 1999–2010, 09 2005. doi: 10.1115/DETC2005-84574.

M. Aizerman and F. Gantmakher. On the stability of periodic motions. Journal of Applied

Mathematics and Mechanics, 22(6):1065–1078, 1958. ISSN 0021-8928. doi: https://doi.org/10.

1016/0021-8928(58)90033-9.

M. Anitescu and F. A. Potra. Formulating dynamic multi-rigid-body contact problems with friction

as solvable linear complementarity problems. Nonlinear Dynamics, 14(3):231–247, 1997.

R. Arkin. Behavior-based robot navigation for extended domains. Adaptive Behavior, 1(2):201–225,

1992.

H. Asahara and T. Kousaka. Stability analysis using monodromy matrix for impacting systems.

IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sci-

ences, 101(6):904–914, 2018.

160

A. Back, J. M. Guckenheimer, and M. Myers. A dynamical simulation facility for hybrid systems. In

Hybrid Systems, volume 736 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg,

1993.

A. Balluchi, L. Benvenuti, M. D. Di Benedetto, and A. L. Sangiovanni-Vincentelli. Design of

observers for hybrid systems. In International Workshop on Hybrid Systems: Computation and

Control, pages 76–89. Springer, 2002.

A. Balluchi, L. Benvenuti, M. D. Di Benedetto, and A. Sangiovanni-Vincentelli. The design

of dynamical observers for hybrid systems: Theory and application to an automotive control

problem. Automatica, 49(4):915–925, 2013.

S. Banerjee, J. Ing, E. Pavlovskaia, M. Wiercigroch, and R. K. Reddy. Invisible grazings and

dangerous bifurcations in impacting systems: The problem of narrow-band chaos. Phys. Rev. E,

79:037201, Mar 2009. doi: 10.1103/PhysRevE.79.037201.

S. Banerjee, D. Giaouris, O. Imrayed, P. Missailidis, B. Zahawi, and V. Pickert. Nonsmooth

dynamics of electrical systems. In IEEE International Symposium of Circuits and Systems

(ISCAS), pages 2709–2712, 2011. doi: 10.1109/ISCAS.2011.5938164.

N. Barhoumi, F. Msahli, M. Djemaï, and K. Busawon. Observer design for some classes of

uniformly observable nonlinear hybrid systems. Nonlinear Analysis: Hybrid Systems, 6(4):

917–929, 2012.

M. Bernardo, C. Budd, A. R. Champneys, and P. Kowalczyk. Piecewise-smooth dynamical systems:

Theory and applications, volume 163. Springer Science & Business Media, 2008.

D. Bertsekas. Dynamic programming and optimal control: Volume I, volume 1. Athena scientific,

2012.

J. T. Betts. Survey of numerical methods for trajectory optimization. Journal of guidance, control,

and dynamics, 21(2), 1998.

161

J. B. Biemond, N. van de Wouw, W. M. H. Heemels, and H. Nijmeijer. Tracking control for hybrid

systems with state-triggered jumps. IEEE Transactions on Automatic Control, 58(4):876–890,

2012.

M. Biggio, F. Bizzarri, A. Brambilla, G. Carlini, and M. Storace. Reliable and efficient phase noise

simulation of mixed-mode integer-N phase-locked loops. In European Conference on Circuit

Theory and Design, pages 1–4. IEEE, 2013.

M. Biggio, F. Bizzarri, A. Brambilla, and M. Storace. Accurate and efficient PSD computation in

mixed-signal circuits: A time-domain approach. IEEE Transactions on Circuits and Systems II:

Express Briefs, 61(11):905–909, 2014.

F. Bizzarri, A. Brambilla, and G. S. Gajani. Steady state computation and noise analysis of analog

mixed signal circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(3):

541–554, 2011a.

F. Bizzarri, A. Brambilla, S. Perticaroli, and G. S. Gajani. Noise in a phase-quadrature pulsed

energy restore oscillator. In 20th European Conference on Circuit Theory and Design (ECCTD),

pages 465–468. IEEE, 2011b.

F. Bizzarri, A. Brambilla, and G. S. Gajani. Periodic small signal analysis of a wide class of type-ii

phase locked loops through an exhaustive variational model. IEEE Transactions on Circuits and

Systems I: Regular Papers, 59(10):2221–2231, 2012.

F. Bizzarri, A. Brambilla, and G. Storti Gajani. Extension of the variational equation to ana-

log/digital circuits: Numerical and experimental validation. International Journal of Circuit

Theory and Applications, 41(7):743–752, 2013a.

F. Bizzarri, A. Brambilla, and G. Storti Gajani. Lyapunov exponents computation for hybrid

neurons. Journal of Computational Neuroscience, 35(2):201–212, 2013b.

162

F. Bizzarri, A. Brambilla, G. S. Gajani, and S. Banerjee. Simulation of real world circuits: Extending

conventional analysis methods to circuits described by heterogeneous languages. IEEE Circuits

and Systems Magazine, 14(4):51–70, 2014.

F. Bizzarri, A. Colombo, F. Dercole, and G. S. Gajani. Necessary and sufficient conditions for the

noninvertibility of fundamental solution matrices of a discontinuous system. SIAM Journal on

Applied Dynamical Systems, 15(1):84–105, 2016. doi: 10.1137/140959031.

M. Bjelonic, R. Grandia, M. Geilinger, O. Harley, V. S. Medeiros, V. Pajovic, E. Jelavic, S. Coros,

and M. Hutter. Offline motion libraries and online mpc for advanced mobility skills. The

International Journal of Robotics Research, page 02783649221102473, 2022.

G. Bledt, P. M. Wensing, S. Ingersoll, and S. Kim. Contact model fusion for event-based locomotion

in unstructured terrains. In IEEE International Conference on Robotics and Automation, pages

4399–4406, 2018.

M. Bloesch, M. Hutter, M. A. Hoepflinger, S. Leutenegger, C. Gehring, C. D. Remy, and R. Siegwart.

State estimation for legged robots-consistent fusion of leg kinematics and IMU. In Robotics:

Science and Systems, pages 17–24, 2012.

H. A. Blom and Y. Bar-Shalom. The interacting multiple model algorithm for systems with

markovian switching coefficients. IEEE Transactions on Automatic Control, 33(8):780–783,

1988.

H. A. Blom and E. A. Bloem. Particle filtering for stochastic hybrid systems. In IEEE Conference

on Decision and Control, volume 3, pages 3221–3226, 2004.

S. F. Bockman. Lyapunov exponents for systems described by differential equations with discon-

tinuous right-hand sides. In American Control Conference, pages 1673–1678. IEEE, 1991.

B. Brogliato, A. Ten Dam, L. Paoli, F. Ge´ not, and M. Abadie. Numerical simulation of finite

dimensional multibody nonsmooth mechanical systems. Appl. Mech. Rev., 55(2):107–150, 2002.

163

S. A. Burden, S. S. Sastry, D. E. Koditschek, and S. Revzen. Event–selected vector field disconti-

nuities yield piecewise–differentiable flows. SIAM Journal on Applied Dynamical Systems, 15

(2):1227–1267, 2016.

S. A. Burden, T. Libby, and S. D. Coogan. On contraction analysis for hybrid systems. CoRR,

abs/1811.03956, 2018a.

S. A. Burden, T. Libby, and S. D. Coogan. On contraction analysis for hybrid systems, 2018b.

arXiv:1811.03956.

J. Carpentier, F. Valenza, N. Mansard, et al. Pinocchio: fast forward and inverse dynamics for

poly-articulated systems. https://stack-of-tasks.github.io/pinocchio, 2015–2021.

K. Chakrabarty and U. Kar. Control of bifurcation of PWM controlled DC drives. In IEEE

International Conference on Power Electronics, Drives and Energy Systems (PEDES), pages

1–8, 2012.

K. Chakrabarty and U. Kar. Dynamic behavior of PWM controlled DC drive. Scientific Voyage, 1

(1):1–12, 2020.

R. Chawla, A. Rounak, and V. Pakrashi. Stability analysis of hybrid systems with higher order

transverse discontinuity mapping. arXiv preprint arXiv:2203.13222, 2022.

D.-h. Chen, S.-x. Xie, X.-c. Huang, and Y.-m. Chen. Calculating Floquet multipliers for periodic

solution of non-smooth dynamical system. In International Conference on Applied Mathematics,

Modeling, Simulation, and Optimization (AMMSO 2019), pages 27–33, 2019.

S. Coombes, Y. M. Lai, M. Şayli, and R. Thul. Networks of piecewise linear neural mass models.

European Journal of Applied Mathematics, 29(5):869–890, 2018.

J. Cortés, V. Šviković, P. Alou, J. A. Oliver, and J. A. Cobos. Design and analysis of ripple-based

controllers for buck converters based on discrete modeling and Floquet theory. In IEEE 14th

164

Workshop on Control and Modeling for Power Electronics (COMPEL), pages 1–9, 2013. doi:

10.1109/COMPEL.2013.6626474.

G. Council, S. Yang, and S. Revzen. Deadbeat control with (almost) no sensing in a hybrid model

of legged locomotion. In International Conference on Advanced Mechatronic Systems, pages

475–480, 2014.

X. Da, Z. Xie, D. Hoeller, B. Boots, A. Anandkumar, Y. Zhu, B. Babich, and A. Garg. Learning

a contact-adaptive controller for robust, efficient legged locomotion. In Conference on Robot

Learning, pages 883–894, 16–18 Nov 2020.

I. Daho. On the co-occurrence of slaw-scale bifurcation in period-doubled orbits in a high order

system. In Proceedings of the World Congress on Engineering and Computer Science, volume 2,

2012.

I. Daho, D. Giaouris, B. Zahawi, V. Picker, and S. Banerjee. Stability analysis and bifurcation

control of hysteresis current controlled ćuk converter using Filippov’s method. In 4th IET

Conference on Power Electronics, Machines and Drives, pages 381–385, 2008.

A. De Luca, A. Albu-Schaffer, S. Haddadin, and G. Hirzinger. Collision detection and safe reaction

with the dlr-iii lightweight manipulator arm. In 2006 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 1623–1630. IEEE, 2006.

M. Di Bernardo, C. J. Budd, A. R. Champneys, P. Kowalczyk, A. B. Nordmark, G. O. Tost, and

P. T. Piiroinen. Bifurcations in nonsmooth dynamical systems. SIAM Review, 50(4):629–701,

2008.

J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim. Dynamic locomotion in the mit cheetah

3 through convex model-predictive control. In IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 1–9, 2018.

L. Dieci and C. Elia. Master stability function for piecewise smooth networks, 2021.

165

M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber. Fast direct multiple shooting algorithms for

optimal robot control. In Fast motions in biomechanics and robotics, pages 65–93. Springer,

2006.

W. J. Dixon and A. M. Mood. The statistical sign test. Journal of the American Statistical

Association, 41(236):557–566, 1946.

A. El Aroudi, D. Giaouris, H. H.-C. Iu, and I. A. Hiskens. A review on stability analysis methods

for switching mode power converters. IEEE Journal on Emerging and Selected Topics in Circuits

and Systems, 5(3):302–315, 2015. doi: 10.1109/JETCAS.2015.2462013.

A. El Aroudi, M. S. Al-Numay, W. G. Lu, J. M. Bosque-Moncusí, and H. H.-C. Iu. A combined

analytical-numerical methodology for predicting subharmonic oscillation in H-bridge inverters

under double edge modulation. IEEE Transactions on Circuits and Systems I: Regular Papers,

65(7):2341–2351, 2017.

A. El Aroudi, L. Benadero, E. Ponce, C. Olalla, F. Torres, and L. Martinez-Salamero. Nonlinear

dynamic modeling and analysis of self-oscillating H-bridge parallel resonant converter under zero

current switching control: Unveiling coexistence of attractors. IEEE Transactions on Circuits

and Systems I: Regular Papers, 66(4):1657–1667, 2018.

A. El Aroudi, K. Mandal, M. S. Al-Numay, D. Giaouris, and S. Banerjee. Piecewise quadratic

slope compensation technique for DC-DC switching converters. IEEE Transactions on Circuits

and Systems I: Regular Papers, 67(12):5574–5585, 2020.

A. Elbkosh, D. Giaouris, V. Pickert, B. Zahawi, and S. Banerjee. Stability analysis and control

of bifurcations of parallel connected DC/DC converters using the monodromy matrix. In IEEE

International Symposium on Circuits and Systems (ISCAS), pages 556–559, 2008a.

A. Elbkosh, D. Giaouris, B. Zahawi, V. Pickert, and S. Banerjee. Control of bifurcation of DC/DC

buck converters controlled by double-edged PWM waveform. In Proc. ENOC, pages 1–5.

Citeseer, 2008b.

166

W. Y. Eras-Herrera, A. R. Mesquita, and B. O. Teixeira. Equality-constrained state estimation for

hybrid systems. IET Control Theory & Applications, 13(13):2018–2028, 2019.

M. Fečkan and M. Pospíšil. On the bifurcation of periodic orbits in discontinuous systems.

Communications in Mathematical Analysis, 8(1):87–108, 2010.

G. Ferrari-Trecate, D. Mignone, and M. Morari. Moving horizon estimation for hybrid systems.

IEEE Transactions on Automatic Control, 47(10):1663–1676, 2002.

A. F. Filippov. Differential Equations with Discontinuous Righthand Sides. Springer, 1988.

F. Forni, A. R. Teel, and L. Zaccarian. Follow the bouncing ball: Global results on tracking and state

estimation with impacts. IEEE Transactions on Automatic Control, 58(6):1470–1485, 2013.

C. Gehring, S. Coros, M. Hutter, M. Bloesch, M. A. Hoepflinger, and R. Siegwart. Control

of dynamic gaits for a quadrupedal robot. In IEEE international conference on Robotics and

automation, pages 3287–3292, 2013.

D. Giaouris, A. Elbkosh, S. Banerjee, B. Zahawi, and V. Pickert. Control of switching circuits using

complete-cycle solution matrices. In IEEE International Conference on Industrial Technology,

pages 1960–1965, 2006.

D. Giaouris, S. Banerjee, B. Zahawi, and V. Pickert. Stability analysis of the continuous-conduction-

mode buck converter via Filippov’s method. IEEE Transactions on Circuits and Systems I:

Regular Papers, 55(4):1084–1096, 2008. doi: 10.1109/TCSI.2008.916443.

D. Giaouris, S. Maity, S. Banerjee, V. Pickert, and B. Zahawi. Application of Filippov method for

the analysis of subharmonic instability in DC–DC converters. International Journal of Circuit

Theory and Applications, 37(8):899–919, 2009.

D. Giaouris, S. Banerjee, O. Imrayed, K. Mandal, B. Zahawi, and V. Pickert. Complex interaction

between tori and onset of three-frequency quasi-periodicity in a current mode controlled boost

converter. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(1):207–214, 2011.

167

D. Giaouris, C. Yfoulis, S. Voutetakis, and S. Papadopoulou. Stability analysis of digital state

feedback controlled boost converters. In IECON 39th Annual Conference of the IEEE Industrial

Electronics Society, pages 8391–8396, 2013.

T. L. Gibo, L. N. Verner, D. D. Yuh, and A. M. Okamura. Design considerations and human-

machine performance of moving virtual fixtures. In IEEE International Conference on Robotics

and Automation, pages 671–676. IEEE, 2009.

G. Gkizas. Border collisions in interleaved multi-output DC-DC boost converters. In International

Symposium on Nonlinear Theory and Its Applications, 08 2018.

R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid dynamical systems. IEEE Control Systems

Magazine, 29(2):28–93, 2009.

C. R. Hargraves and S. W. Paris. Direct trajectory optimization using nonlinear programming and

collocation. Journal of Guidance, Control, and Dynamics, 10(4):338–342, 1987.

R. Hartley, M. Ghaffari, R. M. Eustice, and J. W. Grizzle. Contact-aided invariant extended

kalman filtering for robot state estimation. The International Journal of Robotics Research, 39

(4):402–430, 2020. doi: 10.1177/0278364919894385. URL https://doi.org/10.1177/

0278364919894385.

I. A. Hiskens and M. A. Pai. Trajectory sensitivity analysis of hybrid systems. IEEE Transactions

on Circuits and Systems I: Fundamental Theory and Applications, 47(2):204–220, 2000.

T. A. Howell, B. E. Jackson, and Z. Manchester. Altro: A fast solver for constrained trajectory

optimization. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

7674–7679, 2019.

I. Hwang, H. Balakrishnan, and C. Tomlin. State estimation for hybrid systems: applications to

aircraft tracking. IET Proceedings-Control Theory and Applications, 153(5):556–566, 2006.

168

https://doi.org/10.1177/0278364919894385
https://doi.org/10.1177/0278364919894385

N. Hyafil and F. Bacchus. Conformant probabilistic planning via csps. In ICAPS, volume 98, pages

205–214, 2003.

B. D. Ilhan, A. M. Johnson, and D. E. Koditschek. Autonomous legged hill ascent. Journal of

Field Robotics, 35(5):802–832, August 2018.

O. M. Imrayed. Analysis and control of nonlinear characteristics in DC/DC converters. PhD thesis,

University of Newcastle Upon Tyne, 2012.

A. P. Ivanov. The stability of periodic solutions of discontinuous systems that intersect several

surfaces of discontinuity. Journal of Applied Mathematics and Mechanics, 62(5):677–685,

1998. doi: 10.1016/S0021-8928(98)00087-2.

A. P. Ivanov. Stability of periodic motions with impacts. In Impacts in Mechanical Systems, pages

145–187. Springer, 2000.

B. E. Jackson, K. Tracy, and Z. Manchester. Planning with attitude. IEEE Robotics and Automation

Letters, 6(3):5658–5664, 2021. doi: 10.1109/LRA.2021.3052431.

M. R. Jeffrey. Dynamics at a switching intersection: Hierarchy, isonomy, and multiple sliding.

SIAM Journal on Applied Dynamical Systems, 13(3):1082–1105, 2014.

H. Jiang, A. S. Chong, Y. Ueda, and M. Wiercigroch. Grazing-induced bifurcations in impact

oscillators with elastic and rigid constraints. International Journal of Mechanical Sciences, 127:

204–214, 2017.

A. M. Johnson. Impacts. In Advanced Robot Dynamics. Unpublished Notes, 2021. URL https:

//www.andrew.cmu.edu/user/amj1/book/.

A. M. Johnson and D. E. Koditschek. Legged self-manipulation. IEEE Access, 1:310–334, 2013.

A. M. Johnson, M. T. Hale, G. C. Haynes, and D. E. Koditschek. Autonomous legged hill and

stairwell ascent. In 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics,

pages 134–142. IEEE, 2011.

169

https://www.andrew.cmu.edu/user/amj1/book/
https://www.andrew.cmu.edu/user/amj1/book/

A. M. Johnson, S. A. Burden, and D. E. Koditschek. A hybrid systems model for simple manipu-

lation and self-manipulation systems. The International Journal of Robotics Research, 35(11),

2016a.

A. M. Johnson, J. E. King, and S. Srinivasa. Convergent planning. IEEE Robotics and Automation

Letters, 1(2):1044–1051, 2016b.

S. J. Julier and J. K. Uhlmann. Unscented filtering and nonlinear estimation. Proceedings of the

IEEE, 92(3):401–422, 2004.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable

stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for optimal motion planning.

arXiv preprint arXiv:1005.0416, 2010.

M. Kelly. An introduction to trajectory optimization: How to do your own direct collocation. SIAM

Review, 59(4):849–904, 2017.

H. K. Khalil and J. W. Grizzle. Nonlinear systems, volume 3. Prentice hall Upper Saddle River,

NJ, 2002.

D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim. Highly dynamic quadruped locomotion via

whole-body impulse control and model predictive control. arXiv preprint arXiv:1909.06586,

2019.

I. Ko, B. Kim, and F. C. Park. Vf-rrt: Introducing optimization into randomized motion planning.

In 2013 9th Asian Control Conference (ASCC), pages 1–5. IEEE, 2013.

N. Kong and A. M. Johnson. Optimally convergent trajectories for navigation. In International

Symposium on Robotics Research, October 2019.

N. Kong, C. Li, and A. M. Johnson. Hybrid iLQR model predictive control for contact implicit

stabilization on legged robots. arXiv:2207.04591 [cs.RO], 2022a.

170

N. J. Kong, G. Council, and A. M. Johnson. iLQR for piecewise-smooth hybrid dynamical systems.

In IEEE Conference on Decision and Control, pages 5374–5381, December 2021a.

N. J. Kong, J. J. Payne, G. Council, and A. M. Johnson. The salted kalman filter: Kalman

filtering on hybrid dynamical systems. Automatica, 131:109752, 2021b. ISSN 0005-1098.

doi: https://doi.org/10.1016/j.automatica.2021.109752. URL https://www.sciencedirect.

com/science/article/pii/S0005109821002727.

N. J. Kong, J. J. Payne, G. Council, and A. M. Johnson. The Salted Kalman Filter: Kalman filtering

on hybrid dynamical systems. Automatica, 131:109752, 2021c.

N. J. Kong, J. J. Payne, J. Zhu, S. A. Burden, and A. M. Johnson. Saltation matrices: The essential

tool for linearizing hybrid systems, 2022b. In prep.

X. Koutsoukos, J. Kurien, and F. Zhao. Monitoring and diagnosis of hybrid systems using particle

filtering methods. In International Symposium on Mathematical Theory of Networks and Systems,

2002.

M. C. Koval, J. E. King, N. S. Pollard, and S. S. Srinivasa. Robust trajectory selection for

rearrangement planning as a multi-armed bandit problem. In 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 2678–2685. IEEE, 2015a.

M. C. Koval, N. S. Pollard, and S. S. Srinivasa. Pose estimation for planar contact manipulation with

manifold particle filters. The International Journal of Robotics Research, 34(7):922–945, 2015b.

doi: 10.1177/0278364915571007. URL https://doi.org/10.1177/0278364915571007.

P. Kowalczyk and P. Glendinning. Micro-chaos in relay feedback systems with bang-bang control

and digital sampling. IFAC Proceedings Volumes, 44(1):13305–13310, 2011.

O. Kuznyetsov. Calculation of stable and unstable periodic orbits in a chopper-fed DC drive.

Mathematical Modeling and Computing, 8(1):43–57, 2021.

171

https://www.sciencedirect.com/science/article/pii/S0005109821002727
https://www.sciencedirect.com/science/article/pii/S0005109821002727
https://doi.org/10.1177/0278364915571007

Y. M. Lai, R. Thul, and S. Coombes. Analysis of networks where discontinuities and nonsmooth

dynamics collide: Understanding synchrony. The European Physical Journal Special Topics,

227(10):1251–1265, 2018.

G. Lantoine and R. P. Russell. A hybrid differential dynamic programming algorithm for constrained

optimal control problems. part 1: Theory. Journal of Optimization Theory and Applications,

154(2):382–417, 2012.

S. M. LaValle and J. J. Kuffner Jr. Randomized kinodynamic planning. The international journal

of robotics research, 20(5):378–400, 2001.

S. Le Cleac’h, T. A. Howell, M. Schwager, and Z. Manchester. Fast contact-implicit model-

predictive control. arXiv preprint arXiv:2107.0561, 2021.

J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomotion

over challenging terrain. Science robotics, 5(47), 2020.

R. Leine and H. Nijmeijer. Dynamics and bifurcations of non-smooth mechanical systems. Springer,

2004.

R. Leine and D. Van Campen. Discontinuous bifurcations of periodic solutions. Mathematical and

Computer Modelling, 36(3):259–273, 2002.

R. Leine and D. Van Campen. Bifurcation phenomena in non-smooth dynamical systems. European

Journal of Mechanics-A/Solids, 25(4):595–616, 2006.

R. I. Leine and H. Nijmeijer. Dynamics and bifurcations of non-smooth mechanical systems,

volume 18. Springer Science & Business Media, 2013.

R. I. Leine and D. H. van Campen. Fold bifurcations in discontinuous systems. In International

Design Engineering Technical Conferences and Computers and Information in Engineering

Conference, volume 19777, pages 1423–1429. American Society of Mechanical Engineers,

1999.

172

H. Li and P. M. Wensing. Hybrid systems differential dynamic programming for whole-body

motion planning of legged robots. IEEE Robotics and Automation Letters, 5(4):5448–5455,

2020.

H. Li, R. J. Frei, and P. M. Wensing. Model hierarchy predictive control of robotic systems. IEEE

Robotics and Automation Letters, 6(2):3373–3380, 2021.

W. Li and E. Todorov. Iterative linear quadratic regulator design for nonlinear biological movement

systems. In International Conference on Informatics in Control, Automation and Robotics, pages

222–229, 2004.

Y. Li, Z. Littlefield, and K. E. Bekris. Asymptotically optimal sampling-based kinodynamic

planning. The International Journal of Robotics Research, 35(5):528–564, 2016.

K. Liu, Y. Zhang, A. Dobson, and D. Berenson. Asymptotically near-optimal methods for kinody-

namic planning with initial state uncertainty. IEEE Robotics and Automation Letters, 2019.

W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34

(6):683–696, 1998.

I. Lopez, J. Busturia, and H. Nijmeijer. Energy dissipation of a friction damper. Journal of Sound

and Vibration, 278(3):539–561, 2004.

T. Lozano-Perez, M. Mason, and R. H. Taylor. Automatic synthesis of fine-motion strate-

gies for robots. The International Journal of Robotics Research, 3, 03 1984. doi:

10.1177/027836498400300101.

A. Lussier Desbiens, A. T. Asbeck, and M. R. Cutkosky. Landing, perching and taking off from

vertical surfaces. The International Journal of Robotics Research, 30(3):355–370, 2011.

J. Lygeros, K. H. Johansson, S. N. Simic, J. Zhang, and S. S. Sastry. Dynamical properties of

hybrid automata. IEEE Transactions on Automatic Control, 48(1):2–17, 2003.

173

S. Maity and P. K. Sahu. Modeling and analysis of a fast and robust module-integrated analog

photovoltaic MPP tracker. IEEE Transactions on Power Electronics, 31(1):280–291, 2015.

S. Maity, D. Giaouris, S. Banerjee, T. K. Bhattacharya, B. Zahawi, and V. Pickert. Control of

bifurcations in power electronic DC-DC converters through manipulation of the saltation matrix.

In Proc. PhysCon, pages 1–5, 2007.

V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,

A. Allshire, A. Handa, and G. State. Isaac Gym: High performance GPU based physics simulation

for robot learning. In Conference on Neural Information Processing Systems, Datasets and

Benchmarks Track, 2021.

R. Mallik, A. M. Pace, S. A. Burden, and B. Johnson. Accurate small–signal discrete–time model of

dual active bridge using saltation matrices. In IEEE Energy Conversion Congress and Exposition

(ECCE), pages 6312–6317, 2020.

K. Mandal. Dynamical Analysis of Resonant DC-DC Converters. PhD thesis, IIT Kharagpur, 2013.

K. Mandal and S. Banerjee. A new software for dynamical analysis of nonsmooth systems. In

Proc. ENOC, 09 2014.

K. Mandal, S. Banerjee, and C. Chakraborty. A new algorithm for small-signal analysis of DC–DC

converters. IEEE Transactions on Industrial Informatics, 10(1):628–636, 2013.

K. Mandal, A. Abusorrah, M. M. Al-Hindawi, Y. Al-Turki, A. E. Aroudi, D. Giaouris, and

S. Banerjee. Control-oriented design guidelines to extend the stability margin of switching

converters. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–4,

2017. doi: 10.1109/ISCAS.2017.8050578.

S. Mason, N. Rotella, S. Schaal, and L. Righetti. Balancing and walking using full dynamics lqr

control with contact constraints. In 2016 IEEE-RAS 16th International Conference on Humanoid

Robots (Humanoids), pages 63–68, 2016. doi: 10.1109/HUMANOIDS.2016.7803255.

174

C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud, M. Naveau, J. Carpentier, L. Righetti,

S. Vijayakumar, and N. Mansard. Crocoddyl: An efficient and versatile framework for multi-

contact optimal control. In IEEE International Conference on Robotics and Automation, pages

2536–2542, 2020.

MATLAB. Matlab, 2018. The MathWorks, Natick, MA, USA.

D. Mayne. A second-order gradient method for determining optimal trajectories of non-linear

discrete-time systems. International Journal of Control, 3(1):85–95, 1966.

D. Q. Mayne. Differential dynamic programming–a unified approach to the optimization of dynamic

systems. In Control and Dynamic Systems, volume 10, pages 179–254. Elsevier, 1973.

T. McGeer. Passive dynamic walking. Int. J. Robotics Res., 9(2):62–82, 1990.

K. Mombaur. Using optimization to create self-stable human-like running. Robotica, 27(3):

321–330, 2009.

I. Mordatch, E. Todorov, and Z. Popović. Discovery of complex behaviors through contact-invariant

optimization. ACM Transactions on Graphics, 31(4):43, 2012.

C. Morel, D. Petreus, and A. Rusu. Application of the Filippov method for the stability analysis of

a photovoltaic system. Advances in Electrical and Computer Engineeging, 11:93–98, 2011.

C. Morel, A. Akrad, R. Sehab, T. Azib, and C. Larouci. Open-circuit fault-tolerant strategy for

interleaved boost converters via Filippov method. Energies, 15(1):352, 2022.

P. C. Müller. Calculation of Lyapunov exponents for dynamic systems with discontinuities. Chaos,

Solitons & Fractals, 5(9):1671–1681, 1995.

J.-G. Muñoz, A. Pérez, and F. Angulo. Enhancing the stability of the switched systems using the

saltation matrix. International Journal of Structural Stability and Dynamics, 19(05):1941004,

2019.

175

J.-G. Muñoz, F. Angulo, and D. Angulo-Garcia. Designing a hysteresis band in a boost flyback

converter. Mechanical Systems and Signal Processing, 147:107080, 2021.

R. M. Murray, Z. Li, and S. S. Sastry. A mathematical introduction to robotic manipulation. CRC

press, 2017.

R. Nicks, L. Chambon, and S. Coombes. Clusters in nonsmooth oscillator networks. Physical

Review E, 97(3):032213, 2018.

S. Nobukawa, H. Nishimura, T. Yamanishi, and J.-Q. Liu. Chaotic states induced by resetting

process in Izhikevich neuron model. Journal of Artificial Intelligence and Soft Computing

Research, 5, 2015.

S. Nobukawa, H. Nishimura, and T. Yamanishi. Chaotic resonance in typical routes to chaos in the

izhikevich neuron model. Scientific Reports, 7(1):1–9, 2017.

N. Okafor, D. Giaouris, B. Zahawi, and S. Banerjee. Analysis of fast-scale instability in DC

drives with full-bridge converter using Filippovs method. IET Conference Proceedings, pages

235–235(1), 2010a.

N. Okafor, B. Zahawi, D. Giaouris, and S. Banerjee. Chaos, coexisting attractors, and fractal basin

boundaries in DC drives with full-bridge converter. In Proceedings of 2010 IEEE International

Symposium on Circuits and Systems, pages 129–132. IEEE, 2010b.

P. R. Owen. Saltation of uniform grains in air. Journal of Fluid Mechanics, 20(2):225–242, 1964.

A. M. Pace and S. A. Burden. Piecewise-differentiable trajectory outcomes in mechanical systems

subject to unilateral constraints. In Proceedings of the 20th International Conference on Hybrid

Systems: Computation and Control, pages 243–252, 2017.

P. R. Pagilla and B. Yu. An experimental study of planar impact of a robot manipulator. IEEE/ASME

Transactions on Mechatronics, 9(1):123–128, 2004.

176

D. Pardo, M. Neunert, A. W. Winkler, R. Grandia, and J. Buchli. Hybrid direct collocation and

control in the constraint-consistent subspace for dynamic legged robot locomotion. In Robotics:

Science and Systems, volume 10, 2017.

Y. Park, K. M. Shaw, H. J. Chiel, and P. J. Thomas. The infinitesimal phase response curves of

oscillators in piecewise smooth dynamical systems. European Journal of Applied Mathematics,

29(5):905–940, 2018.

J. J. Payne, N. J. Kong, and A. M. Johnson. The uncertainty aware Salted Kalman Filter: State

estimation for hybrid systems with uncertain guards. In IEEE/RSJ Intl. Conference on Intelligent

Robots and Systems, October 2022a. To appear.

J. J. Payne, N. J. Kong, Z. Manchester, and A. M. Johnson. Hybrid moving horizon estimation for

contact systems, 2022b. In prep.

F. Pfeiffer and C. Glocker. Multibody dynamics with unilateral contacts. John Wiley & Sons, 1996.

M. Posa, C. Cantu, and R. Tedrake. A direct method for trajectory optimization of rigid bodies

through contact. The International Journal of Robotics Research, 33(1):69–81, 2014.

M. Posa, S. Kuindersma, and R. Tedrake. Optimization and stabilization of trajectories for con-

strained dynamical systems. In IEEE International Conference on Robotics and Automation,

pages 1366–1373, May 2016.

I. Poulakakis and J. W. Grizzle. The spring loaded inverted pendulum as the hybrid zero dynamics

of an asymmetric hopper. IEEE Transactions on Automatic Control, 54(8):1779–1793, 2009.

J. Pratt, J. Carff, S. Drakunov, and A. Goswami. Capture point: A step toward humanoid push

recovery. In IEEE-RAS International Conference on Humanoid Robots, pages 200–207, 2006.

Quanser Inc. User manual qube-servo experiment, set up and configuration, 2016. Quanser Inc.

M. H. Raibert. Legged robots that balance. MIT press, 1986.

177

M. H. Raibert, H. B. Brown Jr, M. Chepponis, J. Koechling, and J. K. Hodgins. Dynamically

stable legged locomotion. Technical report, Massachusetts Inst of Tech Cambridge Artificial

Intelligence Lab, 1989.

A. V. Rao. A survey of numerical methods for optimal control. Advances in the Astronautical

Sciences, 135(1), 2009.

S. Revzen and M. Kvalheim. Data driven models of legged locomotion. In Micro-and Nanotech-

nology Sensors, Systems, and Applications VII, volume 9467, pages 315–322. SPIE, 2015.

M. Rijnen, A. Saccon, and H. Nijmeijer. On optimal trajectory tracking for mechanical systems

with unilateral constraints. In IEEE Conference on Decision and Control, pages 2561–2566,

2015.

M. Rijnen, E. De Mooij, S. Traversaro, F. Nori, N. Van De Wouw, A. Saccon, and H. Nijmei-

jer. Control of humanoid robot motions with impacts: Numerical experiments with reference

spreading control. In 2017 IEEE International Conference on Robotics and Automation (ICRA),

pages 4102–4107. IEEE, 2017a.

M. Rijnen, A. Saccon, and H. Nijmeijer. Reference spreading trajectory tracking control: Ex-

perimental analysis on a one-degreeof-freedom setup. In 9th European Nonlinear Dynamics

Conference (ENOC), Budapest, Hungary, pages 1–2, 2017b.

M. Rijnen, J. B. Biemond, N. Van De Wouw, A. Saccon, and H. Nijmeijer. Hybrid systems with

state-triggered jumps: Sensitivity-based stability analysis with application to trajectory tracking.

IEEE Transactions on Automatic Control, 65(11):4568–4583, 2019.

A. Saccon, N. van de Wouw, and H. Nijmeijer. Sensitivity analysis of hybrid systems with state

jumps with application to trajectory tracking. In 53rd IEEE Conference on Decision and Control,

pages 3065–3070. IEEE, 2014.

178

S. Scholtes. Introduction to piecewise differentiable equations. Springer Science & Business

Media, 2012.

G. Schultz and K. Mombaur. Modeling and optimal control of human-like running. IEEE/ASME

Transactions on mechatronics, 15(5):783–792, 2009.

R. v. Schwerin, M. Winckler, and V. Schulz. Parameter estimation in discontinuous descriptor

models. In IUTAM Symposium on Optimization of Mechanical Systems, pages 269–276. Springer,

1996.

L. F. Shampine, I. Gladwell, L. Shampine, and S. Thompson. Solving ODEs with MATLAB.

Cambridge university press, 2003.

S. N. Simić, K. H. Johansson, S. Sastry, and J. Lygeros. Towards a geometric theory of hybrid

systems. In International Workshop on Hybrid Systems: Computation and Control, pages

421–436. Springer, 2000.

S. Skaff, A. Rizzi, H. Choset, and P.-C. Lin. A context-based state estimation technique for hybrid

systems. In IEEE International Conference on Robotics and Automation, pages 3935–3940,

April 2005.

D. Sternad, M. Duarte, H. Katsumata, and S. Schaal. Bouncing a ball: tuning into dynamic stability.

Journal of Experimental Psychology: Human Perception and Performance, 27(5):1163, 2001.

D. E. Stewart and J. C. Trinkle. An implicit time-stepping scheme for rigid body dynamics

with inelastic collisions and coulomb friction. International Journal for Numerical Methods in

Engineering, 39(15):2673–2691, 1996.

N. Suda and S. Banerjee. Why does narrow band chaos in impact oscillators disappear over a range

of frequencies? Nonlinear Dynamics, 86(3):2017–2022, Nov 2016. ISSN 1573-269X. doi:

10.1007/s11071-016-3011-y.

179

Y. Tassa, T. Erez, and E. Todorov. Synthesis and stabilization of complex behaviors through

online trajectory optimization. In IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2012.

R. Tedrake. Underactuated Robotics. Course Notes for MIT 6.832, 2022. URL http:

//underactuated.mit.edu.

S. Thrun. Probabilistic robotics. Communications of the ACM, 45(3):52–57, 2002.

T. Van Erven and P. Harremos. Rényi divergence and kullback-leibler divergence. IEEE Transac-

tions on Information Theory, 60(7):3797–3820, 2014.

P. Varin and S. Kuindersma. A constrained kalman filter for rigid body systems with frictional

contact. In Workshop on the Algorithmic Foundations of Robotics, 2018.

O. Von Stryk. User’s guide for DIRCOL–a direct collocation method for the numerical solution of

optimal control problems. Technical report, Technische Universitat Darmstadt, 1999.

X. Wang and J. K. Hale. On monodromy matrix computation. Computer Methods in Applied

Mechanics and Engineering, 190(18-19):2263–2275, 2001.

R. A. Wehage and E. J. Haug. Dynamic Analysis of Mechanical Systems With Intermittent Motion.

Journal of Mechanical Design, 104(4):778–784, 10 1982. ISSN 0161-8458.

G. Welch and G. Bishop. An introduction to the kalman filter. Technical Report 95–041, University

of North Carolina at Chapel Hill, 1995. Updated: July 24, 2006.

A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli. Gait and trajectory optimization for legged

systems through phase-based end-effector parameterization. IEEE Robotics and Automation

Letters, 3(3):1560–1567, 2018.

H. Wu and V. Pickert. Stability analysis and control of nonlinear phenomena in bidirectional boost

converter based on the monodromy matrix. In IEEE Applied Power Electronics Conference and

Exposition-APEC 2014, pages 2822–2827, 2014.

180

http://underactuated.mit.edu
http://underactuated.mit.edu

H. Wu, V. Pickert, X. Deng, D. Giaouris, W. Li, and X. He. Polynomial curve slope compensation for

peak-current-mode-controlled power converters. IEEE Transactions on Industrial Electronics,

66(1):470–481, 2018.

Z. Xie, G. Berseth, P. Clary, J. Hurst, and M. van de Panne. Feedback control for cassie with deep

reinforcement learning. In 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 1241–1246. IEEE, 2018.

Z. Xie, X. Da, B. Babich, A. Garg, and M. van de Panne. Glide: Generalizable quadrupedal

locomotion in diverse environments with a centroidal model. arXiv preprint arXiv:2104.09771,

2021.

W. Yang and M. Posa. Impact invariant control with applications to bipedal locomotion. In IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 5151–5158. IEEE,

2021a.

W. Yang and M. Posa. Impact invariant control with applications to bipedal locomotion. In 2021

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5151–5158,

2021b. doi: 10.1109/IROS51168.2021.9636094.

J. Zhang, A. M. Pace, S. A. Burden, and A. Aravkin. Offline state estimation for hybrid systems

via nonsmooth variable projection. Automatica, 115:108871, 2020. ISSN 0005-1098. doi:

https://doi.org/10.1016/j.automatica.2020.108871. URL http://www.sciencedirect.com/

science/article/pii/S0005109820300698.

J. Zhu and A. M. Johnson. Convergent iLQR for underactuated hybrid dynamical systems. In RSS

Workshop on Risk Aware Decision Making, June 2022.

J. Zhu, N. J. Kong, G. Council, and A. M. Johnson. Hybrid event shaping to stabilize periodic hybrid

orbits. In IEEE Intl. Conference on Robotics and Automation, pages 6600–6606, Philadelphia,

PA, May 2022.

181

http://www.sciencedirect.com/science/article/pii/S0005109820300698
http://www.sciencedirect.com/science/article/pii/S0005109820300698

	Introduction
	Motivation
	Overview

	Contraction analysis Convergent Planning
	Abstract
	Introduction
	Related Work

	Methods
	Contraction Analysis and Divergence Metrics
	Hill Climbing Problem
	Power Controller
	Trajectory Optimization Framework
	RRT methods
	Simulation

	Experiments
	Experiment Methods
	Results

	Conclusion
	Optimally Convergent Swing Up for Rotary Cart Pole
	Rotary Cart Pole System Definition
	Trajectory Optimization
	Controller design
	Hardware Experiments
	Simulating Perturbations Experiment
	Trajectory Optimization Results
	Hardware Results
	Perturbation Results
	Conclusion

	Saltation Matrices: The Essential Tool for Linearizing Hybrid Systems
	Abstract
	Introduction
	Survey of saltation matrix applications
	What is the saltation matrix and how do you use it
	Saltation matrix definition
	Saltation matrix derivation
	Linear forms for the saltation matrix
	Quadratic forms for the saltation matrix

	Example: Calculating the saltation matrix for a ball dropping on a slanted surface
	Dynamics definition
	Saltation matrix calculation
	Saltation matrix analysis

	Saltation matrices for generalized rigid body systems with unilateral constraints
	Dynamics derivation
	Apex
	Liftoff
	Plastic impact
	Elastic impact
	Stick-slip friction
	Slip-stick friction

	Conclusion
	Appendicies
	Saltation matrix chain rule derivation
	Early impact saltation derivation
	Covariance update through a hybrid event
	Riccati update through hybrid events
	Covariance Propagation Validation

	The Salted Kalman Filter: Kalman Filtering on Hybrid Dynamical System
	Abstract
	Introduction
	Related Work
	Hybrid System Estimators
	Non-smooth systems and the saltation matrix

	Problem Formulation
	Kalman filtering for hybrid systems
	Hybrid transition during a priori update
	Hybrid transition during a posteriori update
	Extended Kalman Filter
	Summary and psuedocode

	Experiments
	Experimental Design
	Hybrid System Definitions

	Results
	Constant Flow
	ASLIP

	Conclusion

	iLQR for piecewise-smooth hybrid dynamical systems
	Abstract
	Introduction
	Derivation/implementation
	Smooth iLQR background
	Hybrid system modifications to the forward pass
	Hybrid system modifications to the backwards pass
	Hybrid extensions for mode mismatches
	Algorithm

	Hybrid System Examples and Experiments
	Bouncing ball elastic impact
	Ball dropping on a spring-damper
	Ball drop on a curved surface with plastic impacts
	Perching quadcopter

	Results
	Bouncing Ball with Elastic Impacts
	Ball dropping on a spring-damper
	Ball drop on a curved surface with plastic impacts
	Perching quadcopter

	Discussion

	Hybrid iLQR MPC
	Abstract
	Introduction
	Hybrid systems background
	Hybrid Simulators

	HiLQR MPC Implementation
	Hybrid Cost Update
	Rollout and Forward Pass
	Backward Pass
	General Robot Implementation

	Experiments
	Bouncing Ball
	Simulated Robot Controller Comparison
	Physical Robot Controller Comparison

	Results
	Bouncing ball HiLQR MPC
	Simulated Robot Controller Comparison
	Physical Robot Controller Comparison

	Discussion

	Conclusion
	Possible Future directions for convergent planning
	Possible Future directions for state estimation
	Future directions for Hybrid iLQR
	References

